Заземление электроустановок

Виды ЗУ

В качестве заземляющего устройства может использоваться объекты естественного происхождения либо искусственные заземлители.

К первым относятся:

  • конструкции домов и помещений, осуществляющие соединение с землей;
  • фундаменты из железобетона – при наличии вокруг влажных грунтов (глинистые, суглинки и др.);
  • подземные трубы различных систем, кроме теплотрасс и слущащих для транспортировки горючих материалов;
  • оболочки кабеля из свинца.

Следует учитывать, что значение R (сопротивление) у естественных заземлителей можно узнать только путем проведения контрольных замеров, и если естественные элементы заземления будут иметь приемлемые показатели сопротивления, то конструировать что-то еще не нужно будет.

В качестве искусственных заземляющих устройств применяются элементы представляющие собой:

  • стальные трубы от 3 см в диаметре и от 2 метров длинной;
  • стальные полосы или угловая сталь не тоньше 0,4 см и длинной от 2 метров;
  • длинные (до 10 м) стальные прутья диаметром от 1 см;
  • обрезки труб из стали, рельс;
  • металлические цепи, тросы.

Выбирая размеры электрода, обязательно учитывайте:

  • значение сопротивления заземлителя при наименьшей массе – уровень сопротивления зависит в основном от длины электрода, и в наименьшей степени от его поперечного сечения;
  • механическую устойчивость к подземной коррозии – показатель устойчивости к коррозии зависит от толщины и площади соприкосновения с грунтом.

Имея одинаковые сечения, в качестве более долговечных электродов служат круглые стержни. Для предотвращения коррозии в агрессивных щелочных и кислых почвах, используют медные, омедненные или оцинкованные материалы. На любых типах почв нельзя использовать алюминий, из-за окисления и последующей изоляции его поверхности.

Монтируют вертикальные электроды таким образом, чтобы верхний конец находился около поверхности грунта или глубже на 50-80 см – данный вариант обеспечивает более стабильную и эффективную защиту из-за небольших изменений удельного сопротивления грунта в разные периоды. Если одного электрода недостаточно для достижения необходимых технических параметров сопротивления растеканию, тогда устанавливают несколько электродов подряд или по периметру. Лучшую прочность во время углубления показывают трубы и уголки.

Вертикальные элементы чаще всего соединяются стальными стержнями, приваренными к верхним концам, реже с помощью пластин или колец.

Требования к информационному заземлению

FE-заземление обычно описывается требованиями, которые излагаются в эксплуатационной документации изготовителя изделия (паспорт, технические условия, технический регламент и пр.) или в ведомственных нормативных документах. К примеру, для продуктов и систем информационно-коммуникационных технологий (ИКТ), ранее средств ВТИ, будем использовать положения нормативного документа СН 512-78 («Технические требования к зданиям и помещениям для установки средств вычислительной техники»). Опираясь на инструкции, изложенные там, приходим к выводам, что сопротивление заземления такого оборудования не должно превышать 1 Ом. А вот если мы проектируем заземление для чувствительных медицинских приборов, то это значение будет не более 2-х Ом. («Пособие по проектированию учреждений здравоохранения к СНиП 2.08.02-89»).

Здесь используется, так называемая «лучевая схема заземления», с заземлителем типа FE (низкоомным), что приводит к работе без электрических помех всего комплекса ИКТ. В отдельных случаях так же возможно использовать и модульный глубинный заземлитель.

Введём понятие электромагнитной совместимости (ЭМС) оборудования и для этого обратимся к ГОСТ Р 50397-92 (МЭК-50-161-90). ЭМС оборудования, рассматривается в общем случае, как способность оборудования качественно работать в условиях заданной электромагнитной обстановки и не создавать недопустимых помех электромагнитной природы другим приборам и электросети.

И далее с этих позиций попытаемся выяснить причинно – следственную связь между FE – заземлением, ЭМС и безопасностью ИКТ.

