Электромагниты в повседневной жизни
Электромагниты часто используются для хранения информации, так как многие материалы способны поглощать магнитное поле, которое может быть впоследствии считано для извлечения информации. Они находят применение практически в любом современном приборе.
Где применяют электромагниты? В быту они используются в ряде бытовых приборов. Одной из полезных характеристик электромагнита является возможность изменения магнитной силы, при изменении силы и направление тока, текущего через катушки или обмотки вокруг него. Колонки, громкоговорители и магнитофоны — это устройства, в которых реализуется этот эффект. Некоторые электромагниты могут быть очень сильными, причем их сила может регулироваться.
Где применяют электромагниты в жизни? Простейшими примерами служат дверные звонки и электромагнитные замки. Используется электромагнитная блокировка для двери, создавая сильное поле. Пока ток проходит через электромагнит, дверь остается закрытой. Телевизоры, компьютеры, автомобили, лифты и копировальные аппараты — вот где применяют электромагниты, и это далеко не полный список.
Промышленность
Наверное, все хоть раз, но видели разновидности такого устройства, как электромагнит подъемный. Это толстый «блин» различного диаметра, который обладает огромной силой притяжения и используется для переноски груза, металлолома и вообще любого иного металла. Удобство его заключается в том, что достаточно отключить питание — и весь груз сразу же отцепляется, и наоборот. Это значительно упрощает процесс погрузки и разгрузки.
Сила электромагнита, кстати, рассчитывается по следующей формуле: F=40550∙B^2∙S. Рассмотрим ее более подробно. В данном случае F – это сила в килограммах (также может измеряться в ньютонах), B – значение индукции, а S – площадь рабочей поверхности устройства.
Отличие электромагнита постоянного тока от электромагнита переменного тока, назначение и принцип работы короткозамкнутого витка
Магнитная система электромагнитов постоянного и переменного тока различная. У электромагнита постоянного тока относительно небольшой зазор d, а сам магнитопровод может быть выполнен из сплошного цельного куска электротехнической стали.
У магнитов переменного тока система шихтованная, набранная из тонких листов электротехнической стали.
Так как через катушку протекает переменный ток, то и магнитный поток Ф изменяет свое направление и в какие то моменты времени становится равным нулю. В этом случае противодействующая пружина будет отрывать якорь от полюсного наконечника и возникнет дребезг якоря. Для устранения этого явления используются либо многофазовые электромагниты, либо короткозамкнутое кольцо, которое устанавливается на расщепленной части полюсного наконечника. Так как у катушек переменного тока определяющим является индуктивное сопротивление, а оно зависит от индуктивности, то в первоначальный момент , когда рабочий зазор d максимален и индуктивность минимальна, ток якоря максимален, то есть имеется бросок тока через катушку. При минимальном зазоре, когда якорь соприкоснется с полюсным наконечником, индуктивность возрастет и ток возрастет.
В электромагнитах переменного тока магнитное сопротивление зависит не только от , l, S сердечника, но и от потерь в стали и наличия короткозамкнутых обмоток, расположенных на сердечнике.
Катушка электромагнита постоянного тока выполняется достаточно высокой и тонкой, для улучшения условий охлаждения (потери мощности на постоянном токе только на чисто активном сопротивлении проводника).
Катушка электромагнита переменного тока выполняется более низкой, т.к. кроме потерь мощности в активном и индуктивном сопротивлении катушки имеются потери мощности на перемагничивание сердечника.
Как известно в электромагнитах переменного тока ток в обмотке сильно зависит от положения якоря. В клапанных электромагнитах ток в притянутом состоянии в десятки раз меньше, чем при отпущенном якоре. Это затрудняет создание максимальных реле напряжения на базе клапанной системы, так как при напряжениях, близких к напряжению срабатывания, через обмотку протекает большой ток, выделяется мощность, в сотни раз превышающая мощность в обмотке при притянутом якоре. Приходится сильно увеличивать габариты катушки, чтобы рассеивать большую мощность, выделяемую при отпущенном якоре. Большим преимуществом реле серии ЭН является относительно небольшое изменение магнитной проводимости, в результате чего ток в обмотках мало меняется при повороте якоря. Это дает возможность иметь малые габариты обмоток.
