Виды датчиков температуры и принцип их работы

Введение

Измерение давления является важной задачей во многих отраслях науки и техники. Большинство потоков носит турбулентный характер

При этом давление постоянно изменяется. Поэтому актуальной является задача измерения не только среднего во времени, но и мгновенного значения давления

Большинство потоков носит турбулентный характер. При этом давление постоянно изменяется. Поэтому актуальной является задача измерения не только среднего во времени, но и мгновенного значения давления.

Применяемые методы измерения давления должны соответствовать сложному характеру исследуемого объекта, а измерительные преобразователи — удовлетворять жестким требованиям — обладать высокой чувствительностью при необходимом пространственном разрешении. Этим условиям соответствуют оптические методы измерения на основе волоконно-оптических устройств.

Основной элемент таких устройств — оптический волновод, который является не только линией передачи, но и чувствительным к изменению давления элементом. Существует большое количество устройств на основе световодов , в которых используются различные физические явления. Об измеряемой величине (давлении) в таких устройствах обычно судят по изменению мощности (амплитуды) и поляризации проходящего через чувствительный элемент света.

При наличии положительных качеств (достаточно большая чувствительность, высокая помехозащищенность и т. д.) данные устройства имеют и один существенный недостаток: они не позволяют производить дистанционные измерения, когда первичный преобразователь физически не связан с остальными элементами измерительной системы.

Избавиться от этого недостатка позволяет разработка первичных преобразователей для измерения давления, использующих особенности интерференционных явлений в многослойных оптических структурах (МОС) при больших углах падения.

Многослойные оптические структуры, представляющие собой в общем виде систему чередующихся прозрачных оптических сред с различными параметрами (в первую очередь — показателем преломления), при определенных углах падения когерентного света обладают ярко выраженными свойствами резонансной угловой фильтрации . Типичная угловая характеристика пропускания резонансных многослойных оптических структур (РМОС) изображена на рис. 1.


Рис. 1. Расчетная характеристика зависимости оптического пропускания РМОС от угла падения излучения в режиме угловой фильтрации

Угловая чувствительность данных устройств может достигать 10–3…10–4 угловой секунды .

Создание первичных преобразователей давления на основе многослойных оптических структур сопряжено с необходимостью обеспечения условий для изменения коэффициента пропускания (или отражения) структуры в зависимости от воздействующего на преобразователь давления.

Кокой купить тензодатчик: классификация приборов

Чтобы купить тензодатчик, который будет справляться с возложенными на него задачами в полном объеме, необходимо правильно выбрать его модель. Эти устройства могут быть разных видов, предназначенными для применения в определенных отраслях (фармацевтика, работа с атомами, металлургия и т. д.).

Тензодатчики производят в следующих модификациях:

  • измерители для определения давления;
  • контроллеры перемещения;
  • для двигателей (в автомобилях и станках);
  • измерители нагрузки и силы;
  • фиксаторы ускорения.

В повседневной жизни применяются только те виды тензодатчиков, которые необходимы для взвешивания. Они могут быть S-образными, консольными, бочковыми и шайбовыми. Подходящий вариант подбирается с учетом предстоящей области использования.

Ультразвуковые датчики

Эти устройства находят свое широкое применение в самых различных сферах производства, решая множество задач по автоматизации технологических циклов. Ультразвуковые бесконтактные датчики используются для определения местонахождения и удаленности различных объектов.

Например, они служат для обнаружения этикеток, причем даже и прозрачных, для измерения расстояния и осуществления контроля над передвижением объекта. С их помощью определяют уровень жидкости. Необходимость в этом возникает, например, для учета расхода топлива при выполнении транспортных работ. И это только некоторые из большого количества применений выключателей ультразвукового типа.

Такие датчики довольно компактны. Их отличает качественная конструкция и отсутствие различных подвижных деталей. Это оборудование не боится загрязнений, что достаточно актуально в условиях производств, а также почти не требует обслуживания.

В составе ультразвукового датчика находится пьезоэлектрический обогреватель, являющийся одновременно и излучателем, и приемником. Данная конструктивная деталь воспроизводит поток звуковых импульсов, принимая его и преобразуя полученный сигнал в напряжение. Далее оно подается на контроллер, который производит обработку данных и вычисляет то расстояние, на котором находится объект. Подобная технология называется эхолокационной.

