Единицы, которые не входят в систему СИ
Некоторые единицы измерения, не входящие в систему СИ, по решению Генеральной конференции по мерам и весам «допускаются для использования совместно с СИ».
Таблица 3. Единицы, не входящие в систему СИ
Единица измерения | Международное название | Обозначение | Величина в единицах СИ | |
русское | международное | |||
минута | minute | мин | min | 60 с |
час | hour | ч | h | 60 мин = 3600 с |
сутки | day | сут | d | 24 ч = 86400 с |
градус | degree | ° | ° | (П/180) рад |
угловая минута | minute | ′ | ′ | (1/60)° = (П/10 800) |
угловая секунда | second | ″ | ″ | (1/60)′ = (П/648 000) |
литр | litre (liter) | л | l, L | 1 дм3 |
тонна | tonne | т | t | 1000 кг |
непер | neper | Нп | Np | |
бел | bel | Б | B | |
электронвольт | electronvolt | эВ | eV | 10-19 Дж |
атомная единица массы | unified atomic mass unit | а. е. м. | u | =1,49597870691-27 кг |
астрономическая единица | astronomical unit | а. е. | ua | 1011 м |
морская миля | nautical mile | миля | 1852 м (точно) | |
узел | knot | уз | 1 морская миля в час = (1852/3600) м/с | |
ар | are | а | a | 102 м2 |
гектар | hectare | га | ha | 104 м2 |
бар | bar | бар | bar | 105 Па |
ангстрем | ångström | Å | Å | 10-10 м |
барн | barn | б | b | 10-28 м2 |
Таблица 4. Согласование единиц разных систем с СИ
Величина | Единица | |
обозначение русское | обозначение международное | |
Сила, вес | 1 кгс | 9,8 Н ≈ 10Н |
Момент силы | 1 кгс·м | 9,8 Н·м ≈ 10Н·м |
Частота | 1 об/сек | 6,28 рад/с = 1с-1 |
1 об/мин | 0,105 рад/с =1мин-1 | |
Удельная нагрузка | 1 кгс/см2 | 0,1 МПа = 105Па (1Па=1Н/м2) |
1 кгс/мм2 | 10 МПа | |
Плоский угол | 0- градус | 0 = 1,745329· 10-2 рад |
‘- минута | ‘ = 2,908882· 10-4 рад | |
«- секунда | » = 4,848137· 10-6 рад | |
Атмосфера техническая | 1 атм =1кГ/см2 | 9,8· 104 Н/м2 = 0,1 МПа |
Дюйм | 1″ = 25,4 мм | 1″ = 25,4 мм |
Таблица 5. Множители и приставки для образования десятичных кратных и дольных единиц и их наименований
Множитель | Приставка | Обозначение | Множитель | Приставка | Обозначение | ||
русское | международное | русское | международное | ||||
1018 | экса | Э | Е | 10-1 | деци | д | d |
1015 | пета | П | Р | 10-2 | санти | с | с |
1012 | тера | Т | Т | 10-3 | милли | м | m |
109 | гига | Г | G | 10-6 | микро | мк | µ |
106 | мега | М | М | 10-9 | нано | н | n |
103 | кило | к | к | 10-12 | пико | п | р |
102 | гекто | г | h | 10-15 | фемто | ф | f |
101 | дека | да | dа | 10-18 | атто | а | а |
Примечание. Кратные и дольные единицы образуются путем умножения или деления на степень числа 10. Их наименование получается прибавлением указанных в таблице приставок к наименованиям основных или производных единиц, например, километр, миллиграмм, микрометр, наносекунда и т. п.