Если отрывное усилие электромагнита будет РОТР, то дважды за период в точке А (рис. 6, в) якорь электромагнита будет отпадать, а в точке В — снова притягиваться, т. е. будет вибрировать с двойной частотой. Вибрация приводит к износу магнитной системы и сопровождается гудением.
Рис.6. Кривая изменения силы притяжения электромагнита
переменного тока без короткозамкнутого витка.
Для устранения вибрации электромагниты переменного тока снабжаются короткозамкнутыми витками (рис.7, а) из проводниковых материалов (медь, латунь), охватывающими часть полюса электромагнита (70 — 80%).
Принцип работы витка заключается в следующем. Общий поток электромагнита Ф разветвляется на поток Ф1, который проходит по не охваченной витком части полюса, и на поток Ф2, который проходит через часть, охватываемую короткозамкнутым витком. При этом в витке индуцируется ЭДС еК.З, и возникает ток iК.З., сдвинутый по отношению к еК.З. на угол
Рис.7. Принцип работы короткозамкнутого витка
в электромагнитных системах переменного тока.
и определяемый весьма незначительной индуктивностью витка. Для упрощения принимаем = 0. Ток iК.З , возбуждает магнитный поток ФК.З., который охватывает короткозамкнутый виток и вместе с частью основного потока образует поток Ф2,проходящий через часть полюса, охваченную витком, и сдвинутый во времени по отношению к потоку Ф1 на угол (рис.7, б и в).
Сила притяжения электромагнита Р складывается из двух пульсирующих, но сдвинутых во времени сил Р± и Р2(рис.7, г). Благодаря сдвигу их во времени общая сила Р пульсирует много меньше и минимальное значение ее остается выше РОТР, чем и исключается вибрация якоря.
Ограничение тока электромагнита
Данное устройство предназначено для ограничения тока, протекающего через электромагнит постоянного тока. Это связано с тем, что, в отличие от электромагнитов переменного тока, через электромагнит постоянного тока протекает ток, величина которого определяется только активным сопротивлением провода, из которого намотана катушка электромагнита. Как правило вследствие этого мощные электромагниты постоянного тока, без применения специальных мер, рассчитываются на работу в кратковременном режиме и даже при непродолжительной работе в режиме удержания очень сильно греются.
Такая история и приключилась. На одном из швейных предприятий используются прямострочные машинки фирмы JACK. Эта китайская фирма не вызывающая сомнений в своей репутации. Тем не менее используемые в машинках этой фирмы электромагниты очень сильно греются. Дошло до того, что электромагниты просто отключили, а возложенную на них функцию выполняют вручную.Понятно, что при этом падает производительность, да и работу это усложняет. Поэтому решили электромагниты вернут, снабдив их небольшой схемой. Ну это, конечно, не ограничивает применение данной схемы только в швейных машинках. Она может пригодится везде, где используются электромагниты постоянного тока (кто как, а я иногда использую автомобильные электромагниты).
Пару слов про физику работы электромагнита. При подаче напряжения на катушку электромагнита возникает магнитное поле, которое с определенным усилием притягивает магнитный сердечник. Зазор между катушкой и сердечником уменьшается, соответственно для создания заданного усилия уже требуется меньший магнитный поток. Величина создаваемого магнитного потока определяется током, протекающим через катушку. Как правило ток, необходимый для создания усилия при начале срабатывания, и ток, необходимый для удержания сердечника, различаются в несколько раз. Но поскольку у нас электромагнит постоянного тока, то протекающий ток не изменяется и электромагнит развивает излишнее усилие и при этом усиленно греет окружающий воздух.
Разработанная схема включается в разрыв плюсового провода электромагнита (минусовой бывает соединен с корпусом оборудования) и обеспечивает: — кратковременную подачу на электромагнит полного напряжения, для создания полного усилия для совершения электромагнитом возложенной работы; — подачу на электромагнит напряжения, достаточного, чтобы создать ток для режима удержания.
Схема реализована на микросхеме NE556, содержащей в себе два таймера NE555.