Продукт или система ИКТ будет удовлетворять требованиям Европейской директивы по ЭМС EN 55022 при выполнении следующих условий:

  • Электромагнитное излучение от активного оборудования в окружающую среду не превышает нормативы EN 55022
  • Помехозащищенность активного оборудования не уступает нормативам EN 55024
  • Информационная кабельная проводка (т.е. среда передачи сигналов) правильно смонтирована и корректно заземлена

Ещё один важный фактор – это уравнивание потенциалов между заземляющими устройствами PE и FE – типов. Именно этим моментом определяются условия электробезопасности персонала, а также и помехоустойчивость систем ИКТ. Как это реализуется на практике? Обычно электрики монтируют кольцевой соединительный проводник и соединяют его с ГЗШ.

Если же продукты ИКТ работают с напряжением питания 5-12 В постоянного тока и являются слаботочными, то здесь возможны паразитные сигналы, возникшие именно из-за разности потенциалов и их флуктуаций. Дело в том, что некоторые системы ИКТ могут воспринять такой паразитный сигнал, как информационный, вследствие этого, могут произойти сбои в сетях связи, на серверах, а также нарушения работы информационно – измерительных систем. Особенно опасна такая ситуация на объектах критической инфраструктуры.

Другим аспектом качества FE – заземления является информационная безопасность продуктов и систем ИКТ. Дело в том, что побочные электромагнитные излучения и наводки (ПЭМИН) наряду с проблемами ЭМС создают технические каналы утечки конфиденциальной информации, хорошо известные специалистам по информационной безопасности (ИБ).

Особенно актуальна эта проблема для компьютерного оборудования и систем передачи данных, задействованных в обработке информации, которая считается конфиденциальной. Но это уже другая история, относящаяся к компетенциям ФСТЭК, Роскомнадзора и ФСБ.

Основы безопасности

Преднамеренное заземление с целью электробезопасности – это то, что является определением понятия защитного заземления. Его методы основаны на использовании естественного или искусственного заземлителя. Если с естественным все понятно, то возникает закономерный вопрос, что является определением понятия искусственного заземлителя. Ответ прост, это проводник, контактирующий непосредственно с грунтом. В нашем случае это вертикальные электроды или электролитическое заземление, имеющие сопротивление в соответствии с требованиями ПУЭ. Существует и способ защиты отдельных точек электросетей – это то, что называется рабочим заземлением.

Для увеличения безопасности устанавливают систему повторного заземления на вводе в здание. Кроме того повторное заземление применяют при устаревании или невозможности обеспечения безопасности основной системой.

Информационное или функциональное заземление в отличие от других видов обеспечивает именно защиту самой электроустановки.

Работа заземления совместно с УЗО

Защитное заземление является основной защитой от поражения электрическим током

Но одной меры предосторожности не всегда может быть достаточно. Для дополнительной защиты в цепь устанавливается устройство защитного отключения (УЗО)

Если объяснять техническим языком, то УЗО – это коммутационный аппарат, предназначенный для автоматического отключения от сети поврежденного прибора при появлении тока утечки.

Когда внутри электроприбора (будь до стиральная машина, бойлер, компьютер и т.п) происходит повреждение изоляция и фаза попадает на заземленный корпус, ток начинает стекать в землю. На протекание этого тока реагирует УЗО, которое мгновенно срабатывает и отключает поврежденный прибор, тем самым оставляя цепь без напряжения. По внешнему виду и принципу работы УЗО похоже на обычный автомат. Только автомат защищает саму электрическую цепь от больших токов, а УЗО человека от попадания под напряжение.

Работа заземления совместно с УЗО.

Как работает заземляющий контур

Любой подъезд многоэтажного дома можно смоделировать по той же схеме. Но квартиры, распределенные по трём имеющимся фазам, потребляют электричество как попало, при чём это потребление постоянно меняется. Конечно, в среднем в точке подключения домового кабеля в распределительном пункте (РП) разница в токах на фазах составляет не более 5% от номинальной нагрузки. Однако в редких случаях это отклонение может быть выше 20%, и такое явление сулит серьёзные проблемы.

Давайте на мгновение представить, что электрический стояк, а точнее, его рамная часть, на которую прикручены все нулевые провода, оказался изолированным от земли. Столь высокая разница между потреблением квартир на разных фазах выливается в следующую закономерность:

  1. На наиболее нагруженной фазе происходит падение напряжения соразмерно нагрузке.
  2. На оставшихся фазах это напряжение, соответственно, возрастает.

Нулевой провод, соединённый с контуром заземления, служит запасным источником электронов как раз на такой случай. Он помогает устранить асимметрию нагрузок и избежать появления перенапряжений на смежных ветках трёхфазной цепи.

Замеры сопротивления контура заземления

Что следует знать касательно замеров? Имейте в виду, если вы при монтаже постоянно подливали водичку в приямок, все замеры следует повторить на следующий день, когда грунт просохнет.

Иначе высока вероятность погрешности.

Если вам не удалось добиться нормы, а все штыри израсходованы, попробуйте залить в лунку электропроводящий состав для заземляющих устройств. Специальный порошок растворяете с водой и заливаете по стенкам электродов в скважину.

Сверху засыпаете все грунтом и трамбуете почву. Через сутки состав плотно забьет все щели и увеличит плотность прилегания грунта к заземлителю.

В отдельных случаях удается уменьшить сопротивление почти в два раза от изначального!

Замеры с выдачей протокола делаются в обязательном порядке! При подключении дома к электросетям, у энергетиков сетевой компании начинается масса вопросов.

При каких-то нюансах могут вообще отказать. А если у вас будет чертеж схемы заземления и протокол измерения, многие вопросы отпадут сами собой.

Поэтому, когда говорят, что контур заземления можно выполнить полностью самостоятельно своими руками, немного лукавят. Стороннюю организацию или эл.лабораторию с измерительными приборами все таки придется вызывать.

Раньше основным прибором для замера сопротивления контура заземления был М416 и два штыря к нему.

Сегодня все большую популярность получают цифровые аналоги. Например, такие как ИС-10 или измеритель 2120ER.

Обычным мультиметром это не делается!

При проверке модульно-штыревого заземления один колышек забивается на расстоянии четырехкратном от глубины заземлителя, другой на двухкратном. На обычном контуре (треугольник, квадрат, линия), технология немного другая.

Имейте в виду, все замеры делаются летом, в период максимального просыхания грунта.

А теперь об ошибке, о которой многие даже не догадываются.

Через чур хорошее сопротивление, это такой же “косяк” монтажа, как и завышенное!

Оно должно быть на один порядок выше, чем сопротивление заземления на ТП.

Не нужно делать его с “запасом” и радоваться при этом. В противном случае при подключении по системе TN-C-S, вся “дрянь”, включая токи КЗ на землю, будет стекать в первую очередь не через трансформаторную подстанцию, а через заземление вашего дома!

Ток ведь не дурак, он будет стремиться туда, где сопротивление меньше. Именно поэтому многие, после того как сделают идеальный заземляющий контур, подключают свой частный дом по системе ТТ.

Вы то откуда знаете, все ли в порядке на трансформаторе у энергопередающей компании? И когда они там в последний раз делали проверку своего контура?

Трансформаторы разделительные — ГОСТ 30030-93 — Заземление

Содержание материала

23 Заземление

23.1 Доступные металлические части трансформаторов класса I, которые могут оказаться под напряжением в случае повреждения изоляции, должны быть постоянно и надежно подсоединены к зажиму защитного заземления, расположенному внутри трансформатора. Трансформаторы класса II не должны содержать никаких устройств для заземления. Соответствие проверяют осмотром. Примечание – Если доступные металлические части отделены от токоведущих частей металлическими частями, которые подсоединены к зажиму защитного заземления или заземляющему выводу, или если они отделены от токоведущих частей двойной или усиленной изоляцией, то они не рассматриваются как попадающие под напряжение в случае повреждения изоляции.

23.2 Зажимы защитного заземления для подсоединения к стационарной проводке и зажимы защитного заземления трансформаторов с креплениями типов Х и М должны соответствовать требованиям разд. 22. Их крепежные средства должны быть эффективно защищены от случайного ослабления, и их ослабление не должно быть возможным без применения инструмента. Соответствие проверяют осмотром, испытанием вручную и испытаниями по разделу 22. Примечание – Конструкции, используемые обычно для токоведущих зажимов, за исключением зажимов колонкового типа, обеспечивают достаточную упругость, чем удовлетворяется последнее требование; для других конструкций могут быть необходимы дополнительные меры, такие как использование достаточно упругих частей, которые не могут быть сняты случайно.

23.3 Все части зажима защитного заземления должны быть такими, чтобы при контакте этих частей с медным заземляющим проводом или другого металла с этими частями не возникала опасность коррозии. Корпус зажима защитного заземления должен быть изготовлен из латуни или другого металла, не менее устойчивого к коррозии, если только он не является частью металлической рамы или оболочки, когда винты или гайки должны быть изготовлены из латуни или из другого металла, не менее устойчивого к коррозии

Если корпус зажима защитного заземления является частью рамы или оболочки, изготовленных из алюминия или алюминиевого сплава, то должны быть приняты меры предосторожности во избежание коррозии, вследствие контакта между медью и алюминием или его сплавами. Соответствие проверяют осмотром

23.4 Штепсельные розетки во вторичной цепи не должны иметь заземляющих контактов. Соответствие проверяют осмотром. 23.5 Соединение между зажимом защитного заземления (или заземляющим выводом) и подключенными к нему частями должно иметь низкое сопротивление. Соответствие проверяют следующим испытанием. Ток, равный 1,5 номинального первичного тока или 25 А, в зависимости от того, что больше, получаемый от источника переменного тока с напряжением холостого хода не выше 12 В, пропускают поочередно через зажим защитного заземления или контакт заземления к каждой из доступных металлических частей. Примечание – Номинальный первичный ток определяют как частное от деления номинальной выходной мощности на номинальное первичное напряжение, а для многофазных трансформаторов – на номинальное первичное напряжение, умноженное на .

Падение напряжения измеряют между зажимом защитного заземления или контактом заземления приборного ввода и доступной металлической частью, и значение сопротивления вычисляют по току и этому значению падения напряжения. Сопротивление в любом случае не должно превышать 0,1 Ом

Примечания 1 Следует обратить внимание на то, чтобы сопротивление между контактом измерительного щупа и испытуемой металлической частью не оказывало влияния на результаты испытаний. 2 При измерении сопротивления сопротивление шнура или гибкого кабеля не учитывают

Виды систем искусственного заземления

В классификации систем заземления есть естественные и искусственные типы заземления.

Системы заземления искусственного типа:

  • TN-S;
  • TN-C;
  • TNC-S;
  • TT;
  • IT.

Виды заземления — расшифровка названия:

  • T — заземление;
  • N — подсоединение проводника к нейтрали;
  • I -изолирование;
  • C — объединение опций функционального и нулевого провода защитного типа;
  • S — раздельное использование проводов.

Многих людей интересует вопрос о том, что называют рабочим заземлением. По-другому его называют функциональным. Ответ на данный вопрос даёт пункт 1.7.30 ПУЭ. Это заземлерие точек токоведущих частей электрической установки. Применяется для обеспечения функционирования электрических приборов или установок, а не в защитных целях.

Также многих волнует вопрос о том, а что такое защитное заземление. Это процесс заземления устройств с целью обеспечения электробезопасности.

Watch this video on YouTube

Назначение и принцип работы ЗУ

Заземляющее устройство (ЗУ) — это совокупность заземлителя и заземляющих проводников которые соединяют землю с электрическими приборами, машинами и электроустановками.

Главная задача ЗУ – создание надежного соединения для отвода напряжения с элементов, которые могут попасть под высокое напряжение.

Причиной тому чаще всего служат:

  • молния;
  • вынос потенциалов;
  • вторичная индукция из-за влияния близко находящихся токоведущих частей.

Роль земли может выполнять грунт или вода в крупных водоемах и реках, каменноугольные выработки, и иные природные или рукотворные объекты с похожими свойствами.

Разделяют три вида заземления:

  • рабочее зазмеление необходимо для нормального функционирования прибора или установки, которое пропускает через себя рабочий ток, составляющий часть тока в фазе трехфазной системы или в одном из полюсов постоянного тока;
  • зануление заземление — нейтраль трехфазного генератора или трансформатора заземлена и от нее проложен нулевой провод, выполняющий одновременно функции рабочего и защитного зануления;
  • заземление безопасности — главной задачей является уменьшение шагового напряжения и обеспечение электробезопасности. Это осуществляется путем снижения сопротивления каждого отдельного заземлителя и равномерным распределением потенциала по всей площади;

В трехфазных сетях с напряжением менее 1000 Вольт при наличии изоляции нейтрали в обязательном порядке требуется защитное заземление, и независимо от режима изоляции в сетях от 1000 Вольт.

В качестве заземляющего устройства может использоваться объекты естественного происхождения либо искусственные заземлители.

К первым относятся:

  • конструкции домов и помещений, осуществляющие соединение с землей;
  • фундаменты из железобетона — при наличии вокруг влажных грунтов (глинистые, суглинки и др.);
  • подземные трубы различных систем, кроме теплотрасс и слущащих для транспортировки горючих материалов;
  • оболочки кабеля из свинца.

Следует учитывать, что значение R (сопротивление) у естественных заземлителей можно узнать только путем проведения контрольных замеров, и если естественные элементы заземления будут иметь приемлемые показатели сопротивления, то конструировать что-то еще не нужно будет.

В качестве искусственных заземляющих устройств применяются элементы представляющие собой:

  • стальные трубы от 3 см в диаметре и от 2 метров длинной;
  • стальные полосы или угловая сталь не тоньше 0,4 см и длинной от 2 метров;
  • длинные (до 10 м) стальные прутья диаметром от 1 см;
  • обрезки труб из стали, рельс;
  • металлические цепи, тросы.

Выбирая размеры электрода, обязательно учитывайте:

  • значение сопротивления заземлителя при наименьшей массе — уровень сопротивления зависит в основном от длины электрода, и в наименьшей степени от его поперечного сечения;
  • механическую устойчивость к подземной коррозии — показатель устойчивости к коррозии зависит от толщины и площади соприкосновения с грунтом.

Имея одинаковые сечения, в качестве более долговечных электродов служат круглые стержни. Для предотвращения коррозии в агрессивных щелочных и кислых почвах, используют медные, омедненные или оцинкованные материалы. На любых типах почв нельзя использовать алюминий, из-за окисления и последующей изоляции его поверхности.

Монтируют вертикальные электроды таким образом, чтобы верхний конец находился около поверхности грунта или глубже на 50-80 см — данный вариант обеспечивает более стабильную и эффективную защиту из-за небольших изменений удельного сопротивления грунта в разные периоды. Если одного электрода недостаточно для достижения необходимых технических параметров сопротивления растеканию, тогда устанавливают несколько электродов подряд или по периметру. Лучшую прочность во время углубления показывают трубы и уголки.

Вертикальные элементы чаще всего соединяются стальными стержнями, приваренными к верхним концам, реже с помощью пластин или колец.

Принцип защитного заземления

Защитное заземление – это комплекс мер, которые направлены на защиту оборудования и людей, которые с ним работают. Используется для устранения электромагнитных помех, возникающих из-за работающего рядом устройства, а также для нейтрализации помех при коммутации в цепи питания.

Защита от попадания молнии

Схема защиты дома от молний

Воздушная среда – это участок с большим сопротивлением, но разряд имеет мощность, превосходящую данное сопротивление, поэтому пробивает его. По пути следования из верхних слоев атмосферы к земле молния выбирает участки с наименьшим сопротивлением – мокрые участки, стены, деревья и капли воды. Этим объясняется тот факт, что разряды часто попадают в дерево – оно имеет сопротивление меньше, чем воздух вокруг. При попадании в здание ток также проходит по участкам с наименьшим сопротивлением – это металлические трубы, электрические приборы или их металлические детали, влажные стены. Если устройство не имеет заземления, прикосновение к нему в момент прохождения заряда может быть смертельным.

При установке молниеотвода на крыше заряд попадает в него, а далее движется в землю и нейтрализуется

Важно, чтобы токи не распространялись внутрь объекта, поэтому материалы, которые используются для обустройства заземления, имеют низкое сопротивление. По правилам оно не должно превышать показатель в 4 Ом. Сам молниеотвод должен быть соединен с электродами в грунте

Сам молниеотвод должен быть соединен с электродами в грунте.

Защита от импульсного перенапряжения

Устройства защиты от импульсных перенапряжений

Электронное оборудование чувствительно к скачкам напряжения или работающим в их радиусе мощным электрическим установкам. Повредить электронику может внезапно возникший разряд молнии вблизи.

В качестве примера: во время грозы может возникнуть избыточный заряд в медном кабеле, которыми соединены дома и по которым проходит ток. Заряд при увеличении его размера способен разрушить кабель. В этом случае на линии питания ставится УЗИП – устройство защиты от импульсного перенапряжения, чтобы избыток заряда стравливался в грунт.

Защита людей

Корпуса приборов, все металлические элементы способны проводить ток. Если коснуться незаземленного прибора, в котором накопилось статическое электричество, можно получить сильный удар. Это отразится прежде всего на сердечно-сосудистой и нервной системе. Снизить удар помогает резиновая обувь, прорезиненные перчатки, абсолютно сухое помещение, но люди редко ходят по квартире или офису в резиновых сапогах. Подключение третьего провода к корпусу приборов, а затем соединение его с электродами позволяет утилизировать в грунт лишний ток.

В старых частных и многоквартирных домах заземляющие мероприятия не проводились, поэтому все электрические приборы представляют потенциальную опасность для людей.

Зануление

Процесс зануления состоит в объединении металлических элементов, не находящихся под напряжением с заземленной нейтралью понижающего источника 3-фазного тока. Также используют заземленный вывод генератора 1-фазного тока. Зануление используется с целью провоцирования короткого замыкания в случае пробоя изоляционного слоя или проникновения тока на нетоковедущий элемент оборудования. Смысл возникновения короткого замыкания в том, что после этого срабатывает автомат-выключатель, перегорают плавкие предохранители или включаются другие защитные средства. Зануление используется в электрических установках с глухозаземленной нейтралью.

При монтаже зануления следует иметь в виду, что короткое замыкание должно приводить к оплавлению предохранителя или отключению выключателя-автомата. Если этого не произойдет, свободное течение тока замыкания по электроцепи станет причиной появления напряжения на всех зануленных предметах, а не только на месте пробоя. Показатель напряжения — произведение сопротивления нуля на ток замыкания, что очень опасно при ударе током живого существа.

Необходимо внимательно следить за исправным состоянием нулевого проводника. При его обрыве возникает напряжение на всех зануленных элементах, поскольку они автоматически входят в контакт с фазой. По этой причине запрещена установка на нулевой проводник любых защитных устройств (помимо выключателей и предохранителей), из-за которых происходит разрыв при срабатывании.

Чтобы снизить опасность удара током при обрыве нулевого проводника, каждые 200 метров линии создаются дополнительные заземления, как и на концевых и вводных опорах. Уровень сопротивления на каждом новом заземлителе не должен быть выше 30 Ом.

Система TT

Схема заземления TТ

Системы заземления TT актуальны при несоответствующих условиях безопасности для предыдущих видов. Специалисты рекомендуют применять их в случае, когда техническое состояние воздушных линий электропередач далеко от идеала.

Данной конструкцией предусмотрено независимое заземление защитного и рабочего нолей через отдельные контуры. Связь между проводниками запрещена. Такой подход помогает изолировать от электросетей все металлические поверхности, способные проводить ток.

Плюсы:

независимость от разных повреждений линии питания.

Минусы:

  • необходимость в качественном повторном заземлении, реализации технических мер для подавления скачков напряжения по время грозы;
  • обязательность монтажа прибора, выполняющего защитное отключение.

Такие виды заземления целесообразны для небольших жилых помещений, металлических блок-контейнеров, строительных бытовок.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: