Дугогасительные качества элегаза
При всех одинаковых условиях элегаз обладает значительно большей дугогасительной способностью, по сравнению с обычным воздухом. Основными факторами являются состав плазмы, плотность элегаза, а также теплоемкость, тепло- и электропроводность, находящиеся между собой в температурной зависимости.
При достижении состояния плазмы, наступает распад молекул элегаза. Когда температура достигает 2000 К, происходит резкое увеличение теплоемкости из-за молекулярной диссоциации. Поэтому в температурном промежутке между 2000 и 3000 К теплопроводность плазмы во много раз увеличивается по сравнению с обычным воздухом. При достижении температуры 4000 К диссоциация молекул начинает уменьшаться.
Одновременно в дуге элегаза образуется атомарная сера. Ее низкий потенциал ионизации вызывает такую концентрацию электронов, которая способна поддерживать дугу даже при температуре 3000 К. Дальнейшее повышение температуры приводит к падению теплопроводности плазмы, в результате этот параметр становится таким же, как и у воздуха. Далее вновь происходит увеличение теплопроводности.
За счет этих процессов сопротивление и напряжение горящей дуги в элегазе снижается примерно на 20-30% относительно дуги, возникающей в воздухе. Подобное состояние удерживается вплоть до температур от 8 до 12 тыс. градусов. Когда температура плазмы начинает снижаться до 7000 К и далее, в ней соответственно уменьшается концентрация электронов, что приводит к падению электрической проводимости плазмы.
При достижении 6000 К ионизация атомарной серы сильно снижается, а захват электронов свободным фтором, наоборот, усиливается. В этом процессе участвуют также низшие фториды и молекулы элегаза. Диссоциация молекул завершается при температуре 4000 К, после чего начинается их рекомбинация. Это приводит к еще большему снижению плотности электроном, поскольку происходит химическое соединение атомарной серы с фтором.
В данном температурном диапазоне характеристики теплопроводности плазмы еще сохраняются на высоком уровне, охлаждение дуги продолжается за счет удаления из плазмы свободных электронов. Их захватывает атомарный фтор и молекулы элегаза. Постепенно происходит увеличение и полное восстановление электрической прочности промежутка дуги.
Правила подключения и обслуживания ЭВ
Все действия, касающиеся монтажа, включения/выключения, ремонта и обслуживания элегазовых устройств, подчиняются строгим правилам, которые регламентированы ПУЭ 1.8.21.
Для подключения установки необходимо проверить наличие минимального давления в газонаполненной камере, иначе выключатель выйдет из строя. Чтобы предотвратить повреждения, установлена сигнализация, которая срабатывает при критическом понижении параметров давления. Уровень давления можно отследить с помощью манометра.
В шкафу привода установлены нагревательные элементы, эффективно препятствующие возникновению конденсата на элементах механизма. Оператору необходимо следить, чтобы нагреватели постоянно находились во включенном состоянии.
Осмотр установки производится каждый день в светлое время суток и примерно 2 раза в месяц в темное время суток. Если произошло аварийное отключение по одной из причин, требуется внеплановый осмотр
В процессе осмотра выключателя необходимо проверить наружную защиту, удалить загрязнения, исправить повреждения. Если нагреваются контакты, следует выяснить причину. При наличии треска, подозрительного шума нужно выявить источник. Металлическая монтажная конструкция одновременно является частью заземляющего контура, поэтому следует проверять ее целостность.
Обязательно снимаются показатели манометра. Давление должно соответственно норме, рассчитанной производителем. Необходимо проверить исправность регулирующих и контролирующих приборов, а при выходе из строя одного или нескольких элементов принять меры – совершить замену или отправить в ремонт.
Если давление газа уменьшилось, следует пополнить камеру элегазом. Изоляция в чистке не нуждается, так как конструкция полностью герметична.