Первый таймер U1:A формирует задержку при подаче питания, в течение которой запрещена работа второго таймера U1:B и на электромагнит (по схеме заменен лампой L1) подается полное напряжение. По окончании задержки разрешается работа таймера U1:B включенного в режиме генератора и на электромагнит начинает поступать импульсное напряжение
Скважность импульсов определяется потенциометром RV1 и выбирается такой, чтобы обеспечить магнитный поток электромагнита достаточным для удержания сердечника. Работа таймера NE555 многократно описана в интернете, поэтому я не описываю досконально как и на что влияет каждый радиоэлемент
Просто продемонстрирую работу на видео.
Все элементы расположены на печатной плате размером 38*25 мм. Схема не критична к номиналам деталей. Транзисторы можно применять практически любые соответствующей структуры. Естественно полевой транзистор должен быть рассчитан на протекающий ток.
Вместо корпуса вся плата помещена в термоусадочный кембрик.
В кембрике проделано отверстие для регулировки потенциометра.
В архиве к статье приложены файл печатной платы и схема в Proteus.
Список радиоэлементов
Обозначение | Тип | Номинал | Количество | Примечание | Магазин | Мой блокнот |
U1 | Программируемый таймер и осциллятор | NE556 | 1 | Поиск в магазине Отрон | В блокнот | |
Q1 | Биполярный транзистор | 2N2222 | 1 | Поиск в магазине Отрон | В блокнот | |
Q2 | MOSFET-транзистор | AUIRF4905 | 1 | Поиск в магазине Отрон | В блокнот | |
D1 | Светодиод | АЛ307А | 1 | Поиск в магазине Отрон | В блокнот | |
D2 | Выпрямительный диод | FR106 | 1 | Поиск в магазине Отрон | В блокнот | |
R1 | Резистор | 100 кОм | 1 | Поиск в магазине Отрон | В блокнот | |
R2 | Резистор | 2 кОм | 1 | Поиск в магазине Отрон | В блокнот | |
R3, R6, R7 | Резистор | 10 кОм | 3 | Поиск в магазине Отрон | В блокнот | |
R4, R5 | Резистор | 1 кОм | 2 | Поиск в магазине Отрон | В блокнот | |
R8 | Резистор | 100 Ом | 1 | Поиск в магазине Отрон | В блокнот | |
RV1 | Переменный резистор | 10 кОм | 1 | Поиск в магазине Отрон | В блокнот | |
C1, C2 | Конденсатор | 100 нФ | 2 | Поиск в магазине Отрон | В блокнот | |
С3 | Конденсатор | 100 нФ | 1 | Подбирается по требуемому времени задержки | Поиск в магазине Отрон | В блокнот |
C4 | Электролитический конденсатор | 100 мкФ | 1 | Поиск в магазине Отрон | В блокнот | |
C5 | Конденсатор | 1 нФ | 1 | Поиск в магазине Отрон | В блокнот | |
Добавить все |
Способы эксплуатации
Наиболее широкой и важной областью применения электромагнитов является сфера конструирования и эксплуатации электрических машин и аппаратов, входящих в систему автоматики в промышленности. Другой важной областью является аппаратура регулировки и защиты электротехнических объектов/установок
Также электромагниты применяются при изготовлении разнообразных механизмов, в роли привода по которому осуществляется необходимое поступательное перемещение (поворот) рабочего органа определенной машины или для создания удерживающих сил. Примером последних функций может служить электромагнит в составе грузоподъемного механизма/машины.
Существуют электромагниты муфт, необходимых для начала действия торможения или установления сцепления (в машинах), электромагниты, применяемых в пускателях, устройствах контактора и выключателя, а также их используют при создании электроизмерительных приборов и т. д.
Электромагниты – это устройства, которые являются перспективными при конструировании тяговых приводов в скоростных транспортных средствах, где с их помощью создают магнитную подушку. В настоящее время и медицина не обходится без использования электромагнитов. При проведении химических, биологических и физических экспериментов их нередко применяют.
Благодаря широте эксплуатации и конструктивном исполнении, а также масштабе и затратам энергии, электромагниты являются доступными как в быту, так и в любых других сферах деятельности человека. Вес электромагнитов может варьироваться от нескольких грамм до сотни тон, а потребляемое электричество расходуется – от доли Вт до многих десятков МВт.