Таблица 6. Перевод градусной меры в радианную меру
(длина дуг окружности радиуса, равного 1; 1 рад = 57° 17′ 44″; 1° = 0,017453 рад)
Угол | Дуга | Угол | Дуга | Угол | Дуга | Угол | Дуга |
1″ | 0,000005 | 1′ | 0,000291 | 1° | 0,017453 | 20° | 0,349066 |
2″ | 0,000010 | 2′ | 0,000582 | 2° | 0,034907 | 30° | 0,523599 |
3″ | 0,000015 | 3′ | 0,000873 | 3° | 0,052360 | 40° | 0,698132 |
4″ | 0,000019 | 4′ | 0,001164 | 4° | 0,069813 | 50° | 0,872665 |
5″ | 0,000024 | 5′ | 0,001454 | 5° | 0,087266 | 60° | 1,047198 |
6″ | 0,000029 | 6′ | 0,001745 | 6° | 0,104720 | 90° | 1,570796 |
7″ | 0,000034 | 7′ | 0,002036 | 7° | 0,122173 | 180° | 3,141593 |
8″ | 0,000039 | 8′ | 0,002327 | 8° | 0,139626 | 270° | 4,712389 |
9″ | 0,000044 | 9′ | 0,002618 | 9° | 0,157080 | 360° | 6,283185 |
10″ | 0,000049 | 10′ | 0,002909 | 10° | 0,174533 |
Примечание.
«Механическая работа. Механическая мощность»
Код ОГЭ 1.16. Механическая работа. Формула для вычисления работы силы. Механическая мощность.
Работа силы – физическая величина, характеризующая результат действия силы.
Механическая работа А постоянной силы равна произведению модуля вектора силы на модуль вектора перемещения и на косинус угла а между вектором силы и вектором перемещения: А = Fs cos а.
Единица измерения работы в СИ – джоуль: = Дж = Н • м.
Механическая работа равна 1 Дж, если под действием силы в 1 Н тело перемещается на 1 м в направлении действия этой силы.
Анализ формулы для расчёта работы показывает, что механическая работа не совершается если:
- сила действует, а тело не перемещается;
- тело перемещается, а сила равна нулю;
- угол между векторами силы и перемещения равен 90° (cos a = 0).
Внимание! При движении тела по окружности под действием постоянной силы, направленной к центру окружности, работа равна нулю, так как в любой момент времени вектор силы перпендикулярен вектору мгновенной скорости. Работа – скалярная величина, она может быть как положительной, так и отрицательной
Работа – скалярная величина, она может быть как положительной, так и отрицательной.
- Если угол между векторами силы и перемещения 0° ≤ а < 90°, то работа положительна.
- Если угол между векторами силы и перемещения 90° < a ≤ 180°, то работа отрицательна.
Работа обладает свойством аддитивности: если на тело действует несколько сил, то полная работа (работа всех сил) равна алгебраической сумме работ, совершаемых отдельными силами, что соответствует работе равнодействующей силы.
Примеры расчёта работы отдельных сил:
Работа силы тяжести: не зависит от формы траектории и определяется только начальным и конечным положением тела: A = mg(h1 – h2)
По замкнутой траектории работа силы тяжести равна нулю.Внимание! При движении вниз работа силы тяжести положительна, при движении вверх работа силы тяжести отрицательна
Работа силы трения скольжения: всегда отрицательна и зависит от формы траектории. Если сила трения не изменяется по модулю, то её работа А = –Fтр l , где l – путь, пройденный телом (длина траектории). Очевидно, что чем больший путь проходит тело, тем большую по модулю работу совершает сила трения. Работа силы трения по замкнутой траектории не равна нулю!
Мощность N – физическая величина, характеризующая быстроту (скорость) совершения работы и равная отношению работы к промежутку времени, за который эта работа совершена: .
Мощность показывает, какая работа совершается за 1 с.
Единица измерения мощности в СИ – ватт: = Дж/с = Вт.
Мощность равна одному ватту, если за 1 с совершается работа 1 Дж.
Может пригодиться! 1 л. с
(лошадиная сила) ~ 735 Вт.Внимание! Для случая равномерного движения (равнодействующая сила равна нулю) при расчете мощности отдельных сил, действующих на тело, получим
Для равноускоренного движения (F = const) где ʋср– средняя скорость движения за расчётный промежуток времени.
Конспект урока «Механическая работа. Механическая мощность».