Конструктивные особенности и виды выключателей
По конструктивным особенностям элегазовые выключатели делятся на:
Колонковые. Они не отличаются от масляных не по размерам ни по внешним признакам, однако, имеют только один разрыв на фазу.
Баковые. Имеют значительно меньшие размеры, один общий привод на все три полюса, а также встроенные внутрь устройства трансформаторы тока.
Все данные элегазовые выключатели также можно разделить по способу гашения электрической дуги, возникающей при разрыве цепи. Этот способ зависит от следующих факторов:
- Номинального напряжения аппарата;
- Номинального тока отключения;
- Особенностей мест установки и эксплуатации.
Для гашения дуги используются следующие способы гашения дуги:
- Автокомпрессионные с дутьём в элегазе. Имеют одну степень давления, которое создаётся компрессорным механизмом;
- С электромагнитным дутьём. Гашение дуги выполняется вращением её по кольцевым контактам под воздействием поперечного магнитного поля, которое создано самим током отключения;
- Двухступенчатое давление. В них сжатый предварительно газ поступает из специальной ёмкости где он находится под относительно высоким давлением. Имеет две ступени давления;
- Автоматически генерирующимся дутьём. Как и предыдущий вариант имеет продольное дутьё, но теперь повышение давление газа происходит непосредственно за счёт разогрева самой электрической дугой.
Привод данного выключателя должен надёжно удерживать контакты во включенном положении, а также в случае получения сигнала на отключение выполнить его. Вал выключателя и вал самого привода соединяются между собой посредством целой системы рычагов и тяг. Оттого как эта связка работает, зависит надёжность, а также быстрота срабатывания.
Здесь могут применяться два типа приводов:
- Пружинный. Управляется он за счёт кинематической системы кулачков, валов, а также рычагов;
- Пружинно-гидравлический, управляется системой, основанной на работе гидравлического механизма.
Преимущества и минусы элегазовых выключателей
Приборы обладают несомненными плюсами:
- универсальность. Их можно ставить в сетях с практически любым напряжением;
- неприхотливость — ЭВ работают даже в пожароопасных местах и сейсмоопасных зонах;
- скорость срабатывания. Элегаз реагирует на возникновение дуги за доли секунды, благодаря чему происходит почти моментальное обесточивание защищаемых устройств;
- долговечность. Газ не изнашивает соприкасающиеся с ним элементы, газовая смесь не деградирует и не нуждается в регулярной замене, а внешняя оболочка ЭВ прочна и хорошо защищает от неблагоприятных воздействий;
- работают и с переменным, и с постоянным высоким напряжением. Это выгодно отличает их от не способных функционировать в высоковольтных сетях вакуумных;
- взрыво- и пожаробезопасность;
- замкнутая рабочая среда — при срабатывании не происходит выхлопа вовне.
Но есть и обусловленные конструкцией недостатки:
- высокая стоимость. Элегазовый выключатель просто устроен, но сложен в производстве, синтез газовой смеси также довольно трудоемок и затратен;
- нельзя поставить в произвольном месте. Выключатели монтируются только на особый электрический щит или специально подготовленных фундамент;
- требовательность к температурным условиям — при низких температурах ЭВ неэффективны (но элегаз можно подогревать);
- для обслуживания требуются специфические навыки и оборудование;
- система с электромагнитным приводом нуждается в емком аккумуляторе.
Основной недостаток смеси — наблюдающийся при определенных условиях ее переход в жидкую фазу. Это происходит при некоторых соотношениях температуры и давления. Например, в холодных условиях (минус 40 градусов Цельсия) требуется давление не выше 0.4 МПа с плотностью газа ниже 0.03 килограмма на кубический сантиметр — что не обеспечивает должных характеристик. Поэтому на практике во избежание перехода в состояние жидкости элегаз подогревают.