Активный диапазон ультразвукового датчика является рабочим диапазоном обнаружения

Это то расстояние, в пределах которого ультразвуковой прибор может «увидеть» объект, и неважно, приближается ли тот к чувствительному элементу в осевом направлении или движется поперек звукового конуса

В зависимости от принципа работы выделяют ультразвуковые датчики:

  1. Положения. Такие устройства используют для исчисления временного промежутка, необходимого для прохождения звука от прибора к тому или иному объекту и назад. Бесконтактные ультразвуковые датчики положения применяют для контроля местоположения и наличия разнообразных механизмов, а также для их подсчета. Используются такие приборы и в качестве сигнализатора уровня различных жидкостей или сыпучих материалов.
  2. Расстояния и перемещения. Принцип работы подобных приборов аналогичен тому, который используется в описанном выше устройстве. Разница имеется только в типе того сигнала, который присутствует на выходе. Он аналоговый, а не дискретный. Датчики подобного типа применяются для преобразования имеющихся показателей расстояния до объекта в определенные электрические сигналы.

Подбор датчиков, какие параметры учитывают

Сенсор, например, на замену сломанного, подбирают под параметры:

  • на которые рассчитано обслуживаемое оборудование;
  • характеристики могут быть иными:
    • в рамках рекомендаций производителя;
    • если прибор рассчитан на таковые (могут расширять его возможности, опции).

Что оценивается:

диапазон характеристик обслуживаемой среды (например, температура, давление). Если, например, датчик NTC или термопара рассчитана на работу в t° до +600, то, конечно же, они не будут эффективными, если рабочими температурами приложения являются значения около +900° C. Если сенсор работает с запитыванием (обычно слаботочным), то чрезмерно высокое значение попросту выведет его из строя, это же касается, если он предназначен для фиксирования электропараметров только определенного диапазона, а также такая некорректная по отношению к нему среда просто не будет правильно отслеживаться;
инерционность. Это время срабатывания

Важно выдерживать допустимые нормы для конкретного оборудования. Например, если сенсор слишком медленный, то противопожарная система будет срабатывать с опозданием, что может привести к трагическим последствиям, принятые ею меры могут из-за опоздания стать неэффективными.

Остальные важные параметры:

  • точность и погрешность;
  • разрешение;
  • мощность, в том числе сигнала на выходе;
  • нужный момент, усилие от входного сигнала;
  • выходное сопротивление;
  • дифференциальность (способность различать).

При подборе надо проверять допуски — совокупность характеристик, допустимых для конкретного оборудования. Например, диапазон погрешностей, отклонений (±).

Статические качества. Выражают, насколько корректен выход датчика, насколько правильно отражает замеряемые величины спустя определенное время после их изменения, когда вых. импульс установился с новым значением. К таковым относятся:

Динамические характеристики. Редко приводятся в техописаниях. Для бытовых приборов, обычных целей их можно не учитывать.

Их берут во внимание, если требуется детектор для особо чувствительного оборудования (лабораторного, научного, для экспериментов), для предельно возможной точности, исключающей любые сбои, погрешности (сфера энергетики, космическая отрасль). К таковым относятся:

Требования для датчиков

Можно подобрать сенсор с большой погрешностью, если это допускается производителем, затребовано именно под особенности приложения или особо не влияет на качество работы.

Но в общем лучшими изделиями будут таковые со следующими качествами:

  • однозначность зависимости вых. величины от входной;
  • стабильность качеств во времени;
  • чем выше чувствительность, тем лучше;
  • малые размеры, вес;
  • отсутствие обратного влияния на подконтрольный процесс, параметр;
  • чем шире диапазон рабочих параметров, тем лучше, если это не ухудшает иные характеристики;
  • расширенные способы монтажа.

Классификация датчиков

На рынке можно найти много видов сенсоров. Практически все они базируются на воспринимающих элементах, улавливающих определенные параметры объекта. Например, чувствительной частью выступает:

  • лазер либо оптический луч, установленный в детекторах скорости вращения;
  • резистор, изготовленный из специального сплава, меняющий сопротивление под воздействием смены температур: ставится в терморезистивные датчики;
  • спайка из различных сплавов, при некоторых температурах, реагирующая образованием электродвижущей силы;
  • биметаллические пластины, управляющие электрическими контактами;
  • тензометрические элементы, преобразующие величину деформации и меняющие характеристики.

Также это могут быть магниты, поплавки, химические реактивы.

Классификация датчиков по выходным параметрам (образованию наиболее удобного для восприятия импульса, в который преобразуется входной сигнал исследуемой среды), следующая:

  • электродвижущей силы и напряжения;
  • сопротивления;
  • света, радиосигнала, звука.

Большинство датчиков являются электрическими приборами, так как именно они имеют множество преимуществ:

  • электрический сигнал удобен для передачи на разные расстояния без задержки скорости;
  • любые параметры легко преобразуются в электричество.
  • электросенсоры очень точные, чувствительные, быстродействующие.