Процесс изготовления мощного 12-вольтового магнита
Конечно, в роли сердечника можно использовать и любой другой массивный стальной штырь. Но подкова от старого замка подойдет как нельзя лучше. Ее изгиб будет служить в качестве своеобразной ручки, если мы начнем поднимать грузы, обладающие внушительным весом. Итак, в данном случае процесс изготовления электромагнита своими руками следующий:
- Наматываем проволоку из трансформатора вокруг одной из подков. Витки кладем как можно плотнее. Изгиб подковы будет немного мешать, но ничего страшного. Когда заканчивается длина стороны подковы, укладываем витки в противоположную сторону, поверх первого ряда витков. Делаем, в общей сложности, 500 витков.
- Когда обмотка одной половины подковы готова, обматываем ее одним слоем изоленты. Изначальный конец провода, предназначенного для подпитки от источника тока, выводим в верхнюю часть будущей ручки. Обматываем нашу катушку на подкове еще одним слоем изоленты. Другой конец проводника приматываем к изгибающейся сердцевине ручки и на другой стороне делаем еще одну катушку.
- Наматываем проволоку на противоположную сторону подковы. Делаем все так же, как и в случае с первой стороной. Когда 500 витков уложено, так же выводим конец провода для запитки от энергоисточника. Кому непонятно, порядок действий хорошо показан в этом видео.
Заключительная стадия изготовления электромагнита своими руками — подпитка к энергоисточнику. Если это аккумулятор, наращиваем концы зачищенных проводников нашего электромагнита при помощи дополнительных проводов, которые подсоединяем к клеммам аккумулятора. Если это блок питания, отрезаем штекер, идущий на потребитель, зачищаем провода и к каждому прикручиваем по проводу от электромагнита. Изолируем изолентой. Включаем блок питания в розетку. Поздравляем. Вы сделали своими руками мощный электромагнит на 12 вольт, который в состоянии поднимать грузы свыше 5 кг.
Электромагнит — устройство и принцип работы
Всем привет! Сегодня я собираюсь рассказать вам о очень лёгком, но зрелищном эксперименте, и имя его: «Электромагнит»! Я больше чем уверен что каждый начинающий радиолюбитель знает его, но для начала он как раз подойдёт. Я сделал этот обзор самоделки для тех кому интересно как устроен магнит. Перед инструкцией давайте посмотрим принцип работы электромагнита. Что говорит нам Википедия:
Электромагнит — устройство, создающее магнитное поле при прохождении электрического тока через него. Обычно электромагнит состоит из обмотки и ферромагнитного сердечника, который приобретает свойства магнита при прохождении по обмотке электрического тока.Вики
Не понятно? Объясню просто:
Когда электричество проходит по проводам и крутится вокруг гвоздя (сердечника), и гвоздь приобретает свойства природного магнита (как на холодильнике (сделанного из магнитной руды)). И без гвоздя магнит может работать только значительно слабее.
Где используются электромагниты:
Сильные электромагниты используются в разных механизмах для разных целей. К примеру, электромагнитный подъемный кран используется на металлургических и металлообрабатывающих заводах для перемещения металлического лома и готовых деталей. На заводах часто работают со станками которые ещё называют «магнитные столы», на которых можно работать с железным или стальным изделиями которые закрепляются магнитами с помощью мощных электромагнитов. Нужно только включить ток, чтобы крепко закрепить деталь в любом нужном положении на столе, выключите ток, чтобы освободить изделие. При расфасовке магнитных руд от немагнитных, к примеру при очистке кусков железной руды от пустой породы , используют магнитные сепараторы, при которых очищаемая руда проезжает через мощное магнитное поле электромагнитов, собирающее из него все магнитные элементы.
Нам потребуется:
- Железный гвоздь
- Тонкая изолированная проволка (чем больше тем лучше)
- Батарейка (любой мощности, не меньше 1.5V)
- Обьекты для проверки магнита (скрепки, кнопки, булавки)
- Устройство зачистки проводов (Необязательно)
- Клейкая лента
Правила безопасности:
- Не пытайтесь подключать провода к розетке 220V. Наш электромагнит использует электричество, и когда вы подсоедините его к стандартному высокому напряжению, то тогда вас будет короткое замыкание во всём доме.
- У вас должно быть много свободной проволоки до батарейки. Если так будет, у вас не будет сильного электрического сопротивления, и батарейка самоуничтожится!
- Нашему электромагниту нужно только низкое напряжение. Если вы будете использовать высокое напряжение вас ожидает удар током.
А сейчас к инструкции: 1.Обмотайте медную проволоку вокруг гвоздя, но так чтобы с каждого конца осталось где-то 30 см, следите за тем, чтобы проволока была закручена только в одну сторону или у вас будет два маленьких поля которые будут мешать друг-другу
ВАЖНО: Проволока должна быть накручена так, чтобы она лежала не далеко от предыдущего мотка, но и не была на нём. Подсказка: Чем больше слоев тем сильнее магнит, можно сделать даже многослойную
2.Сейчас давайте очистим концы медной проволоки (где-то 3 см), желательно делать с устройством очистки проводов. Их надо очистить для лучшего прохождения тока. После очистки, концы будут выглядеть светлее чем неочищенная.
3.Возьмите один конец проволоки и подключите его к плюсу батарейки, а затем склейте их с помощью клейкой ленты, так чтобы они касались друг-друга
И если прижать пальцем то мы запустим магнит.ВАЖНО : Проволока и плюс батарейки должны соединяться постоянно
Что мы сделали: Мы соединили контакты в одну цепь (по сути это короткое замыкание) и образуют магнитное поле (об этом я уже написал выше). Чтобы ее выключить надо отпустить проволоку.
ГОТОВО!
Чему мы научились: Мы узнали как устроен простой электромагнит и как его сделать и где он применяется. Всем спасибо за то что вы прочитали это до конца! С вами был kompik92. Источник (Source)
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.
Ограничение тока электромагнита
Данное устройство предназначено для ограничения тока, протекающего через электромагнит постоянного тока. Это связано с тем, что, в отличие от электромагнитов переменного тока, через электромагнит постоянного тока протекает ток, величина которого определяется только активным сопротивлением провода, из которого намотана катушка электромагнита. Как правило вследствие этого мощные электромагниты постоянного тока, без применения специальных мер, рассчитываются на работу в кратковременном режиме и даже при непродолжительной работе в режиме удержания очень сильно греются.
Такая история и приключилась. На одном из швейных предприятий используются прямострочные машинки фирмы JACK. Эта китайская фирма не вызывающая сомнений в своей репутации. Тем не менее используемые в машинках этой фирмы электромагниты очень сильно греются. Дошло до того, что электромагниты просто отключили, а возложенную на них функцию выполняют вручную.Понятно, что при этом падает производительность, да и работу это усложняет. Поэтому решили электромагниты вернут, снабдив их небольшой схемой. Ну это, конечно, не ограничивает применение данной схемы только в швейных машинках. Она может пригодится везде, где используются электромагниты постоянного тока (кто как, а я иногда использую автомобильные электромагниты).
Пару слов про физику работы электромагнита. При подаче напряжения на катушку электромагнита возникает магнитное поле, которое с определенным усилием притягивает магнитный сердечник. Зазор между катушкой и сердечником уменьшается, соответственно для создания заданного усилия уже требуется меньший магнитный поток. Величина создаваемого магнитного потока определяется током, протекающим через катушку. Как правило ток, необходимый для создания усилия при начале срабатывания, и ток, необходимый для удержания сердечника, различаются в несколько раз. Но поскольку у нас электромагнит постоянного тока, то протекающий ток не изменяется и электромагнит развивает излишнее усилие и при этом усиленно греет окружающий воздух.
Разработанная схема включается в разрыв плюсового провода электромагнита (минусовой бывает соединен с корпусом оборудования) и обеспечивает: — кратковременную подачу на электромагнит полного напряжения, для создания полного усилия для совершения электромагнитом возложенной работы; — подачу на электромагнит напряжения, достаточного, чтобы создать ток для режима удержания.
Схема реализована на микросхеме NE556, содержащей в себе два таймера NE555.
Первый таймер U1:A формирует задержку при подаче питания, в течение которой запрещена работа второго таймера U1:B и на электромагнит (по схеме заменен лампой L1) подается полное напряжение. По окончании задержки разрешается работа таймера U1:B включенного в режиме генератора и на электромагнит начинает поступать импульсное напряжение
Скважность импульсов определяется потенциометром RV1 и выбирается такой, чтобы обеспечить магнитный поток электромагнита достаточным для удержания сердечника. Работа таймера NE555 многократно описана в интернете, поэтому я не описываю досконально как и на что влияет каждый радиоэлемент
Просто продемонстрирую работу на видео.
Все элементы расположены на печатной плате размером 38*25 мм. Схема не критична к номиналам деталей. Транзисторы можно применять практически любые соответствующей структуры. Естественно полевой транзистор должен быть рассчитан на протекающий ток.
Вместо корпуса вся плата помещена в термоусадочный кембрик.
В кембрике проделано отверстие для регулировки потенциометра.
В архиве к статье приложены файл печатной платы и схема в Proteus.
Список радиоэлементов
Обозначение | Тип | Номинал | Количество | Примечание | Магазин | Мой блокнот |
U1 | Программируемый таймер и осциллятор | NE556 | 1 | Поиск в Aliexpress | В блокнот | |
Q1 | Биполярный транзистор | 2N2222 | 1 | Поиск в Aliexpress | В блокнот | |
Q2 | MOSFET-транзистор | AUIRF4905 | 1 | Поиск в Aliexpress | В блокнот | |
D1 | Светодиод | АЛ307А | 1 | Поиск в Aliexpress | В блокнот | |
D2 | Выпрямительный диод | FR106 | 1 | Поиск в Aliexpress | В блокнот | |
R1 | Резистор | 100 кОм | 1 | Поиск в Aliexpress | В блокнот | |
R2 | Резистор | 2 кОм | 1 | Поиск в Aliexpress | В блокнот | |
R3, R6, R7 | Резистор | 10 кОм | 3 | Поиск в Aliexpress | В блокнот | |
R4, R5 | Резистор | 1 кОм | 2 | Поиск в Aliexpress | В блокнот | |
R8 | Резистор | 100 Ом | 1 | Поиск в Aliexpress | В блокнот | |
RV1 | Переменный резистор | 10 кОм | 1 | Поиск в Aliexpress | В блокнот | |
C1, C2 | Конденсатор | 100 нФ | 2 | Поиск в Aliexpress | В блокнот | |
С3 | Конденсатор | 100 нФ | 1 | Подбирается по требуемому времени задержки | Поиск в Aliexpress | В блокнот |
C4 | Электролитический конденсатор | 100 мкФ | 1 | Поиск в Aliexpress | В блокнот | |
C5 | Конденсатор | 1 нФ | 1 | Поиск в Aliexpress | В блокнот | |
Добавить все |
Состав и детали электромагнита
Электромагнит состоит из:
— Катушка кабеля, покрытая лаком.
— Железный сердечник (по желанию).
— Источник тока, который может быть постоянным или переменным.
Обмотка — это проводник, по которому проходит ток, создающий магнитное поле, и намотанный в виде пружины.
При намотке витки обычно очень близко друг к другу
Вот почему крайне важно, чтобы провод, которым сделана обмотка, имел электроизоляцию, которая достигается специальным лаком. Целью лакировки является то, что даже когда витки сгруппированы вместе и касаются друг друга, они остаются электрически изолированными, и ток продолжает свое спиралевидное движение
Чем толще провод обмотки, тем больший ток выдерживает кабель, но ограничивает общее количество витков, которые можно намотать. По этой причине во многих катушках электромагнита используется тонкий провод.
Создаваемое магнитное поле будет пропорционально току, проходящему через проводник обмотки, а также плотности витков. Это означает, что чем больше витков на единицу длины размещено, тем больше напряженность поля.
Чем плотнее витки обмотки, тем большее количество витков уместится на заданной длине, увеличивая их плотность и, следовательно, результирующее поле. Это еще одна причина, по которой в электромагнитах используется кабель, изолированный лаком, а не пластик или другой материал, который увеличивает толщину.