Преимущества безэлегазового оборудования
Применение безэлегазовых распределительных устройств обусловлено не только заботой об окружающей среде: такое оборудование приносит и экономические выгоды (рис. 3). Сегодня в ряде стран мира уже применяются экономические механизмы в области климата
Кроме того, расширяется и спектр контролируемых газов: если раньше под контролем были только выбросы CO2, то сейчас особое внимание уделяется и другим парниковым газам, в т. ч
и элегазу (SF6). По данным Минприроды, экологические сборы существуют уже в 40% государств. Финляндия была первой страной, где налог на выбросы СО2 был введен еще в 1990 г., позже подобные налоги появились в Швеции, Ирландии, Чили, Великобритании, Канаде и т. д. Кроме того, в некоторых странах обязательной является и торговля квотами. В Швейцарии и Японии эта система существует уже несколько лет. В России экологические сборы за сверхнормативные выбросы парниковых газов собираются внедрить после 2018 г. Главной целью введения таких сборов станет стимулирование использования зеленых технологий в промышленности. Определенные шаги в этом направлении уже сделаны: до конца 2016 г. компании с объемом прямых выбросов парниковых газов более 150 тыс. тонн CO2-эквивалента в год должны обеспечить представление ежегодных сведений о выбросах.
Рис. 3. Современная энергетика
Элегазовые выключатели 110 кв, 220 кв
Для гашения электрической дуги часто используются различные газовые смеси. Элегазовые выключатели 110 кВ и 220 кВ работают именно по такому принципу и могут использоваться для работы в аварийных ситуациях.
Конструкция и виды
Элегазовые высоковольтные выключатели – это устройства оперативного управления для контроля высоковольтной линии энергоснабжения. Данные устройства имеют очень похожую конструкцию с масляными, но при этом, используют для гашения дуги не масляную смесь, а соединение газов. Зачастую это сера. Масляные выключатели требуют за собой особого ухода: по нормам необходимы периодическая замену масла и очистка рабочих контактов. Элегазовые в этом не нуждаются. Главное достоинство элегаза в его долговечности: он не стареет и минимально загрязняет механические части устройства.
Фото – высоковольтное оборудование
- Колонковые (HPL 245B1, MF 24 Schneider Electric);
- Баковые (ABB 242PMR, DT2-550 F3 – производитель Areva).
Колонковый элегазовый выключатель представляет стандартное отключающее устройство, работающее только на одну фазу (например, LF 10 от Шнайдер Электрик). Он используется для сети 220 кВ. Конструктивно состоят из двух систем: контактной и дугогасительной. Обе они располагаются в емкости, наполненной элегазом. Могут быть как ручными (контроль производится исключительно механически) или дистанционными. Из-за такого разделения они имеют довольно большие габаритные размеры.
Баковые имеют меньшие габариты, их дополняет привод ППРМ 2 для элегазового выключателя. Привод распределяется на несколько фаз, что позволяет обеспечить мягкое регулирование напряжения (включение и выключение). Также их достоинство в том, что они могут переносить большие нагрузки благодаря встроенному в систему трансформатору тока.
Помимо конструктивных особенностей, выключатели элегазового типа классифицируются по принципу гашения дуги:
- Автокомпрессионные или воздушные;
- Вращающие;
- Продольного дутья;
- Продольного дутья с дополнительным разогревом элегаза.
Принцип работы и назначение
Элегазовые выключатели высокого напряжения работают за счет изоляции фаз друг от друга посредством элегаза. Когда срабатывает сигнал о том, что нужно отключить электрооборудование, контакты отдельных камер (если устройство колонковое) размыкаются. Таким образом, встроенные контакты образуют дугу, которая помещена в газовую среду. Она разлагает газ на отдельные компоненты, но при этом и сама снижается из-за высокого давления в емкости. Если система установлена на низком давлении, то используются дополнительные компрессоры для нагнетания давления и создания газового дутья. Для выравнивания тока дополнительно используется шунтирование.