Детекторы разделяют на три класса:

  1. Аналоговые, образующие аналоговый сигнал потоку входных данных.
  2. Цифровые или электронные, генерирующие последовательности импульсов.
  3. Бинарные, создающие двухуровневый сигнал.

По принципу действия сенсоры бывают генераторными, гальваническими, тахометрическими, параметрическими, индуктивными, емкостными. Также существуют не особенно распространенные виды классификаций сенсоров:

  • дискретные и непрерывные – по динамическому характеру трансформации;
  • аналоговые и цифровые – по виду измерительных импульсов;
  • проводные и беспроводные – по среде подачи импульсов;
  • одномерные и многомерные – по количеству входящих параметров.

По виду измеряемых величин наиболее популярны следующие разновидности детекторов:

  • давления: абсолютного, избыточного, разрежения, разности давления, давления-разрежения;
  • расхода: механические, ультразвуковые, вихревые, электромагнитные, кориолисовые;
  • уровня: радарные, емкостные, поплавковые, кондуктометрические;
  • температуры: термопара, сопротивления, пирометры, теплового потока;
  • перемещения: абсолютные, относительные;
  • радиоактивности: ионизационные, прямого заряда;
  • фотодатчики: фотодиоидные, фотосопротивления, фотоматричные.

Также бывают датчики влажности, положения, вибрации, механических величин, дуговой защиты.

Виды и разновидности

Датчики движения для включения света могут быть разных типов, предназначены для различных условий эксплуатации. В первую очередь надо смотреть где может устанавливаться устройство.

Датчик движения для включения света нужен не только на улице

Уличные датчики движения имеют высокую степень защиты корпуса. Для уверенной эксплуатации на открытом воздухе нужны датчики с IP не ниже 55, но лучше — выше. Для установки в доме можно брать IP 22 и выше.

Тип питания

Далее надо учесть, от какого источника питается датчик света. Есть следующие варианты:

  • Проводные датчики с питанием от сети 220 В.
  • Беспроводные, с питанием от батареек или аккумуляторов.

Датчики движения бывают проводными и беспроводными

Самая большая группа — проводные для подключения к 220 В. Беспроводных меньше, но и их хватает. Они хороши, если нужно включить освещение, которое работает от низковольтных источников тока — например, аккумулятора или солнечных батарей.

Способ определения наличия движения

Датчик движения для включения света может определять движущиеся объекты используя различные принцип детекции:

  • Инфракрасные датчики движения. Реагируют на тепло, выделяемое телом теплокровных существ. Относятся к пассивным устройствам, так как сам ничего не вырабатывает, только регистрирует излучение. Эти датчики реагируют на движение животных в том числе, так что могут быть ложные срабатывания.
  • Акустические датчики движения (шума). Также относятся к пассивной группе оборудования. Они реагируют на шум, могут включаться от хлопка, звука открываемой двери. Они могут использоваться в подвалах частных домов, где шум возникает только туда кто-нибудь заходит. В других местах применение ограничено.

Работа инфракрасных датчиков движения основаны на отслеживании тепла, выделяемого человеком
Микроволновые датчики движения. Относятся к группе активных устройств. Сами вырабатывают волны в микроволновом диапазоне и отслеживают их возвращение. При наличии движущегося объекта замыкают/размыкают контакты (есть разного типа). Есть чувствительные модели, которые «видят» даже через перегородки или стены. Обычно используются в охранных системах.
Ультразвуковые. Принцип действия такой же, как у микроволновых, отличается диапазон излучаемых волн. Этот тип устройств применяют редко, так как на ультразвук могут реагировать животные, да и длительное воздействие на человека (аппараты постоянно генерируют излучение) пользы не принесет.
Разное исполнение, но цвет, в основном, белый и черный
Комбинированные (дуальные). Сочетают несколько способов обнаружения движения. Они более надежные, имеют меньше ложных срабатываний, но и более дорогостоящие.

Чаще всего инфракрасные датчики движения используются для включения света на улице или дома. У них невысокая цена, большой диапазон и большое количество регулировок, которые помогут вам настроить. На лестницах и в длинных коридорах лучше ставить датчик с ультразвуком или микроволновкой. Они могут включить освещение, даже если вы все еще находитесь далеко от источника света. В охранных системах рекомендуется устанавливать микроволновые устройства — они обнаруживают движение даже за перегородками.

Пирометрические датчики

Для организма любого живого существа характерно наличие теплового излучения, которое является пучком электромагнитных волн разной длины. При повышении температуры тела увеличивается и объем излучаемой им энергии.

На основе фиксации теплового излучения работают датчики, которые называются пирометрическими сенсорами. Они бывают:

— суммарного излучения, измеряющими полную тепловую энергию тела;

— частичного излучения, измеряющие энергию ограниченного приемником участка;

— спектрального отношения, выдающие показатель отношения энергии определенных участков спектра.

Бесконтактные датчики-сенсоры чаще всего применяются в приборах, фиксирующих движение объектов.

Как устроен датчик индуктивности и принцип его работы

По принципу действия индуктивные датчики относятся к активным, то есть, для работы им требуется внешний генератор. Он обеспечивает подачу на катушку индуктивности сигнала с заданной частотой и амплитудой.

Ток, проходящий через витки катушки, создает магнитное поле. Если в магнитное поле попадает токопроводящий предмет, параметры катушки изменяются. Остается только зафиксировать это изменение.

Простые бесконтактные датчики реагируют на появление металлических объектов в ближней зоне обмотки. При этом изменяется импеданс катушки, это изменение надо преобразовать в электрический сигнал, усилить и (или) зафиксировать прохождение порога с помощью схемы сравнения.

Датчики другого типа реагируют на изменение продольного положения объекта, который служит сердечником катушки. При изменении положения объекта он вдвигается или выдвигается из катушки, тем самым изменяя её индуктивность. Это изменение можно преобразовать в электрический сигнал и измерить. Другой вариант исполнения такого датчика – когда объект надвигается на катушку снаружи. Это вызывает уменьшение индуктивности вследствие экранного эффекта.

Ещё один вариант исполнения индуктивного датчика перемещения – линейно-регулируемый дифференциальный трансформатор (LVDT). Он представляет собой составную катушку, выполненную в следующем порядке:

  • вторичная обмотка 1;
  • первичная обмотка;
  • вторичная обмотка 2.

Сигнал с генератора подается на первичную обмотку. Магнитное поле, создаваемое средней катушкой, наводит ЭДС в каждой из вторичных (принцип трансформатора). Сердечник при его перемещении изменяет взаимную связь между катушками, изменяя электродвижущую силу в каждой из обмоток. Это изменение можно зафиксировать схемой измерения. Так как длина сердечника меньше общей длины составной катушки, то по соотношению ЭДС во вторичных обмотках можно однозначно определить положение объекта.

На этом же принципе – изменение индуктивной связи между обмотками – построен датчик поворота. Он состоит из двух соосных катушек. Сигнал подаётся на одну из обмоток, ЭДС во второй зависит от взаимного угла поворота.

Из принципа действия очевидно, что индуктивные датчики, независимо от исполнения, относятся к бесконтактным. Они работают на расстоянии, и непосредственного касания контролируемого объекта не требуют.

Устройство биполярного транзистора

https://youtube.com/watch?v=iqraL2VcOjw

Элемент назвали биполярным, потому что в его работе принимают участие сразу 2 типа зарядных носителей – электроны (устойчивые отрицательно заряженные элементарные частицы) и дырки (квазичастицы с положительным зарядом). Работа ранее разработанного униполярного (полевого) устройства основана на применении лишь одного из носителей. Прибор имеет 3 слоя, на каждый из которых подается напряжение:

  • эмиттер;
  • база (базовая плата, пластина);
  • коллектор.

Negative — это кремниевый сплав. Он обладает избытком отрицательных переносчиков заряда — электронов (n-doped), а positive — избытком положительных «дырок» (p-doped).

База очень тонкая, представлена слаболегированным полупроводником, поэтому она имеет сильное сопротивление. Коллектор, как правило, шире эмиттера. Поэтому общая площадь соединения база-коллектор значительно превышает комплекс база-эмиттер. Менять местами эти 2 области за счет изменения полярности нельзя. Транзистор не относится к симметричным элементам — это необходимо для его правильной работы.

Принципы работы датчиков

Выше я уже кратко рассказал о принципах работы датчиков (принципах действия). Здесь об этом чуть подробнее. Итак, по принципу действия датчики можно разделить на следующие группы:

  • Датчики (преобразователи) сопротивления. Принцип действия — изменение сопротивления в зависимости от значения измеряемой величины.
    • Потенциометры (переменные резисторы). Такие датчики наиболее часто используются для определения положения (например, положения рабочего стола фрезерного станка).
    • Тензорезисторы (тензодатчики). Обычно используются в весоизмерительном оборудовании.
    • Терморезисторы, термосопротивления. Используются для измерения температуры.
    • Фоторезисторы. Используются для измерения освещённости.
  • Датчики индуктивности и взаимной индуктивности. Принцип действия — изменение индуктивности при появлении металлического предмета в зоне чувствительности датчика. В большинстве случаев это дискретные датчики, которые используются для определения фиксированного положения металлических предметов. Либо для подсчёта металлических деталей, например, на конвейере. Индуктивные датчики способны обнаружить металлический предмет на небольшом расстоянии (обычно 1…2 см.).
  • Ёмкостные датчики. Принцип действия — изменение ёмкости при появлении предмета в зоне чувствительности датчика. Назначение то же, что и у индуктивных. Но, в отличие от индуктивных, реагируют не только на металлические предметы.
  • Магнитно индукционные. Наиболее часто используются для измерения частоты вращения.
  • Магнитные датчики. Принцип действия — изменение состояния в магнитном поле. Самый простой пример — геркон, который замыкает или размыкает контакт, когда рядом с ним расположен магнит. Многие датчики уровня работают по этому принципу.
  • Мембранные. Принцип действия — “прогибание” мембраны под воздействие давления (усилия). Обычно используются для определения уровня в бункере с сыпучими продуктами, иногда в реле давления.
  • Оптические. Принцип действия — изменение состояния при освещении. Обычно это также дискретные датчики, которые наиболее часто используются в барьерах защиты.
  • Кондуктометрические. Обычно используются для измерения уровней жидкостей. Принцип действия основан на токопроводности жидкостей.

И это ещё не всё…

Реальные датчики

Датчики купить проблематично, товар специфический, и в магазинах электрики такие не продают. Как вариант, их можно купить в Китае, на АлиЭкспрессе.

А вот какие оптические датчики я встречаю в своей работе.

Вариант №1: воспользоваться специальным преобразователем, например устройством согласования сигналов УСМ, которое представлено у нас в ассортименте, или аналогичным.

Вариант №2: если вы хотя бы минимально дружите с паяльником, сделать преобразователь самому.

Если в наличии есть датчик с PNP выходом, а нужен NPN — собираем вот такую схему:

Транзистор Q1 — любой подходящий NPN, например 2SC495, BC445, BD237.

Если же в наличии имеется датчик с NPN выходом, а нужен PNP — такую схему:

Транзистор Q1 — любой подходящий PNP, например 2N5401, КТ502Д.

Почему выходит из строя датчик Холла

Повреждение сенсора может проявляться разными симптомами — даже профессионалу порой бывает непросто определить точную причину. Вот какие признаки говорят о поломке датчика:

  • мотор плохо заводится;
  • холостой ход с постоянными перебоями;
  • на высоких оборотах автомобиль дергается;
  • искра на свечах пропадает;
  • двигатель внезапно глохнет.

Главная причина выхода этой детали из строя банальна — накопилась грязь. Как только это происходит, ДХ сигнализирует моментально. С машиной начинают происходить «чудеса». Однако винить этот прибор во всех бедах неправильно — нужна доскональная проверка.

Исчезновение искры — главный симптом неисправности ДХ.

Распространенная причина неисправности — отсутствие контакта в проводке. Всего в приборе 3 контакта — соединяющий его с массой, с плюсом, с коммутатором. Один из контактов мог окислиться, из-за чего и разорвалась электрическая цепь.

Наконец, провод может просто оборваться или переломиться. Это происходит из-за того, что вакуумный корректор зажигания смещает площадку, на которой размещен ДХ, сдвигая угол зажигания. Во избежание такой напасти проводку нужно закрепить так, чтобы она изгибалась петлей.

Если высоковольтная проводка в машине изношена и пролегает рядом с проводами сенсора, возможен пробой высокого напряжения. Часто пробои возникают при влажной погоде, при заезде колесом в глубокую лужу.

Провода датчика должны быть удалены от остальной проводки. А еще проводку нужно как можно чаще менять — хотя бы раз в 2 года.

Поломка может возникнуть из-за перезарядки генератора аккумуляторной батареи — когда ДХ испытал слишком сильную нагрузку и на входе коммутатора сгорела одна из деталей.

Признаки неисправности датчика

Холла Неисправности у датчика Холла проявляются по-разному. Даже опытный мастер не всегда сразу выявит причину неполадок двигателя. Вот несколько самых распространенных симптомов:

  • Мотор плохо заводится или не запускается вообще.
  • На холостом ходу в работе двигателя появляются перебои и рывки.
  • Машина может дергаться при движении на повышенных оборотах.
  • Силовой агрегат глохнет во время движения.

При появлении одного из этих признаков, необходимо в первую очередь проверить исправность датчика Холла. Также не стоит исключать из вида и другие неисправности системы зажигания, встречающиеся в автомобилях.

Признаки неисправности датчика.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: