Степени тяжести электротравм
Различают четыре степени тяжести травм, полученных при ударе током. Травма первой степени ведет к судорожному сокращению мышц без потери сознания. При травме второй степени к описанным симптомам добавляется кратковременная потеря сознания без нарушения работы сердечно-сосудистой системы. Дыхание, как правило, сохранено.
Травма третьей степени ведет к сильным судорогам, сопровождаемым потерей сознания, сбоями в работе сердца и органов дыхания. Последняя, четвертая степень поражения током приводит к клинической смерти.
При ударе током организм испытывает электрохимическое воздействие, ведущее часто к омертвению тканей. Возможны термические ожоги разной степени интенсивности. Поражение током несет и механическое действие: ткани организма могут расслаиваться, что вызвано перевозбуждением мышц и нервных окончаний.
Каждый человек хотя бы раз в жизни сталкивался с таким понятием, как электризация. Кратчайшее прикосновение к кому-либо – маленькая вспышка, слабый удар током. Непослушные наэлектризованные волосы. Легкие вспышки при натирании синтетических материалов. Всё это является примерами проявления загадочной электризации, этакой суперспособности, время от времени подвластной любому человеку. У некоторых это необычное явление наблюдается гораздо чаще, чем у других, они постоянно бьются током и пытаются выяснить причины этого явления. Такие люди задаются вопросом «Очень сильно электризуюсь и постоянно бьюсь током, что делать? Как устранить этот эффект?»
Электрический заряд
Существует минимальное значение электрического заряда, которое называют элементарным зарядом — это 1,6 * 10-19 Кл. В природе не существует тел, заряд которых не кратен элементарному. Элементарным зарядом обладают электроны, протоны, позитроны и другие частицы. Протоны и электроны обладают электрическими зарядами одной интенсивности, но противоположными по знаку. Протоны — положительным зарядом, а электроны — отрицательным. В атоме, в его естественном состоянии, число протонов равно числу электронов, что делает его электрически нейтральным. Однако, когда он теряет или получает электроны, то говорят, что атом электризуется.
Если тело имеет большее количество положительных зарядов, то говорят, что оно потеряло электроны и стало положительно заряженным. Тела никогда не отдают протоны (т. е. положительный заряд), так как они расположены в центральной части атома — ядре. Отрицательно заряженным телом называют тело, у которого избыток электронов. Если тело обладает зарядом, то говорят, что оно наэлектризовано. Степень наэлектризованности можно определить по силам взаимодействия между наэлектризованными телами. Многочисленные опыты показывают, что в природе всегда выполняетсязакон сохранения электрического заряда: в замкнутой системе тел алгебраическая сумма зарядов всех частиц не меняется с течением времени.
Полезное и вредное действие электризации
Если подробно изучить и правильно использовать электризацию, то она может стать полезным физическим явлением.
Существуют электрофильтры, которые применяются в дымовых трубах. Частицы сажи при трении о трубу электризуются и оседают на ее стенках. В воздух попадает уже меньшее количество вредных веществ.
Чтобы покрасить автомобиль, его корпус заряжают положительно, а краску – отрицательно. Частицы краски друг от друга отталкиваются и одновременно притягиваются к деталям автомобиля, что способствует равномерному, плотному и тонкому окрашиванию.
На хлебокомбинатах легче получить хорошо перемешанное тесто, если зарядить муку положительно, а воду – отрицательно, крупинки муки устремятся к каплям воды. В такой ситуации тесто превратится в однородную массу быстрее, что значительно увеличит производительность предприятия.
Используется электризация при копчении рыбы. Тушки рыбы соединяют с отрицательно заряженными стержнями, а коптильный дым заряжают положительно. Дым прилипает к поверхности рыбы и проникает в нее. Электрокопчение происходит равномерно и быстро. Прокопченный слой придает продукту особый вкус и одновременно защищает рыбу от порчи.
Электрофильтры, притягивающие к себе пыль, используют на крупных птицефабриках. Они очищают воздух от запыленности, что положительно сказывается на яйценоскости куриц и развитии молодняка.
Электризация может принести и большой вред.
Источник
Очень опасна электризация для цистерн по перевозке горючего. Во время наполнения цистерны заряды накапливаются внутри. При движении заряды продолжают накапливаться. Во время освобождения цистерны от самой малой искры может произойти взрыв.
В работающих типографских машинах от трения электризуется бумага, что может привести к ее воспламенению и пожару. Часто и в домашних принтерах при долгом печатании замечается слипание листов бумаги. Это тоже электризация.
В текстильной промышленности страдают от электризации чесальные машины, подстригающие ворс специальные ножницы. Все это приводит к запутыванию нитей, их обрыву и, как результат, поломкам станков.
При производстве резины электризуется каучук, проходящий между двумя вращающимися валами. Приближение к такому каучуку любого проводящего тела может вызвать искру и пожар.
И, конечно же, человек испытывает на себе неприятные ощущения от электризации одежды, волос, синтетических покрывал и ковров. Это происходит чаще в зимнее время, когда воздух более сухой. При трении во время ходьбы по синтетическим покрытиям или снятии одежды электроны «не могут найти» капельки воды в воздухе и оседают на коже человека, электризуя ее. Вместо антистатических веществ, проведя влажной рукой по одежде, накопленные на ней заряды снимаются. Одежда перестает прилипать к телу. Другой причиной электризации является неправильное сочетание одежды. Разные ткани через трение друг о друга электризуются и передают заряды человеку. Реакция людей на эти явления различна, потому что у каждого человека электрическая проводимость тела индивидуальна. Кто-то не заметит электризации, а кого-то сильно тряхнет в момент возникновения зарядов. Проветривание комнат для увлажнения воздуха, грамотный подход к выбору одежды и уходу за ней повлияют на снижение проявлений электризации человеческого тела.
Эффективно защищает от электризации заземление. Заряд уходит по проводнику в землю и распределяется в ней, предотвращая большие и малые неприятности.
Условия возникновения явления и способы передачи зарядов
Мы рассказали, как объясняется это явление в природе, а теперь давайте рассмотрим, как можно наэлектризовать тела. Сразу отметим, что выполнение всех условий необязательно – электризация может происходить по тем или иным причинам, разделим их на две основных группы:
Первая — это механическое взаимодействие. При трении расстояние между предметами сопоставимо расстоянию между молекулами в нём. Так как электроны в одном из тел слабее связаны с ядром – они переходят «вырываются» на другое тело. Другими способами электризации являются удар и соприкосновение.
Вторая группа — электризация влиянием, то есть явление наблюдается при воздействии на тело внешних сил, среди которых:
Электрическое поле. В результате воздействия поля на проводник на его поверхности появляются заряды, причем чем меньше радиус изгиба поверхности – тем больше зарядов здесь скопится. Так на острие будет больше всего зарядов, подробнее этот вопрос мы рассматривали в статье https://samelectrik.ru/kak-raspredelyayutsya-zaryady-v-provodnike-pri-protekanii-toka.html и здесь https://samelectrik.ru/chto-takoe-provodniki-poluprovodniki-i-dielektriki.html
- Воздействие светом. Открыто профессором А.Г. Столетовым в 1888 году, заключается в том, что при воздействии светом на цинк, алюминий, цезий, натрий, свинец, калий и другие металлы они теряют электроны и становятся заряженными положительно.
- Теплом. При нагревании металла электронам сообщается энергия достаточная для того чтобы покинуть пределы металла, в результате он приобретает положительный заряд.
- Химическая реакция. При наличии двух электродов из разных металлов происходят окислительно-восстановительные реакции, в результате один из них становится заряженным положительно, а второй – отрицательно. Подробнее мы это рассматривали в статье про анод и катод.
- Под давлением. В пьезоэлектриках (кварц, сегнетовая соль, фосфат аммония), при механическом воздействии (сжатии или растяжении), на гранях образуются положительные и отрицательные заряды.
Это и есть основные виды электризации.
Опасность процесса
Заряд на наэлектризованном предмете может быть довольно большим, и напряжение может достигать десятков киловольт, но из-за очень маленьких значений силы тока оно для человека неопасно.
Однако такие небольшие разряды могут оказать отрицательное влияние на точную электронику, например, микропроцессоры, поэтому при работе с электронными компонентами: при их производстве, ремонте или использовании особое внимание уделяют предотвращению электронизации. При некоторых условиях релаксация большого накопленного заряда может привести к возгоранию. Самолеты электризуются в полете, поэтому может произойти разряд, когда подводят трап
Чтобы избежать этого, с самолета снимают статическое электричество, отводя его в землю. По этой же причине на бензовозы всегда прикрепляют цепочку, соприкасающуюся с землей. Так предупреждают возгорание топлива
Самолеты электризуются в полете, поэтому может произойти разряд, когда подводят трап. Чтобы избежать этого, с самолета снимают статическое электричество, отводя его в землю. По этой же причине на бензовозы всегда прикрепляют цепочку, соприкасающуюся с землей. Так предупреждают возгорание топлива
При некоторых условиях релаксация большого накопленного заряда может привести к возгоранию. Самолеты электризуются в полете, поэтому может произойти разряд, когда подводят трап. Чтобы избежать этого, с самолета снимают статическое электричество, отводя его в землю. По этой же причине на бензовозы всегда прикрепляют цепочку, соприкасающуюся с землей. Так предупреждают возгорание топлива.
Шерстяная и шелковая ткани
О шелковый платок натирают стеклянную палочку. После к ней может прилипать практически любой мелкий предмет. Хорошо это заметно, когда наконечник подносим к волосам или тонким лентам бумаги.
Предметы из эбонита хорошо электризуются при трении о шерстяную ткань. А стеклянные палочки натирают шёлком. Однако у этих предметов получается различный заряд. Доказательством этому служит опыт, приведенный ниже.
Натертый шерстью эбонит будет отталкивать от себя шёлк. Чтобы увидеть это, подвесим оба предмета на одну нить и будем постепенно их сближать так, чтобы они свободно свисали. В итоге увидим как ткань начнёт отклоняться в сторону.
Аналогичное явление произойдёт и при опыте со стеклянной палочкой и шерстью. Электризация тел при трении фактически происходит благодаря преобразованию одной энергии в другую.
Категорически запрещенные действия
Если есть подозрения на удар током (фото приводится в статье), то есть определенный спектр телодвижений, которые предпринимать нельзя ни в коем случае.
- Запрет на притрагивание к человеку, пока нет уверенности в том, что он больше не соприкасается с источником.
- Перемещение пострадавшего допускается только в самых крайних случаях. Нередки ситуации, в которых при падении люди ломают кости. Не владея всей информацией, вы можете нанести вред.
- При наличии искрящего провода близко подходить к нему нельзя. Минимальное расстоянии — 6 метров.
- Если человека ударило из оборванного кабеля, нельзя идти к нему, широко шагая. Между ногами может возникнуть шаговая дуга, и вы окажетесь рядом со спасаемым в беспомощном состоянии. Идти нужно меленько, стараясь не отрывать ноги от земли.
Как бы ни цинично это ни звучало, при оказании помощи тому, кто испытал удар током, нужно сначала позаботиться о своей безопасности. Иначе и пострадавшему не помочь, и себе можно навредить.
Различают следующие виды электризации:
- Трением.
- Соприкосновением.
- Через влияние
- При облучении.
При электризации тел трением всегда одновременно заряжаются оба участвующих в электризации тела (например, стекло и шелк). Причем одно из них приобретает положительный заряд, а другое – отрицательный. Если до электризации оба тела не были заряжены, то величина положительного заряда первого тела оказывается в точности равной величине отрицательного заряда второго тела. Современная теория объясняет электризацию твердых тел как перемещение электронов, входящих в состав атомов любых тел, с одного тела на другое.
В состав ядра входят положительно заряженные элементарные частицы – протоны. На теле, приобретающем отрицательный заряд, образуется избыточное число электронов по сравнению с числом протонов, а на положительно заряженном теле оказывается недостаток электронов по сравнению с числом протонов.
Для обнаружения и измерения электрического заряда используют электрометр. По углу отклонения стрелки модно судить о величине заряда.
Уменьшение числа электронов в одном теле равно увеличению их числа в другом. При этом полный заряд такой системы не изменяется, оставаясь равным нулю.
Сохранение числа протонов и электронов на соприкасающихся телах объясняет подтверждающийся опытом закон сохранения заряда: в электрически замкнутой системе алгебраическая сумма зарядов не меняется.
Количественное исследование взаимодействия заряженных тел осуществил в 1785 году французский физик Ш. Кулон (1736-1806). Он исследовал взаимодействие небольших заряженных металлических шариков при помощи крутильных весов.
На тонкой проволоке была подвешена стеклянная палочка с двумя металлическими шариками на концах. Одному шарику сообщали электрический заряд. Рядом с ним помещали неподвижный заряженный таким же по знаку зарядом шар. По углу поворота стеклянной палочки Ш.Кулон определял силу взаимодействия. Расстояние измерялось между центрами шаров.
Модуль силы взаимодействия F12 между двумя неподвижными точечными электрическими зарядами q1 и q2 в вакууме пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния R12 между ними.
Точечный заряд – модель реальных заряженных тел, размер которых значительно меньше, чем расстояние между ними.
Если имеется система точечных зарядов, то сила, действующая на каждый из них, определяется как векторная сумма сил, действующих на данный заряд со стороны всех других зарядов системы. При этом сила взаимодействия данного заряда с каким-то конкретным зарядом рассчитывается так, как будто других зарядов нет.
- Сила взаимодействия точечных зарядов зависит от свойств среды, в которой они находятся:
- Свойства среды определяет диэлектрическая проницаемость среды ε.
- Границы применимости закона Кулона:
- для точечных зарядов
- для неподвижных зарядов
- справедлив до расстояний не меньше 10-15 м
Электрический заряд. Взаимодействие электрических зарядов. Закон Кулона
Знакомство с явлениями электростатики лучше начинать в сухую погоду. Расчесывая волосы, снимая свитер можно наблюдать в темноте проскакивание крошечных искр и слабое потрескивание. Если потереть пластиковую расческу о волосы и поднести ее к мелким кусочкам бумаги, то они начнут притягиваться к расческе.
Электризация – физическое явление, которое приводит к возникновению взаимодействия (притяжения или отталкивания) двух тел , например, при приведении их в плотный контакт или при трении (стекло и кожа, плексиглас и шерсть, резина и шерсть). Обнаружено в Древней Греции при трении янтаря (по-гречески – «электрон») о шерсть.
Взаимодействие наэлектризованных тел в состоянии покоя называется электростатическим взаимодействием.
Опыты по взаимодействию заряженных тел показали, что в природе существуют два вида заряда. Б. Франклин назвал один из них положительным, а другой – отрицательным. Разноименные заряды притягиваются, а одноименные – отталкиваются.
Различают следующие виды электризации:
- Трением.
- Соприкосновением.
- Через влияние
- При облучении.
При электризации тел трением всегда одновременно заряжаются оба участвующих в электризации тела (например, стекло и шелк). Причем одно из них приобретает положительный заряд, а другое – отрицательный. Если до электризации оба тела не были заряжены, то величина положительного заряда первого тела оказывается в точности равной величине отрицательного заряда второго тела.
Современная теория объясняет электризацию твердых тел как перемещение электронов, входящих в состав атомов любых тел, с одного тела на другое.
В состав ядра входят положительно заряженные элементарные частицы – протоны. На теле, приобретающем отрицательный заряд, образуется избыточное число электронов по сравнению с числом протонов, а на положительно заряженном теле оказывается недостаток электронов по сравнению с числом протонов.
Электрический заряд – характеристика заряженного тела. Минимальный заряд обозначается буквой e и равен 1,6·10 –19 Кл. Такой заряд имеют электрон и протон. Первые, наиболее точные определения заряда электрона были выполнены американским ученым Р. Милликеном и русским физиком А. Ф. Иоффе.
Для обнаружения и измерения электрического заряда используют электрометр. По углу отклонения стрелки модно судить о величине заряда.
Уменьшение числа электронов в одном теле равно увеличению их числа в другом. При этом полный заряд такой системы не изменяется, оставаясь равным нулю.
Сохранение числа протонов и электронов на соприкасающихся телах объясняет подтверждающийся опытом закон сохранения заряда: в электрически замкнутой системе алгебраическая сумма зарядов не меняется .
Количественное исследование взаимодействия заряженных тел осуществил в 1785 году французский физик Ш. Кулон (1736-1806). Он исследовал взаимодействие небольших заряженных металлических шариков при помощи крутильных весов.
На тонкой проволоке была подвешена стеклянная палочка с двумя металлическими шариками на концах. Одному шарику сообщали электрический заряд. Рядом с ним помещали неподвижный заряженный таким же по знаку зарядом шар. По углу поворота стеклянной палочки Ш.Кулон определял силу взаимодействия. Расстояние измерялось между центрами шаров.
Модуль силы взаимодействия F12 между двумя неподвижными точечными электрическими зарядами q1 и q2 в вакууме пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния R12 между ними.
Точечный заряд – модель реальных заряженных тел, размер которых значительно меньше, чем расстояние между ними.
Если имеется система точечных зарядов, то сила, действующая на каждый из них, определяется как векторная сумма сил, действующих на данный заряд со стороны всех других зарядов системы. При этом сила взаимодействия данного заряда с каким-то конкретным зарядом рассчитывается так, как будто других зарядов нет.
Сила взаимодействия точечных зарядов зависит от свойств среды, в которой они находятся:
Свойства среды определяет диэлектрическая проницаемость среды ε.
Границы применимости закона Кулона:
- для точечных зарядов
- для неподвижных зарядов
- справедлив до расстояний не меньше 10 -15 м
Способы электризации тел
Существует несколько способов электризации, которые
условно можно разделить на две группы:
-
Механическое воздействие:
- электризация соприкосновением;
- электризация трением;
- электризация при ударе.
-
Влияние внешних сил:
- электрическое поле;
- воздействие света (фотоэффект);
- влияние тепла (термопары);
- химические реакции;
- давление (пьезоэффект).
Наиболее распространённым способом электризации тел в природе является трение. Чаще всего происходит трение воздуха при контакте его с твёрдыми или жидкими веществами. В частности, в результате такой электризации происходят грозовые разряды.
Электризация трением нам известна ещё со школьной скамьи. Мы могли наблюдать наэлектризованные трением небольшие эбонитовые палочки. Отрицательный заряд потёртых об шерсть палочек определяется избытком электронов. Шерстяная ткань при этом заряжается положительным электричеством.
Подобный опыт можно провести со стеклянными палочками, но натирать их необходимо шёлком или синтетическими тканями. При этом, в результате трения стеклянные наэлектризованные палочки заряжаются положительно, а ткань – отрицательно. В остальном между стеклянным электричеством и зарядом эбонита различий нет.
Чтобы наэлектризовать проводник (например, металлический стержень), необходимо:
- Изолировать металлический предмет.
- Прикоснуться к нему положительно заряженным телом, например стеклянной палочкой.
- Отвести часть заряда на землю (кратковременно заземлить один конец стержня).
- Убрать заряженную палочку.
При этом заряд на стержне равномерно распределится по его поверхности. Если металлический предмет неправильной формы, неравномерно – концентрация электронов будет больше на выпуклостях и меньше на впадинах. При разделении тел происходит перераспределение заряженных частиц.
Условия возникновения электризации тел
Прежде чем перейти к определению условий электризации тел, заострим ваше внимание на взаимодействии точечных зарядов. На рисунке 3 изображена схема такого взаимодействия
На рисунке видно, что одноимённые точечные заряды отталкиваются, тогда как разноимённые – притягиваются. В 1785 г. силы этих взаимодействий исследовал французский физик О. Кулон. Знаменитый закон Кулона гласит: два неподвижных точечных заряда q1 и q2, расстояние между которыми равно r, действуют друг на друга с силой:
Коэффициент k зависит от выбора системы измерений и свойств среды.
Исходя из того, что на точечные заряды действуют кулоновские силы, имеющие обратно пропорциональную зависимость от квадрата расстояния между ними, проявление этих сил может наблюдаться только на очень небольших расстояниях. Практически, эти взаимодействия проявляются на уровне атомных измерений.
Таким образом, для того чтобы электризация тела произошла, необходимо максимально приблизить его к другому заряженному телу, то есть, прикоснуться к нему. Тогда под действием кулоновских сил часть заряженных частиц переместится на поверхность заряжаемого предмета.
Строго говоря, при электризации перемещаются только электроны, которые распределяются по поверхности заряжаемого тела. Избыток электронов образует определённый отрицательный заряд. Создание положительного заряда на поверхности реципиента, электроны с которого перетекли на заряжаемый объект, возложено на ионы. При этом модули величин зарядов на каждой из поверхностей равны, но знаки их противоположны.
Электризация нейтральных тел из разнородных веществ возможна только в том случае, если у одного из них электронные связи с ядром очень слабые, а у другого, наоборот – очень сильные. На практике это означает, что в веществах, у которых электроны вращаются на удалённых орбитах, часть электронов теряют свои связи с ядрами и слабо взаимодействуют с атомами. Поэтому, при электризации (тесном контакте с веществами), у которых проявляются более сильные электронные связи с ядрами, происходит перетекание свободных электронов. Таким образом, наличие слабых и сильных электронных связей является главным условием электризации тел.
Поскольку в кислотных и щелочных электролитах могут перемещаться и ионы, то электризация жидкости возможна путём перераспределения собственных ионов, как это имеет место при электролизе.
Инструменты для эксперимента
Для подтверждения сил электродинамики проводят простые физические опыты при помощи подручных средств. Одними из таких послужат:
- Два металлических диска.
- Лоскут шерстяной ткани под размер.
- Электроскоп. Либо собственное изобретение: примером может служить металлический стержень, соединенный проводником с одним из дисков. Последний устанавливается плоскостью горизонтально. Стержень же расположен вертикально, у основания на небольшом расстоянии можно наложить мелко изрезанные кусочки бумаги.
Один из дисков нужно взять в руку. Обязательно использовать диэлектрические перчатки. На втором уложена ткань.
Объяснение электризации тел. Проводники и их свойства.
Чтобы объяснить, как происходит процесс электризации тел, рассмотрим строение проводников.
К проводникам относятся: металлы, растворы солей и кислот, тело животного и человека, Земля. В проводниках атомы устроены так, что электроны, которые расположены на последней орбите, слабо удерживаются ядром и покидают атом и становятся свободными. Существование свободных электронов в проводниках и помогает объяснить явление электризации тел. Электроны имеют отрицательный заряд. Рассмотрим опыт: возьмём металлическую гильзу и подвесим её на нити. Поднесем к ней наэлектризованную стеклянную палочку с положительным зарядом. Так как гильза это проводник и у нее много свободных электронов они сместятся в сторону стеклянной палочки. В результате гильза и палочка начнут притягиваться друг к другу.
Притяжение наэлектризованных тел к ненаэлектризованным
Объясним еще одно электрическое явление. Мы говорили о том, что электрическое поле действует только на тела, которые имеют заряд. Но, если мы поднесем заряженную стеклянную палочку к изначально нейтральной гильзе из металлической фольги, то она будет притягиваться. Почему?
Рассмотрим это явление поэтапно (рисунок 3).
Гильза сделана из металла. Это означает, что в ней есть свободные электроны. Как только гильза окажется в электрическом поле палочки, на эти электроны будет действовать электрическая сила. Они придут в движение.
Наша палочка заряжена положительно. Свободные электроны гильзы перейдут на тот ее конец, который ближе к палочке (рисунок 3, а). Теперь этот конец гильзы заряжен отрицательно.
Соответственно, на другом конце гильзы образуется недостаток электронов. Другая сторона окажется заряжена положительно.
Рисунок 3. Передача электрического заряда от положительно заряженной стеклянной палочки незаряженной металлической гильзе
Отрицательно заряженный край гильзы притянется к положительно заряженной палочке (разноименные заряды притягиваются). Гильза коснется палочки. При этом часть свободных электронов перейдет с нее на палочку (рисунок 3, б).
Потеряв электроны, гильза оказывается положительно заряженной (рисунок 3, в).
{"questions":,"answer":}}}]}
Электризация, виды зарядов
На прошлом уроке мы уже упоминали о ранних экспериментах в электростатике. Все они были основаны на натирании одного вещества о другое и дальнейшем взаимодействии этих тел с малыми объектами (пылинками, клочками бумаги…). Все эти опыты основаны на процессе электризации.
Определение. Электризация – разделение электрических зарядов. Это значит, что электроны от одного тела переходят к другому (рис. 1).
Рис. 1. Разделение электрических зарядов
До момента открытия теории о двух принципиально разных зарядах и элементарного заряда электрона считалось, что заряд – некая невидимая сверхлегкая жидкость, и, если она есть на теле, значит, тело обладает зарядом и наоборот.
Первые серьезные опыты по электризации различных тел, как уже было сказано на предыдущем уроке, проводил английский ученый и врач Уильям Гильберт (1544-1603), однако ему не удавалось наэлектризовать металлические тела, и он посчитал, что электризация металлов невозможна. Однако это оказалось неправдой, что впоследствии доказал русский ученый Петров. Однако следующий более важный шаг в исследовании электродинамики (а именно открытие разнородных зарядов) сделал французский ученый Шарль Дюфе (1698-1739). В результате своих опытов он установил наличие, как он их назвал, стеклянных (трение стекла о шелк) и смоляных (янтаря о мех) зарядов.
Еще через некоторое время были сформулированы следующие законы (рис. 2):
1) одноименные заряды взаимно отталкиваются;
2) разноименные заряды взаимно притягиваются.
Рис. 2. Взаимодействие зарядов
Обозначения положительных (+) и отрицательных (–) зарядов было введено американским ученым Бенджамином Франклином (1706-1790).
По договоренности принято называть положительным заряд, который образуется на стеклянной палочке, если натирать ее бумагой или шелком (рис. 3), а отрицательный – на эбонитовой или янтарной палочке, если натирать ее мехом (рис. 4).
Рис. 3. Положительный заряд
Рис. 4. Отрицательный заряд
Открытие Томсоном электрона наконец дало ученым понять, что при электризации никакая электрическая жидкость не сообщается телу и никакой заряд не наносится извне. Происходит перераспределение электронов, как мельчайших носителей отрицательного заряда. В области, куда они приходят, их количество становится большим, чем количество положительных протонов. Таким образом, появляется нескомпенсированный отрицательный заряд. И наоборот, в области, откуда они уходят, появляется нехватка отрицательных зарядов, необходимых для компенсации положительных. Таким образом, область заряжается положительно.
Было установлено не только наличие двух разных видов зарядов, но и два различных принципа их взаимодействия: взаимное отталкивание двух тел, заряженных одноименными зарядами (одного знака) и соответственно притяжение разноименно заряженных тел.
08-в. Объяснение электризации
- Главная
- Справочник
- Физика
- Книги, лекции и конспекты по физике
- Физика 8 класс
- Электронно-ионная теория
- 08-в. Объяснение электризации
§ 08-в. Объяснение электризации
В § 8-а мы рассмотрели строение атома (положительно заряженное ядро и электронные оболочки) и строение металлов (положительно заряженные ионы и электронный газ). Это позволит нам объяснить явление электризации. Сделаем это.
При трении тел друг о друга «трутся» именно электронные оболочки атомов, из которых тела состоят. А так как электроны слабо связаны с ядрами атомов, то электроны могут отделяться от «своих» атомов и переходить на другое тело. В результате на нём возникает избыток электронов
(отрицательный заряд), а на первом теле –недостаток электронов (положительный заряд).
Итак, электризация трением
объясняется переходом части электронов от одного тела к другому, в результате чего тела заряжаются разноимённо. Поэтому тела, наэлектризованные трением друг о друга, всегда притягиваются (см. § 8-б). Но, кроме электризации трением, существует электризация индукцией (лат. «индукцио» – наведение). Рассмотрим её на опыте:
В начале опыта имеются два металлических шара, которые касаются друг друга (а). К одному из них подносят, не касаясь его, заряженную стеклянную палочку (б), после чего второй шар отодвигают (в). Теперь палочку можно убрать, – шары будут разноимённо заряжены (г).
Объясним этот опыт с точки зрения электронно-ионной теории.
Сначала металлические шары не были заряжены. Это значит, что электронный газ присутствовал в шарах в равных количествах (а). Поскольку палочка стеклянная, мы считаем её заряд положительным (см. § 8-б). Она притягивает отрицательно заряженные частицы – электроны. В результате электронный газ «перетекает» в левую часть левого шара, и в этом месте образуется избыток отрицательного заряда (б).
Все положительные ионы металла прочно связаны друг с другом (они и есть металл), поэтому никуда не «перетекают». Значит, во всех остальных частях шаров возникает недостаток электронов, то есть положительный заряд.
И если в этот момент, не убирая палочку, раздвинуть шары (в) и лишь затем убрать её, шары останутся разноимённо заряженными (г).
Итак, электризация индукцией
объясняется перераспределением электронного газа между телами (или частями тела), в результате чего тела (или части тела) заряжаются разноимённо. Однако возникает вопрос: все ли тела поддаются электризации индукцией? Можно проделать опыты и убедиться, что пластмассовые, деревянные или резиновые шары можно легко наэлектризовать трением, но невозможно индукцией. Объясним это. Электроны в резине, древесине и во всех пластмассах не являются свободными, то есть не образуют электронного газа, который может перетекать в другие тела.
Поэтому для электризации тел из этих веществ необходимо прибегнуть к их трению, способствующему отделению электронов от «своих» атомов и переходу на другое тело.
Итак, по электрическим свойствам все вещества можно разделить на две группы. Диэлектрики
– вещества, не имеющие свободных заряженных частиц и потому не проводящие заряд от одного тела к другому. Проводники– вещества со свободными заряженными частицами, которые могут перемещаться, перенося заряд в другие части тела или к другим телам. Это иллюстрирует рисунок с электроскопами, пластмассовой линейкой и металлической проволокой (см. выше). Электронно-ионная теорияФормулы Физика Теория 8 класс
Источник
В повседневной жизни
Вокруг нас постоянно происходит электризация тел. При трении некоторых предметов она становится настолько высокой, что к ним притягиваются даже габаритные тяжелые детали. В домашних условиях наблюдать процесс электризации можно следующим образом:
- Одеваем домашние тапочки матерчатые, только не с резиновой подошвой. Натираем длительно ногами по ковру или деревянному полу. И если коснуться кончиком пальцев с напарником, то получите разряд. В темноте будет видно как он сверкает.
- Часто незаземленные холодильники и стиральные машины тоже бились статическим электричеством. Это происходило по причине трения вращающихся частей.
- Электризуются ладони после трения их о ту же шерсть или шелк. Одежда на человеке притягивает разного рода пушинки, ворсинки по причине электризации. Девочки убирают её спреями-антистатиками, чтобы юбка не липла к ногам во время ходьбы.
Телевизоры по этой же причине притягивают пыль к экранам и корпусу. А воздушный шарик, натертый о волосы головы, можно надолго подвесить к потолку. Происходит притяжение заряженной поверхности к обоям или другому покрытию.