Отдельно нужно сказать про модели бакового типа. Их контроль выполняется приводами и трансформаторами. Приводной механизм для этой установки является регулятором: он необходим для включения, выключения электрической энергии и удержания дуги (при надобности) на определенном уровне. Приводы бывают:
Пружинный имеет очень простой принцип действия и высокий уровень надежности. В нем вся работа выполняется только за счет механических деталей. Пружина зажимается и фиксируется на определенном уровне, а при изменении положения контрольного рычага она разжимается. На основании его принципа работы часто готовится научная презентация действия шестифтористой серы в электрической среде.
Современные пружинно-гидравлические приводы помимо пружины дополнительно оснащены гидравлической системой управления. Они считаются более эффективными, т. к. пружинные механизмы могут сами поменять положение фиксатора.
Достоинства элегазовых выключателей:
- Универсальность. Данные выключатели используются для контроля сетей с любым напряжением;
- Быстрота действия. Реакции элегаза на наличие электрической дуги происходят за доли секунды, это позволяет обеспечить быстрое аварийное отключение подконтрольной системы;
- Подходят для эксплуатации в условиях пожароопасности и вибрации;
- Долговечность. Контакты, соприкасающиеся с элегазом, практически не изнашивают, газовые смеси не нуждаются в замене, а у наружной оболочки высокие показатели защиты;
- Подходят для отключения переменного и постоянного тока высокого напряжения, в то время, как их аналоги – вакуумные модели не могут использоваться на высоковольтных сетях.
Определение и применение элегаза
Элегаз – это шестифтористая сера, которую относят к электротехническим газам. Благодаря изоляционным свойствам ее активно применяют при производстве электротехнических устройств.
В нейтральном состоянии элегаз представляет собой негорючий газ без цвета и запаха. Если его сравнивать с воздухом, то можно отметить высокую плотность (6,7) и молекулярную массу, превышающую воздушную в 5 раз.
Одно из преимуществ элегаза – устойчивость к внешним проявлениям. Он не меняет характеристик при любых условиях. Если происходит распад во время электроразряда, то вскоре наступает полноценное, необходимое для работы восстановление.
Секрет в том, что молекулы элегаза связывают электроны и образуют отрицательные ионы. Качество «электроотрицания» наделило 6-фтористую серу такой характеристикой, как электрическая прочность.
На практике электропрочность воздуха в 2-3 раза слабее, чем то же свойство элегаза. Кроме прочего, он пожаробезопасен, так как относится к негорючим веществам, и обладает охлаждающей способностью.
Когда возникла необходимость отыскать газ для гашения электродуги, стали изучать свойства SF6 (шестифтористой серы), 4-хлористого углерода и фреона. В испытаниях победила SF6
Перечисленные характеристики сделали элегаз максимально подходящим для применения в электротехнической сфере, в частности, в следующих устройствах:
- силовые трансформаторы, работающие по принципу магнитной индукции;
- распределительные устройства комплектного типа;
- линии высокого напряжения, связывающие удаленные установки;
- высоковольтные выключатели.
Но некоторые свойства элегаза привели к тому, что пришлось усовершенствовать конструкцию выключателя. Основной недостаток касается перехода газообразной фазы в жидкую, а это возможно при определенных соотношениях параметров давления и температуры.
Чтобы оборудование работало без перебоев, необходимо обеспечить комфортные условия. Предположим, для функционирования элегазовых устройств при -40º необходимо давление не более 0,4 МПа и плотность менее 0,03 г/см³. На практике при необходимости газ подогревают, что препятствует переходу в жидкую фазу.
Физико-химические свойства
Практически бесцветный газ, без запаха и вкуса. Обладает высоким пробивным напряжением (89 кВ/см — примерно в 3 раза выше, чем у воздуха при нормальном давлении).
Плохо растворим в воде (1 объём SF6 в 200 объёмах воды), этаноле и диэтиловом эфире, хорошо растворим в нитрометане.
Кабель крпт
Плотность элегаза при температуре 273 K и давлении 0,1 МПа составляет 6,56 кг/м³. Относительная диэлектрическая проницаемость — 1,0021. Полное число степеней свободы молекулы элегаза равно 21, из них три степени свободы — в поступательном движении, три — во вращательном, а остальные — в колебательном. Диаметр молекулы равен 5,33 Å.