Следующая тема: «Кинетическая и потенциальная энергия» (код ОГЭ 1.17)
КПД и мощность электродвигателя
КПД и мощность – это то, на что в первую очередь стоит обратить внимание при выборе асинхронного электродвигателя АИР. Суть работы любого эл двигателя заключается в том, что электрическая энергия, с сопутствующими преобразованию потерями, превращается в механическую. Чем меньше потери при протекании данного процесса, тем выше его КПД и тем эффективнее эл двигатель
Чем меньше потери при протекании данного процесса, тем выше его КПД и тем эффективнее эл двигатель
Но, при всей важности коэффициента полезного действия, не стоит забывать о мощности мотора. Ведь даже при чрезвычайно высоком КПД и выдаваемой им мощности может быть недостаточно для решения необходимых вам задач. Поэтому при покупке очень важно знать не только, чему равен КПД электродвигателя, но и какую полезную мощность он сможет выдать на своем валу
Оба эти значения должны быть указаны производителем. Порой бывает и такое, что нет доступа к паспорту мотора (например, если вы покупаете его “с рук”, что крайне не рекомендуется делать) и приходится самостоятельно вычислять столь важные параметры. Для начала стоит определить: что такое коэффициент полезного действия, или попросту КПД. И так, это отношение полезной работы к затраченной энергии
Поэтому при покупке очень важно знать не только, чему равен КПД электродвигателя, но и какую полезную мощность он сможет выдать на своем валу. Оба эти значения должны быть указаны производителем
Порой бывает и такое, что нет доступа к паспорту мотора (например, если вы покупаете его “с рук”, что крайне не рекомендуется делать) и приходится самостоятельно вычислять столь важные параметры. Для начала стоит определить: что такое коэффициент полезного действия, или попросту КПД. И так, это отношение полезной работы к затраченной энергии.
Определение КПД электродвигателя
Получается, для того чтобы определить этот параметр необходимо сравнить выдаваемую им энергию с энергией, необходимой ему чтобы функционировать. Вычисляется КПД с помощью выражения:
η=P2/P1где η – КПД
P2- полезная механическая мощность электромотора, ВтP1- потребляемая двигателем электрическая мощность, Вт;
Коэффициент полезного действия это величина, находящаяся в диапазоне от 0 до 1, чем ближе ее значение к единице, тем лучше. Соответственно, если КПД имеет значение 0,95 – это показывает, что 95 процентов электрической энергии будут преобразованы им в механическую и лишь 5 процентов составят потери. Стоит отметить, что КПД не является постоянной величиной, он может меняться в зависимости от нагрузки, а своего максимума он достигает при нагрузках в районе 80 процентов от номинальной мощности, то есть от той, которую заявил производитель мотора. Современные асинхронные электродвигатели имеют номинальный КПД (заявленные производителем) 0,75 – 0,95 . Потери при работе двигателя в основном обусловлены нагревом мотора (часть потребляемой энергии выделяется в виде тепловой энергии), реактивными токами, трением подшипников и другими негативными факторами. Под мощностью мотора понимают механическую мощь, которую он выдает на своем валу. В целом же мощность – это параметр, который показывает, какую работу совершает механизм за определенную единицу времени.
КПД электродвигателя это очень важный параметр определяющий, прежде всего эффективность использования энергоресурсов предприятия . Как известно КПД электродвигателя значительно снижается после его ремонта, об этом мы писали в этой статье . При уменьшении коэффициента полезного действия будут соответственно увеличены потери электроэнергии. В последнее время набирают популярность энергоэффективные электродвигатели разных производителей, в России популярны моторы производства ОАО «Владимирский электромоторный завод». Любые асинхронные электродвигатели представлены в каталоге продукции. Дополнительную полезную информацию Вы можете посмотреть в каталоге статей .
Электродвигатели появились достаточно давно, но большой интерес к ним возник тогда, когда они стали представлять собой альтернативу двигателям внутреннего сгорания. Особо интересен вопрос КПД электродвигателя, который является одной из главных его характеристик.
Каждая система обладает каким-либо коэффициентом полезного действия, который характеризует эффективность ее работы в целом. То есть он определяет, насколько хорошо система или устройство отдает или преобразовывает энергию. По значению КПД величины не имеет, и чаще всего оно представляется в процентном соотношении или числе от нуля до единицы.
Определение работы силы
Силовое воздействие на вещество сопровождается совершением работы. Работа силы — физическая величина, численно равная произведению силы на перемещение, пройденное под ее действием, и косинус угла между направлениями силы и перемещения.
Искомая работа силы, формула которой имеет вид A = FScosα, включает величину силы.
Действие тела сопровождается изменением скорости тела или деформацией, что говорит об одновременных изменениях энергии. Работа силы напрямую зависит от величины.
Сила является одним из ключевых понятий физики. С ее помощью измеряют степень внешнего воздействия одного тела на другое. Понятие силы использовали еще ученые античности в своих работах о статике и движении. Так, изучением сил в процессе конструирования простых механизмов занимался в III в. до н. э. Архимед. Первые представления о силе были сформулированы Аристотелем и просуществовали в течение многих столетий. В XVII Исаак Ньютон сформулировал три основные закона димамики, которые описывают взаимодействие любых сил.
Первый закон — покоящее тело остается в покое, а движущееся тело продолжает двигаться прямолинейно с постоянной скоростью, если на него не действует внешняя сила. Так, остается в покое футбольный мяч, пока игрок не ударит по нему ногой.
Второй закон — движение тела изменяется пропорционально приложенной к нему силе. Так, чем сильнее удар, тем быстрее полет футбольного мяча.
Третий закон — действие любой силы вызывает равное и противоположное ей противодействие. Так, когда гимнаст выполняет переворот или отталкивается от неподвижного предмета, направление его движения определяется силой противодействия (реакции).
Однако к началу XX века Альберт Эйнштейн сформулиовал теорию относительности, где показал, что ньютоновская механика верна лишь при сравнительно небольших скоростях движения и массах тел.
Единицы измерения силы
Ньютон
В международной системе единиц (системе СИ) сила измеряется в ньютонах (Н, N). Единица названа в честь английского физика Исаака Ньютона. Один ньютон есть сила, вызывающая ускорение 1 м/с² тела массой 1 кг.
1 Н = 105 дин.
1 Н ≈ 0,10197162 кгс.
Килограмм-сила
Единица измерения силы, не входящая в систему СИ. Килограмм-сила примерно равна силе, действующей на тело массой в 1 килограмм под воздействием стандартного ускорения свободного падения (ускорение падения тел под действием притяжения Земли в безвоздушном пространстве примерно равно 9,8 м/с²).
1 кгс = 9,80665 ньютонов (точно) ≈ 10 Н
1 Н ≈ 0,10197162 кгс ≈ 0,1 кгс
В ряде европейских государств для килограмм-силы официально принято название килопонд (обозначается kp).
Реже применяются кратные единицы: тонна-сила, равная 103 кгс, или грамм-сила, равная 10 -3 кгс.
Дина
Единица измерения силы в системе единиц СГС, которая широко использовалась до принятия международной системы единиц (СИ). Ее обозначение: дин, dyn. 1 дина равна силе, которая, воздействуя на массу в 1 г, сообщает ей ускорение 1 см / с².
1 дин = г см / с² = 10 −5 Н.
Фунт-сила
Система СИ используется не во всех странах. Так, в Англии есть своя традиционная система мер, согласно которой единицей силы является фунт-сила. Ее обозначение — lbf (сокращение от англ. pound force).
1 фунт-силы = 4,44822 ньютона
Кип (килофунт силы)
В США силу измеряют в кипах (или килофунтах). Образовано от слияния английских слов «kilo» + «pound».
1 kip = 4448,2216152605 ньютонов
Для того, чтобы быстро и точно перевести одну единицу в другую, воспользуйтесь на нашем сайте.
Силу измеряют посредством динамометров, гравиметров, силоизмерительных машин и прессов. Динамометры — приборы, измеряющие силу упругости. Они бывают трех типов: пружинные, гидравлические, электрические. Динамометр используется также в медицине. С его помощью врачи измеряют силы различных мышечных групп человека.
Э
Электрическое напряжение: сила, вызывающая ускорение
в замкнутой проводящей цепи и создающая за счет этого электрический ток.
Voltage
Подробнее читайте в статье
«Разность потенциалов»
Электрическое сопротивление: — физическая величина, характеризующая свойство проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему.
Electrical resistance
Электричество: поле создаваемое заряженной частицей; стационарная частица создает статическое электричество, движущаяся — электрический ток.
Электродвижущая сила (напряжение): сила, вызывающая ускорение электронов в замкнутой проводящей цепи и создающая за счет этого электрический ток.
Электромагнит: магнит, изготовленный в виде катушки с током, охватывающей сердечник из ферромагнитного материала; электрический ток индуцирует в сердечнике магнитное поле.
Электромагнитная индукция: явление возникновения электрического тока в проводнике, пересекающем силовые линии магнитного поля.
Электромагнитное излучение: передача энергии при помощи электромагнитных волн (фотонов), движущихся со скоростью света; при своем распространении электромагнитные волны генерируют и электрическое, и магнитное поле. Энергия электромагнитной волны обратно пропорциональна длине волны излучения. Гамма-излучение имеет наивысшую энергию и самую короткую длину волны, далее, в порядке уменьшения энергии и увеличения длины волны идут: рентгеновское излучение, ультрафиолетовое излучение, видимый свет, инфракрасное излучение и радиоволны.
Электронное облако: наглядная модель, отражающая распределение функции плотности вероятности обнаружения электрона в
или молекуле в зависимости от энергии электрона.
Electron cloud
Электроны: элементарные частицы, составляющие вместе с протонами и нейтронами атомы веществ. Электроны имеют отрицательный электрический заряд и вращаются по орбите вокруг атомного ядра.
Electrons
Энергетический уровень: одна из орбит, на которой могут находиться электроны атома.
Применение динамометров
На практике динамометры применяются не только для того, чтобы с их помощью измерять силу тяжести, но и для того, чтобы определять значения других сил (трения, упругости и т.п.). К примеру, сейчас эти приборы применяют для того, чтобы измерять силу различных мышечных групп человека. Одной из разновидностей такого рода устройств являются, к примеру, силометры. С их помощью измеряется мускульная сила руки при сжатии ее в кулак.
Динамометры находят широкое применение и тогда, когда необходимо измерять такие показатели, как тяговые усилия локомотивов, тягачей, тракторов, речных, морских буксиров и прочей техники подобного назначения. Для этого применяются специализированные тяговые динамометры. Их главной отличительной особенностью является то, что с их помощью можно измерять такие тяговые усилия, которые составляют до нескольких десятков тысяч ньютонов.
Если говорить о применении динамометров в повседневной жизни, то эти приборы используются для того, чтобы измерять силу сжатия створок различных закрывающихся в автоматическом режиме устройств (например, дверей вагонов метро, грузовых и пассажирских лифтов, гаражных ворот и т.п.). Необходимо особо отметить, что применение таких систем с использованием динамометров предполагает точную их юстировку и своевременное, тщательное техническое обслуживание.
ЭДС в быту и единицы измерения
Другие примеры встречаются в практической жизни любого рядового человека. Под эту категорию попадают такие привычные вещи, как малогабаритные батарейки, а также другие миниатюрные элементы питания. В этом случае рабочая ЭДС формируется за счет химических процессов, протекающих внутри источников постоянного напряжения. Когда оно возникает на клеммах (полюсах) батареи вследствие внутренних изменений – элемент полностью готов к работе. Со временем величина ЭДС несколько снижается, а внутреннее сопротивление заметно возрастает.
В результате если вы измеряете напряжение на не подключенной ни к чему пальчиковой батарейке вы видите нормальные для неё 1.5В (или около того), но когда к батарейке подключается нагрузка, допустим, вы установили её в какой-то прибор — он не работает. Почему? Потому что если предположить, что у вольтметра внутреннее сопротивление во много раз выше, чем внутреннее сопротивлении батарейки — то вы измеряли её ЭДС. Когда батарейка начала отдавать ток в нагрузке на её выводах стало не 1.5В, а, допустим, 1.2В — прибору недостаточно ни напряжения, ни тока для нормальной работы.
Расчет ЭДС.
Как раз вот эти 0.3 В и упали на внутреннем сопротивлении гальванического элемента. Если батарейка совсем старая и её электроды разрушены, то на клеммах батареи может не быть вообще никакой электродвижущей силы или напряжения — т.е. ноль. Совсем небольшая по величине электродвижущая сила наводится и в рамках антенны приемника, которая усиливается затем специальными каскадами, и мы получаем наш телевизионный, радио и даже Wi-Fi сигнал.
Определение
Когда на тело действует некоторая сила, заставляющая его проделать путь в определённом направлении, есть смысл говорить о совершённой им полезной работе. Это физическая мера, в механике равна скалярному значению силы, влияющей на тело.
Важно! Работа напрямую зависит от того, куда и в какую сторону действует сила, от её количественного значения, а также от того, как далеко переместится объект, попавший под воздействие этой силы
Работа силы, приложенной к материальной точке
Сила F→ постоянной величины и направления воздействует на точку. Траектория движения точки прямолинейная. Соответствующая A такой силы будет равна произведению её проекции F→ на направление перемещения (касательную) и длину элементарного смещения точки:
A = Fs*s = F*s*cos(F,s) = F→*s→ ,
где
Как видно из формулы, это произведение скалярное.
Внимание! При таких вычислениях F→ пребывает неизменной в промежутке времени, за которое рассчитывается необходимая работа. Такая формула справедлива только для прямолинейного перемещения точки и F→ = const
В противном случае рассчитать работу поможет интеграл:
Такая формула справедлива только для прямолинейного перемещения точки и F→ = const. В противном случае рассчитать работу поможет интеграл:
тут интеграл второго рода является криволинейным и суммирует все перемещения по кривой. При этом необходимо принимать перемещения ds→ конечными, в итоге длину каждого сделать стремящейся к нулю.
Работа сил, приложенных к системе материальных точек
Возникает, когда необходимо измерить значение для сил, влияющих на систему реальных точек. Её можно получить путём сложения работ для сил, способствующих передвижению каждой точки такой системы.
Для случаев, когда тело не представляет собой систему, состоящую из дискретных точек, применяют его мысленное разбиение на элементы. Бесконечно маленький размер такого элемента позволяет считать его материальной точкой. Применение интегрирования вместо дискретной суммы даст возможность рассчитать значение A.
К сведению. Производить математические вычисления допустимо для нахождения работы не только одной определённой силы, но и для любого количества подобных сил, приложенных к точке или системе точек.
Как образуется ЭДС
Идеальный источник ЭДС – генератор, внутреннее сопротивление которого равно нулю, а напряжение на его зажимах не зависит от нагрузки. Мощность идеального источника ЭДС бесконечна. Реальный источник ЭДС, в отличие от идеального, содержит внутреннее сопротивление Ri и его напряжение зависит от нагрузки (рис. 1., б), а мощность источника конечна. Электрическая схема реального генератора ЭДС представляет собой последовательное соединение идеального генератора ЭДС Е и его внутреннего сопротивления Ri.
На практике для того чтобы приблизить режим работы реального генератора ЭДС к режиму работы идеального, внутреннее сопротивление реального генератора Ri стараются делать как можно меньше, а сопротивление нагрузки Rн необходимо подключать величиной не менее чем в 10 раз большей величины внутреннего сопротивления генератора, т.е. необходимо выполнять условие: Rн >> Ri
Для того чтобы выходное напряжение реального генератора ЭДС не зависело от нагрузки, его стабилизируют применением специальных электронных схем стабилизации напряжения. Поскольку внутреннее сопротивление реального генератора ЭДС не может быть выполнено бесконечно малым, его минимизируют и выполняют стандартным для возможности согласованного подключения к нему потребителей энергии. В радиотехнике величины стандартного выходного сопротивления генераторов ЭДС составляют 50 Ом (промышленный стандарт) и 75 Ом (бытовой стандарт).
Например, все телевизионные приемники имеют входное сопротивление 75 Ом и подключены к антеннам коаксиальным кабелем именно такого волнового сопротивления. Для приближения к идеальным генераторам ЭДС источники питающего напряжения, используемые во всей промышленной и бытовой радиоэлектронной аппаратуре, выполняют с применением специальных электронных схем стабилизации выходного напряжения, которые позволяют выдерживать практически неизменное выходное напряжение источника питания в заданном диапазоне токов, потребляемых от источника ЭДС (иногда его называют источником напряжения).
На электрических схемах источники ЭДС изображаются так: Е — источник постоянной ЭДС, е(t) – источник гармонической (переменной) ЭДС в форме функции времени. Электродвижущая сила Е батареи последовательно соединенных одинаковых элементов равна электродвижущей силе одного элемента Е, умноженной на число элементов n батареи: Е = nЕ.
Постоянный ток и ЭДС.
В
Вакуум: пространство, свободное от вещества. В технике и прикладной физике под вакуумом понимают среду, состоящую из газа при давлении значительно ниже атмосферного.
Вектор: величина, характеризуемая численным значением и направлением.
Вес: сила, с которой тело действует на опору (или подвес, или другой вид крепления), препятствующую падению, возникающая в поле
сил тяжести
. Единица измерения веса в Международной системе единиц (СИ) — ньютон, иногда используется единица СГС — дина.
Вогнутая поверхность: поверхность тела, искривленная внутрь, как, например, внутренняя поверхность полой сферы.
Волна: изменение некоторой совокупности физических величин (характеристик некоторого физического поля или материальной среды), которое способно перемещаться, удаляясь от места своего возникновения, или колебаться внутри ограниченных областей пространства.
Вольтметр: прибор для измерения
электрического напряжения
или ЭДС.
Voltmeter
Время: форма протекания физических и психических процессов, условие возможности изменения. Одно из основных понятий философии и физики, мера длительности существования всех объектов, характеристика последовательной смены их состояний в процессах и самих процессов, изменения и развития, а также одна из координат единого пространства-времени, представления о котором развиваются в теории относительности.
Выигрыш в силе: степень преобразования простым механизмом усилия, необходимого для совершения работы.
Выпуклая поверхность: поверхность тела, искривленная наружу, как, например, внешняя поверхность сферы.
Выталкивающая сила: сила, направленная вертикально вверх и равная весу газообразного или жидкого вещества, вытесненного телом.
Вязкость: свойство жидкостей оказывать сопротивление течению из-за наличия сил трения между ее частицами.
Размерность и единицы
Работа, совершаемая в процессах физики, имеет почти одинаковые обозначения, измерять её можно, зная единицы.
Основная единица измерения работы – 1 джоуль (Дж). Он равен:
1 Дж = 1 Н*м = 1 кг*м²/с².
1 эрг = 1 г*см²/с² = 1 дин*см = 10−7 Дж.
Работа двигателя внутреннего сгорания соразмерна тяге одной лошади. Одна лошадиная сила равна поднятию лошадью тяжести весом 75 кг. Хотя это не совсем верно. В данном случае речь идёт о мощности, это не что иное, как работа двигателя, выполняемая им ежесекундно.
(В*А*с) – это тоже единица измерения, работа, совершаемая электрическим током при перемещении заряженных зарядов по цепи за единицу времени. Сама формула пишется так:
где:
- U – напряжение, (вольт);
- I – ток (ампер);
- t – время (cекунда).
Сила трения, которая не только изнашивает трущиеся детали, но и помогает движению транспорта, также совершает определённую работу. Её выполняет и сила тяжести. На определение величины работы тех или иных сил влияют условия, при которых она совершается.
Определение и формула работы
Определение
В том случае, если под воздействием силы происходит изменение модуля скорости движения тела, то говорят о том, что сила совершает работу
. Считают, что если скорость увеличивается, то работа является положительной, если скорость уменьшается, то работа, которую совершает сила – отрицательна. Изменение кинетической энергии материальной точки в ходе ее движения между двумя положениями равно работе, которую совершает сила: $$A=\Delta E_{k}=\frac{m v_{2}^{2}}{2}-\frac{m v_{1}^{2}}{2}(1)$$ Действие силы на материальную точку можно охарактеризовать не только с помощью изменения скорости движения тела, но при помощи величины перемещения, которое совершает рассматриваемое тело под действием силы ($\bar{F}$).
О
Обертон: звук, создаваемый стоячей волной, длина которой в целое число раз меньше длины волны основного тона.
Объектив: линза в некоторых типах телескопов, которая формирует изображение объекта, воспринимаемое глазом наблюдателя.
Объем: количественная мера пространства, занимаемого веществом.
Океан как источник энергии: метод получения электроэнергии путем испарения низкокипящей жидкости теплотой поверхностных слоев воды; получаемый пар используется для приведения во вращение турбины, соединенной с электрогенератором.
Окислитель: компонент ракетного топлива, содержащий необходимый для его сгорания кислород.
Окуляр: линза оптической системы, обращенная к глазу наблюдателя.
Опорная волна: пучок света, используемый при получении голограмм; падает на тот же участок фотопленки, что и предметная волна, но проходит мимо фотографируемого объекта.
Органическое топливо: любое вещество типа нефти, угля или природного газа, образовавшееся в результате разложения органических соединений миллионы лет назад.
Основное состояние: низший энергетический уровень электрона.
Основной тон: звук, соответствующий наибольшей длине волны стоячей волны; в музыкальных инструментах основной тон — это самый низкочастотный из создаваемых ими звуков.
Осциллоскоп: прибор, преобразующий звуковые волны в электрические сигналы и показывающий их на экране.
Ответные колебания: явление, в котором звуковые волны, создаваемые колеблющимся телом, например, камертоном, заставляют находящееся рядом идентичное тело также совершать колебания.
Отражение: свойство света или звука отражаться от встречных поверхностей.
Кинетическая энергия
Это часть полной энергии, определяющая энергетику движения. В системе СИ измеряется в джоулях (Дж), в СГС – в эргах (эрг).
Как связать понятие работы с кинетической энергией? Формула кинетической энергии имеет вид:
В этой формуле физическая величина Ek равна 1/2 от массы тела, умноженной на скорость этого тела в квадрате.
Далее отображается работа сил, воздействующих на точку при помощи 2-го закона Ньютона. Формула закона позволяет через ускорение (а) выразить силу (F):
где:
- m – масса тела;
- a – ускорение тела.
Оперируя с кинематическими величинами и обратив внимание на формулу А = F*s, пробуют выразить желаемую взаимосвязь. Случай прямолинейного ускоренного движения, где скорость и перемещение можно выразить формулой:
Случай прямолинейного ускоренного движения, где скорость и перемещение можно выразить формулой:
где:
- v1 – модуль вектора начальной скорости (в начале участка);
- v2 – модуль вектора конечной скорости (в конце участка).
Следует подставить значение величины перемещения s и F в формулу работы:
А = m*a*(v22-v21)/2a = m*v22/2 – m*v21/2.
Уменьшаемое или вычитаемое, отображаемые во второй части полученного равенства, имеют общий вид:
Это есть кинетическая энергия, её обычно обозначают – Ek.
Из всего этого следует, что работа, выполняемая над телом, равнодействующих сил, соответствует изменению Ek.
Следует запомнить! Когда сила давит на тело сонаправленно его движению, совершаемая ею работа положительна, и Ek > 0. Когда она приложена навстречу движению тела, тогда Ek Потенциальная энергия
Эта физическая характеристика является частью полной механической энергии. Описывает расположение тела в силовом поле (источнике силы). Причём эта величина может давать оценку только для целой системы. Она бесполезна для характеристики отдельных точек. При этом оценивается не величина, а ее изменение.
Единицей измерения является Дж или Эрг. Наиболее часто применяемые графические обозначения – U, Ep, W.
Различают следующие типы потенциальной энергии:
- в пределах земного притяжения;
- в зоне действия электростатических полей;
- в системах механической природы.
Для тела, расположенного поблизости от земной поверхности, формула имеет вид:
где:
- m – масса;
- g – ускорение свободного падения (9,8 м/с2);
- h – высота центра массы тела над нулевым уровнем.
Уровень нуля можно выбирать произвольно.
Электрически заряженная материальная точка, имеющая потенциал φ(r→), находясь в зоне электростатического поля, обладает потенциальной энергией Ер. Она вычисляется с помощью выражения:
где qp – электрический заряд, которым эта точка обладает.
В механических системах при упругих деформациях тела разные его точки взаимодействуют между собой. Такие взаимодействия можно охарактеризовать потенциальной энергией.
Упругая деформация может быть записана как:
Здесь k – это жёсткость (упругость), ∆x – величина смещения от равновесного положения.