Введение[ | ]
Необходимость введения термина можно проиллюстрировать следующим примером. Сравним два химических источника постоянного тока с одинаковым напряжением:
- Автомобильный свинцово-кислотный аккумулятор с напряжением 12 вольт и ёмкостью 55 А·ч.
- Батарея из 8 гальванических элементов, например, типоразмера АА, соединенных последовательно. Суммарное напряжение такой батареи также 12 вольт, ёмкость значительно меньше — примерно 1 А·ч.
Несмотря на одинаковое напряжение, эти источники значительно отличаются при работе на одинаковую нагрузку. Так, автомобильный аккумулятор способен отдать в нагрузку большой ток (от аккумулятора заводится двигатель автомобиля, при этом стартер потребляет ток порядка 250 ), а от батареи элементов стартер вообще не станет вращаться, так как напряжение батареи при подключении к зажимам стартера упадёт до долей вольта. Дело не в относительно небольшой электрической ёмкости батареек: запасённой в ней энергии и заряде в один ампер-час хватило бы для того, чтобы вращать стартер в течение 14 секунд (при токе 250 А).
В соответствии с законом Ома в источниках с одинаковым напряжением ток в одинаковой нагрузке также должен быть одинаковым. В приведённом примере это не выполняется потому, что утверждение верно только для идеальных источников ЭДС
; реальные же источники в той или иной степени отличаются от идеальных. Для описания степени отличия реальных источников от идеальных применяется понятиевнутреннее сопротивление .
Нелинейные элементы и цепи
Закон Ома не является фундаментальным законом природы и может быть применим в ограниченных случаях, например, для большинства проводников. Его невозможно использовать для расчёта напряжения и тока в полупроводниковых или электровакуумных приборах, где эта зависимость не является пропорциональной и её можно определять только с помощью вольтамперной характеристики (ВАХ). К данной категории элементов относятся все полупроводниковые приборы (диоды, транзисторы, стабилитроны, тиристоры, варикапы и т.д.) и электронные лампы. Такие элементы и цепи, в которых они используются, называют нелинейными.
Лабораторное исследование Закона Ома
Рассмотрим действие Закона Ома через исследования лабораторным путём с использованием последовательных и параллельных цепей. Схема, подходящая для эксперимента, представлена выше на картинке.
Инструментально потребуются два прибора: измеритель напряжения (вольтметр), измеритель силы тока (амперметр). Обычно оба измерителя представлены единой конструкцией прибора, именуемого – мультиметр.
Конструкций мультиметров в современном (цифровом) исполнении существует множество. Каждый прибор, как правило, поддерживает измерение напряжения, тока, сопротивлений и прочих электрических величин
Исследование последовательной схемы включения
- Подключить источник питания к двум последовательно подключенным резисторам, подключив положительную клемму источника питания к V1 и отрицательную клемму к V3.
- Подключить измеритель напряжения к V1 и V3 и отрегулировать источник питания так, чтобы показания вольтметра составляли 5 вольт.
- Измерить напряжение между точками V1 и V2 и между точками V2 и V3.
- Отключить вольтметр, подключить амперметр к точке C1. Измерить ток в точке С1.
- Используя уравнение, рассчитать сопротивление резистора между точками V2 и V3. Рассчитать сопротивление между V1 и V2. Найти процентную погрешность расчетного значения и значений R.
Исследование параллельной схемы включения
- Подключить источник питания параллельно к двум резисторам, подключив положительную клемму источника питания к V3, а отрицательную клемму к V4.
- Подключить вольтметр к V3 и V4 и отрегулировать источник питания так, чтобы показания вольтметра составляли 5 вольт.
- При помощи амперметра измерить ток в точке C2.
- Используя уравнение, рассчитать сопротивление R= 91 Ом.
- Рассчитать общее сопротивление двух параллельных элементов. Подсчитать сумму тока через параллельную цепь, а также через R=110 Ом.
Свойства и технические характеристики резисторов
Как уже отмечалось, резисторы в электрических цепях и схемах выполняют регулировочную функцию. С этой целью используется закон Ома, выраженный формулой: I = U/R. Таким образом, с уменьшением сопротивления происходит заметное возрастание тока. И, наоборот, чем выше сопротивление, тем меньше ток. Благодаря этому свойству, резисторы нашли широкое применение в электротехнике. На этой основе создаются делители тока, использующиеся в конструкциях электротехнических устройств.
Помимо функции регулировки тока, резисторы применяются в схемах делителей напряжения. В этом случае закон Ома будет выглядеть несколько иначе: U = I x R. Это означает, что с ростом сопротивления происходит увеличение напряжения. На этом принципе строится вся работа устройств, предназначенных для деления напряжения. Для делителей тока используется параллельное соединение резисторов, а для делителей напряжения – последовательное. На схемах резисторы отображаются в виде прямоугольника, размером 10х4 мм. Для обозначения применяется символ R, который может быть дополнен значением мощности данного элемента. При мощности свыше 2 Вт, обозначение выполняется с помощью римских цифр. Соответствующая надпись наносится на схеме возле значка резистора. Мощность также входит в состав маркировки, нанесенной на корпус элемента. Единицами измерения сопротивления служат ом (1 Ом), килоом (1000 Ом) и мегаом (1000000 Ом). Ассортимент резисторов находится в пределах от долей ома до нескольких сотен мегаом. Современные технологии позволяют изготавливать данные элементы с довольно точными значениями сопротивления.
Важным параметром резистора считается отклонение сопротивления. Его измерение осуществляется в процентах от номинала. Стандартный ряд отклонений представляет собой значения в виде: +20, +10, +5, +2, +1% и так далее до величины +0,001%.
Большое значение имеет мощность резистора. По каждому из них во время работы проходит электрический ток, вызывающий нагрев. Если допустимое значение рассеиваемой мощности превысит норму, это приведет к выходу из строя резистора. Следует учитывать, что в процессе нагревания происходит изменение сопротивления элемента. Поэтому если устройства работают в широких диапазонах температур, применяется специальная величина, именуемая температурным коэффициентом сопротивления.
Для соединения резисторов в схемах используются три разных способа подключения – параллельное, последовательное и смешанное. Каждый способ обладает индивидуальными качествами, что позволяет применять данные элементы в самых разных целях.
Условные обозначения источников электрической энергии и элементов цепей
Условное обозначение | Элемент |
Идеальный источник ЭДС Е — электродвижущая сила, Е = const Ro = 0 — внутреннее сопротивление |
|
Идеальный источник тока I = const Rвн- внутреннее сопротивление источника тока, Rвн>>Rнаг |
|
Активное сопротивление R = const |
|
Индуктивность L = const | |
Емкость С = const |
К химическим источникам тока относят гальванические элементы и аккумуляторы. В них заряды переносятся в результате химических реакций. При этом в гальваническом элементе реагенты расходуются необратимо, а в аккумуляторе они могут восстанавливаться путем пропускания через аккумулятор электрического тока противоположного направления от других источников.
Источники электрической энергии относятся к группе активных элементов электротехнических устройств. Если Rо=0 и электродвижущая сила (ЭДС) Е=const, то источник называется идеальным. Аккумуляторная батарея по своим параметрам близка к идеальному источнику ЭДС.
К группе пассивных элементов относятся: активное сопротивление R, индуктивность L и емкость С.
В электротехнических устройствах одновременно протекают три энергетических процесса:
1 В активном сопротивлении в соответствии с законом Джоуля — Ленца происходит преобразование электрической энергии в тепло.
Мощность, по определению равна отношению работы к промежутку времени, за который эта работа совершается. Следовательно, мощность тока для участка цепи
p = A/t = ui
Полная мощность, вырабатываемая генератором, равна
где R- полное сопротивление замкнутой цепи, называемое омическим или активным;
Р, I — мощность и ток в цепи постоянного тока.
р, i, и — мгновенные значения активной мощности, тока и напряжения в цепи переменного тока,
g — активная проводимость или величина, обратная сопротивлению g=1/R измеряется в сименсах (См).
В соответствии с законом сохранения энергии работа есть мера изменения различных видов энергии. Так, в электродвигателе за счет работы тока возникает механическая энергия, протекают химические реакции и т. д. На резисторах происходит необратимое преобразование энергии электрического тока во внутреннюю энергию проводника.
Если в проводнике под действием тока не происходит химических реакций, то температура проводника должна измениться. Изменение внутренней энергии проводника (количество теплоты) Q равно работе А, которую совершает суммарное поле при перемещении зарядов:
Q = А = uit
Воспользовавшись законом Ома, получим два эквивалентных выражения:
Это и есть закон Джоуля — Ленца.
Если нужно сравнить два резистора по характеру тепловых процессов, происходящих в них, то нужно предварительно выяснить: протекает ли по ним одинаковый ток или они находятся под одинаковым напряжением?
Если по двум резисторам протекают одинаковые токи, то согласно формуле за одно и то же время больше возрастает внутренняя энергия резистора с большим сопротивлением. С таким случаем мы встречаемся, например, в цепи с последовательным соединением резисторов. Последнее обстоятельство следует учитывать при включении в сеть нагрузки (электроплиток, утюгов, электродвигателей и т. д.). Сопротивление подводящих проводов при этом должно быть значительно меньше, чем сопротивление нагрузки. При несоблюдении этого условия в проводах выделится большое количество теплоты, что может привести к их загоранию.
Если же оба резистора находятся под одинаковым напряжением, то согласно формуле быстрее будет нагреваться резистор с меньшим сопротивлением. Такой эффект, в частности, наблюдают при параллельном соединении резисторов.
Термин «сопротивление» применяется для условного обозначения элемента электрической цепи и для количественной оценки величины R.
Сопротивление измеряется в омах (Ом). 1 Ом — это сопротивление проводника, сила тока в котором равна 1 А, если на концах его поддерживается разность потенциалов 1 В:
1 Ом = 1 В/1 А
Электрическое сопротивление R материалов с изменением температуры меняется. Сопротивление металлических проводников линейно возрастает с температурой. У полупроводников и электролитов с увеличением температуры удельное сопротивление уменьшается, причем нелинейно.
Для сравнения проводников по степени зависимости их сопротивления от температуры t вводится величина a, называемая температурным коэффициентом сопротивления. Отсюда
Для практических расчетов в электрических цепях величину R можно принимать постоянной. В этом случае зависимость напряжения на сопротивлении R от силы тока (вольт-амперная характеристика) будет называться линейной. Электрические цепи, в которые включены постоянные по величине сопротивления, также будут линейными.
Видео
Величина, характеризующая количество энергетических потерь, возникающих при протекании тока через его источник, определяется как внутреннее сопротивление источника тока. Как и обычное сопротивление, имеет единицу измерения, равную 1 Ом. Ток, двигаясь через источник, теряет часть своей энергии, которая переходит в тепло, точно так же, как на любом нагрузочном сопротивлении. Это значит, что величина напряжения на выводах источника зависит от величины тока, а не от ЭДС.
Если рассмотреть замкнутую электрическую цепь, в которую включён источник тока (батарейка, аккумулятор или генератор), и нагрузку R, то ток течёт и внутри источника. Внутреннее сопротивление источника, обозначаемое буквой r, ему препятствует.
У генератора r – это внутреннее сопротивление обмоток статора, у аккумулятора – сопротивление электролита.
Закон Ома для полной цепи
Открытый Г
Омом закон для участка цени в общем случае справедлив и для полной цепи, если принимать во внимание как внешнюю, так и внутреннюю части цепи. Математическую запись закона Ома для этого случая можно получить на основании закона сохранения энергии, универсального для всех процессов в природе
Пусть электрическая цепь состоит из источника тока, имеющего ЭДС и внутреннее сопротивление г, и проводника сопротивлением R (рис. 1.51).
Pиc. 151. Замкнутая электрическая цепь
Согласно закону сохранения энергии работа сторонних сил равна сумме работ электрического тока во внешней и внутренней частях цепи:
По определению
Отсюда
Если учесть, что по закону Ома для участка цепи U =IR, то получим формулу этого закона для полной цепи:
Таким образом, сила тока в полной цепи пропорциональна электроднижущей силе источника и обратно пропорциональна полному сопротивлению цепи.
Сила тока в полной цепи пропорциональна электродвижущей силе источника и обратно пропорциональна полному сопротивлению цепи:
Пользуясь законом Ома для полной цепи, можно рассчитать два экстремальных случая н электрической цепи — короткое замыкание и разомкнутую цепь. Если сопротивление внешней цепи стремится к нулю (короткое замыкание), то сила тока в цепи
Это будет максимальное значение силы тока для данной цепи.
Если цепь разорвана (R→∞ ), то ток в цени прекращается при любых значениях ЭДС и внутреннего сопротивления. В последнем случае напряжение нм полюсах источника тока будет равно электродвижущей силе. Поэтому иногда дают упрощенное определение ЭДС: это величина, равная напряжению на клеммах источника при разомкнутой цепи.
Источники тока могут соединяться в батареи. Существуют несколько способов соединения источников тока.
Последовательным называют соединение, при котором соединяются друг с другом разноименные полюса источников: положительный предыдущего с отрицательным следующего и т. д. (рис. 1.52). Чаще всего соединяют источники с одинаковыми характеристиками, поэтому при последовательном соединении N источников ЭДС батареи будет в N раз больше, чем ЭДС одного источника:
Внутреннее сопротивление такой батареи будет также в N раз больше:
Рис. 152. Схема последовательного соединения источников тока
Для последовательного соединения источников тока закон Ома для полной цепи будет записываться:
Последовательное соединение источников τoιca удобно в том случае, когда сопротивление потребителя значительно больше внутреннего сопротивления одного источника тока.
Параллельным является соединение, при котором все одноименные полюса соединяется в один узел (рис. 1.53).
Pиc. 153. Схема параллельного соединения источников тока
Параллельное соединение применяют тогда, когда в цепи необходимо получить большое значение силы тока при небольшом напряжении.
Электродвижущая сила батареи параллельно соединенных одинаковых источников равна ЭДС одного источника:
Формула закона Ома для параллельного соединения источников имеет вид:
Параллельное соединения удобно тогда» когда сопротивление внешней части цепи значительно меньше внутреннего сопротивления одного источника.
При смешанном соединении батареи источников тока (параллельно или последовательно) в свою очередь соединяют последовательно или параллельно (рис. 1.54).
Pиc. 1.54. Смешанное соединение источников тoκa
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Закон Ома для цепи переменного тока с последовательным соединением сопротивлений
- Сила и закон Ампера
- Закон взаимодействия прямолинейных параллельных проводников с током
- Сила Лоренца
- Звуковые волны в физике
- Электрическое поле в физике
- Работа по перемещению заряда в электростатическом поле
- Закон Ома для однородного участка электрической цепи
Параллельное соединение
Для вычисления импеданса при параллельном соединении активных и реактивных сопротивлений будем исходить из суммы обратных им величин — проводимостей y = 1/Z, G = 1/R, b = 1/X.
y = 1/Z = √(G 2 + b 2 )
Сдвиг фаз в этом случае будет определён треугольником сопротивлений следующим образом:
Комплексную проводимость, как величину, обратную комплексному импедансу, запишем в алгебраической форме:
Либо в показательной форме:
Здесь: Y — комплексная проводимость. G — активная проводимость. b — реактивная проводимость. y — общая проводимость цепи, равная модулю комплексной проводимости. e — константа, основание натурального логарифма. j — мнимая единица. φ — угол сдвига фаз.
Онлайн-калькулятор расчёта импеданса и угла сдвига фаз
Необходимо вписать значения и кликнуть мышкой в таблице. При переключении множителей автоматически происходит пересчёт результата.
Похожие страницы с расчётами:
Замечания и предложения принимаются и приветствуются!
Для расчетов напряжений и токов через элементы электрической цепи нужно знать их общее сопротивление. Источники энергии делятся на два типа:
- постоянного тока (батарейки, выпрямители, аккумуляторы), электродвижущая сила (ЭДС) которых не изменяется во времени;
- переменного тока (бытовые и промышленные сети), ЭДС которых изменяется по синусоидальному закону с определенной частотой.
Применение параллельного и последовательного соединения в электротехнике
Параллельное соединение активно применяется для монтажа проводки и цепей в различных видах электрического оборудования и приборов. Оно дает возможность подключить электрические устройства к электросети независимо друг от друга.
Последовательное соединение используют, когда нужно обеспечить включение и отключение определенных приборов. Именно по этой схеме подсоединяются выключатели и тумблеры. Также схема хорошо подходит в тех случаях, когда необходимо сформировать электроцепь из потребителей с малым значением номинального напряжения.
При параллельном соединении конденсаторов совокупная емкость равняется сумме емкостей каждого полупроводника. В случае применения последовательного соединения конденсаторов, результирующая емкость уменьшается вдвое. Это свойство также используется при формировании электроцепей.