Термодинамические величины
Свойство | Значение при н. у. (газ) |
Энтальпия образования | −1219 кДж/моль |
Энтропия образования | 291,6 Дж/(моль·К) |
Теплоёмкость | 97,15 Дж/(моль·К) |
Теплопроводность | 12,058 мВт/(м·К) |
Критическая температура | 318,7 К |
Критическое давление | 3,71 МПа |
Определение и применение элегаза
Элегаз – это шестифтористая сера, которую относят к электротехническим газам. Благодаря изоляционным свойствам ее активно применяют при производстве электротехнических устройств.
В нейтральном состоянии элегаз представляет собой негорючий газ без цвета и запаха. Если его сравнивать с воздухом, то можно отметить высокую плотность (6,7) и молекулярную массу, превышающую воздушную в 5 раз.
Одно из преимуществ элегаза – устойчивость к внешним проявлениям. Он не меняет характеристик при любых условиях. Если происходит распад во время электроразряда, то вскоре наступает полноценное, необходимое для работы восстановление.
Секрет в том, что молекулы элегаза связывают электроны и образуют отрицательные ионы. Качество «электроотрицания» наделило 6-фтористую серу такой характеристикой, как электрическая прочность.
На практике электропрочность воздуха в 2-3 раза слабее, чем то же свойство элегаза. Кроме прочего, он пожаробезопасен, так как относится к негорючим веществам, и обладает охлаждающей способностью.
Когда возникла необходимость отыскать газ для гашения электродуги, стали изучать свойства SF6 (шестифтористой серы), 4-хлористого углерода и фреона. В испытаниях победила SF6
Перечисленные характеристики сделали элегаз максимально подходящим для применения в электротехнической сфере, в частности, в следующих устройствах:
- силовые трансформаторы, работающие по принципу магнитной индукции;
- распределительные устройства комплектного типа;
- линии высокого напряжения, связывающие удаленные установки;
- высоковольтные выключатели.
Но некоторые свойства элегаза привели к тому, что пришлось усовершенствовать конструкцию выключателя. Основной недостаток касается перехода газообразной фазы в жидкую, а это возможно при определенных соотношениях параметров давления и температуры.
Чтобы оборудование работало без перебоев, необходимо обеспечить комфортные условия. Предположим, для функционирования элегазовых устройств при -40º необходимо давление не более 0,4 МПа и плотность менее 0,03 г/см³. На практике при необходимости газ подогревают, что препятствует переходу в жидкую фазу.
Что же такое на самом деле «горячая петля»?
Экологически безопасные технологии — тренд будущего
Использование экологически безопасного оборудования помогает оптимизировать производственные процессы и значительно повышает уровень безопасности производств. Именно это сейчас является приоритетной задачей как для государства, так и для предприятий в самых разных отраслях промышленности. Сегодня уже существуют технологии, которые не только не уступают, но и по некоторым параметрам превосходят элегазовые аналоги. Они применяются в производственных, коммунальных и коммерческих предприятиях, а также шахтных, морских и береговых электроустановках. Темпы перехода на экологически безопасное оборудование постепенно увеличиваются, этот процесс охватывает все больше предприятий. Несмотря на то, что говорить о полном отказе от применения элегаза пока еще преждевременно, экологически безопасные решения открывают большие возможности для новых технологических разработок.
Правила обслуживания элегазового выключателя
Обслуживание элегазовых выключателей регламентируется Правилами устройства электроустановок (ПУЭ) 1.8.21.
При подключении системы следует проверить присутствие в баке минимального давления — без этого прибор сломается. Во избежание предупреждений конструкцией предусмотрена сигнализация, предупреждающая о критическом значении давления. Имеется также манометр для визуального контроля.
Шкаф привода содержит не позволяющие возникнуть конденсату на ответственных механизмах нагревательные элементы. Оператор ЭВ обязан следить за постоянной работой нагревателей и не допускать их выключения.
При осмотре ЭВ следует:
- проконтролировать состояние внешней защиты;
- убрать загрязнения при их наличии;
- устранить повреждения;
- выяснить и устранить причину нагрева контактов при наличии такового;
- если обнаружены посторонние шумы и треск — выявить их источник;
- проверить целостность металлической опорной рамы, поскольку она одновременно и часть контура заземления;
- снять показания манометра и сверить их с указанными производителем паспортными данными;
- проверить, исправны ли приборы управления и контроля, отремонтировать или заменить вышедшее из строя
При падении давления газа его запасы в камере пополняется.
Газовый разряд и его типы
Итак, электрический ток в газах обусловлен упорядоченным движением заряженных частиц под действием приложенного к ним электрического поля. Наличие таких зарядов, в свою очередь, возможно благодаря различным факторам ионизации.
Так, термоионизация требует значительных температур, но открытое пламя в связи с некоторыми химическими процессами способствует ионизации. Даже при сравнительно невысокой температуре в присутствии пламени фиксируется появление в газах электрического тока, и опыт с проводимостью газа позволяет легко в этом убедиться. Надо поместить пламя горелки или свечи между обкладками заряженного конденсатора. Цепь, разомкнутая прежде из-за воздушного зазора в конденсаторе, замкнется. Включенный в цепь гальванометр покажет наличие тока.
Электрический ток в газах называется газовым разрядом. Нужно иметь в виду, что для поддержания стабильности разряда действие ионизатора должно быть постоянным, так как из-за постоянной рекомбинации газ теряет электропроводящие свойства. Одни носители электрического тока в газах – ионы – нейтрализуются на электродах, другие – электроны, — попадая на анод, направляются к «плюсу» источника поля. Если ионизирующий фактор перестанет действовать, газ немедленно снова станет диэлектриком, и ток прекратится. Такой ток, зависимый от действия внешнего ионизатора, называется несамостоятельным разрядом.
Особенности прохождения электрического тока через газы описываются особой зависимостью силы тока от напряжения – вольт-амперной характеристикой.
Рассмотрим развитие газового разряда на графике вольт-амперной зависимости. При повышении напряжения до некоторого значения U1 ток нарастает пропорционально ему, то есть выполняется закон Ома. Возрастает кинетическая энергия, а следовательно, и скорость зарядов в газе, и этот процесс опережает рекомбинацию. При значениях напряжения от U1 до U2 такое соотношение нарушается; при достижении U2 все носители зарядов достигают электродов, не успевая рекомбинировать. Все свободные заряды задействованы, и дальнейшее повышение напряжения не приводит к увеличению силы тока. Такой характер движения зарядов называется током насыщения. Таким образом, можно сказать, что электрический ток в газах обусловлен также особенностями поведения ионизированного газа в электрических полях различной напряженности.
Когда разность потенциалов на электродах достигает определенного значения U3, напряжение становится достаточным, чтобы электрическое поле вызвало лавинообразную ионизацию газа. Кинетической энергии свободных электронов уже хватает для ударной ионизации молекул. Скорость их при этом в большинстве газов составляет около 2000 км/с и выше (она рассчитывается по приближенной формуле v=600 Ui, где Ui – ионизационный потенциал). В этот момент происходит пробой газа и существенное возрастание тока за счет внутреннего источника ионизации. Поэтому такой разряд называется самостоятельным.
Наличие внешнего ионизатора в данном случае уже не играет роли для поддержания в газах электрического тока. Самостоятельный разряд в разных условиях и при различных характеристиках источника электрического поля может иметь те или иные особенности. Выделяют такие типы самостоятельного разряда, как тлеющий, искровой, дуговой и коронный. Мы рассмотрим, как ведет себя электрический ток в газах, кратко для каждого из этих типов.