Принцип работы пьезоэлемента

Пьезоэлементы большой мощности – Все об электричестве

— способность некоторых материалов генерировать электрический заряд в ответ на приложенное механическое напряжение. Пьезоэлектрические кристаллы проявляют пьезоэлектрический эффект. Этот эффект имеет два свойства:

Первый — прямой пьезоэлектрический эффект, который означает, что материал обладает способностью превращать механическую деформацию в электрический заряд.

Второй — обратный эффект, при котором приложенный электрический потенциал преобразуется в механическую энергию деформации. Пьезоэлемент зажигалки — образец этого эффекта.

Пьезоэлектрический преобразователь

Пьезоэлектрическая пластина представляет собой устройство, которое использует пьезоэлектрический эффект для измерения давления, ускорения, деформации или силы путем преобразования их в электрический заряд.

Пьезоэлектричество — это электричество, генерируемое пьезоэлементом, эффект которого называется пьезоэлектрическим эффектом.

Это способность некоторых материалов генерировать напряжение переменного тока (переменного тока) при механическом напряжении или вибрации или вибрировать при воздействии переменного напряжения или и то и другое.

Наиболее распространенным пьезоэлектрическим материалом является кварц.

Этот эффект оказывает определенная керамика, соли Рошеля и другие другие твердые вещества. Когда звуковая волна ударяет по одной или обеим сторонам пластин, пластины вибрируют.

Кристалл поднимает эту вибрацию, что приводит к слабому напряжению переменного тока.

Следовательно, между двумя металлическими пластинами возникает напряжение переменного тока, с формой волны, подобной форме звуковых волн.

И наоборот, если к пластинам подается сигнал переменного тока, это заставляет кристалл вибрировать синхронно с сигнальным напряжением. В результате металлические пластины также вибрируют и создают акустические помехи.

Практически каждый человек хотя бы один раз в жизни пользовался газовой зажигалкой, например моделью IMCO TRIPLEX, с пьезоэлементом.

Это простое в исполнении и полезное в быту устройство позволяет добывать огонь всего одним щелчком.

При нажатии кнопки на пьезозажигалке мы слышим треск искры, далее газовая горелка разгорается.

Механизм действия пьезоэлемента

Основа  — это блок пьезоэлемента, который отправляет от кнопки силу давления на сам пьезоэлемент. Основная составляющая пьезоэлемента — пьезокристалл. Это пластинка, вырезанная из кварцевого кристалла.

Ее функция — механическую деформацию превращать в электрическое напряжение. Пластинка очень твердая, способна выдержать значительные изгибы и сжатия и выдавать высокое напряжение. При плавном нажатии на кристалл, выдаваемое напряжение будет невелико, но оно будет длительным.

При нажатии на кристалл с той же силой, но быстро и мгновенно — выдаваемое напряжение сильнее, но оно будет моментальным.

Поэтому для создания искры в пьезозажигалке используется это свойство кристалла. Для изменения силы удара с плавного на резкий в зажигалке имеется механизм: упругая пружина, которая находится под кнопкой пьезозажигалки. Нажимая на кнопку — сжимается и пружина.

После нажатия на кнопку до конца — пружина отодвигает рычажок, на который она опирается. После этого пружина резко распрямляется. На другом конце пружины расположен металлический молоточек, который при раскрытии пружины с огромной скоростью ударяет в кристалл.

На обратной стороне кристалла имеется металлическая подкладка, которая не дает кристаллу сдвинуться от движения молоточка.

В результате получается мгновенный и сильный удар по кристаллу, который вызывает искру.

Умельцы научились применять его в ремонте (точнее, в «убийстве») смартфонов или мобильных телефонов. Сразу же появляется логичный вопрос: а зачем индивиду со здоровой нервной системой ломать свой смартфон? Ситуация может быть разной. Кто-то желает сдать телефон по гарантии, так как он ему уже разонравился. Кто-то просто решил приколоться над дружком.

Ломать, не делать

Разряд тока, произведенный пьезоэлементом зажигалки, может сломать смартфон. Достаточно будет 8-12 раз «прощелкать» металлические разъемы гаджета, вход для наушников, оголенные части платы.

При таком воздействии телефон откажется работать. При этом никаких видимых повреждений или оплавленных элементов не будет. Теперь вы можете с радостью нести сломанный гаджет в салон и требовать возврата денег.

В сервисном центре ничего не должны понять.

расчет

Макроскопическое описание в контексте механики сплошных сред показано ниже. Учитывается только линейное приближение между рассматриваемыми размерами. Нелинейные эффекты, такие как электрострикция , здесь не учитываются.

геометрия

Определение направлений осей

Система координат выбрана для описания пространственно различных свойств . Для индексации обычно используется система координат x, y, z, оси которой обозначены цифрами 1, 2, 3 (ось 3 соответствует оси поляризации). В настриг шерсти на этих осей пронумерованы 4, 5, 6. На основании этих осей, пьезоэлектрические свойства выражаются в уравнениях с тензорами .

Уравнения

Простейшие уравнения пьезоэффекта содержат поляризацию P pz (единица [Кл / м²]) и деформацию S pz ( безразмерная величина ):

П.пzзнак равноd⋅Тзнак равное⋅С.{\ Displaystyle P_ {pz} = d \ cdot T = e \ cdot S}
С.пzзнак равноd⋅Э.{\ Displaystyle S_ {pz} = d \ cdot E}

где d, e — пьезоэлектрические коэффициенты, E — напряженность электрического поля (В / м), а T — механическое напряжение (Н / м²). Первое уравнение описывает прямой, второе — обратный пьезоэффект.

Пьезоэлектрические коэффициенты описываются трехступенчатыми так называемыми пьезоэлектрическими тензорами . С одной стороны, у вас есть:

коэффициенты пьезоэлектрических искажений (реакция искажения на электрическое поле)

dяj,kзнак равно∂С.яj∂Э.k{\ displaystyle d_ {ij, k} = {\ frac {\ partial S_ {ij}} {\ partial E_ {k}}}}; с другой стороны

коэффициенты пьезоэлектрического напряжения (реакция механического напряжения на электрическое поле)

еяj,kзнак равно∂Тяj∂Э.k{\ displaystyle e_ {ij, k} = {\ frac {\ partial T_ {ij}} {\ partial E_ {k}}}}

Два коэффициента могут быть связаны с упругими постоянными :

еяj,kзнак равно∑лм(С.яjлм⋅dлм,k){\ displaystyle e_ {ij, k} = \ sum _ {lm} \ left (C_ {ijlm} \ cdot d_ {lm, k} \ right)}

Эффекты второго порядка (обратный пьезоэффект) описываются коэффициентами электрострикции .

Пример структуры матриц коэффициентов для класса кристаллов 4мм , к которому также принадлежит ЦТС

Приведенные выше тензоры обычно переписываются в матричной форме ( нотация Фойгта ). Это дает матрицы с шестивалентными компонентами, которые соответствуют определению оси, показанному выше. Затем пьезоэлектрические эффекты описываются двумя связанными уравнениями, в которых вместо поляризации используется диэлектрическое смещение D.

Д.знак равноd⋅Т+εТ⋅Э.{\ displaystyle D = d \ times T + \ varepsilon ^ {T} \ times E}
С.знак равноsЭ.⋅Т+d⋅Э.{\ Displaystyle S = s ^ {E} \ times T + d \ times E}
εТ{\ Displaystyle \ varepsilon ^ {T}} Диэлектрическая проницаемость при постоянном механическом напряжении
sЭ.{\ displaystyle s ^ {E}} Константа упругости при постоянной напряженности электрического поля

Обычно элементы этих уравнений суммируются в матрице связи. Наиболее важным параметром материала для обратного пьезоэффекта и, следовательно, для исполнительных механизмов является постоянная пьезоэлектрического заряда d. Он описывает функциональную взаимосвязь между напряженностью приложенного электрического поля и создаваемой им деформацией. Характерные размеры пьезоэлектрического преобразователя различны для разных направлений воздействия.

Слева: перекрестный эффект. Справа: продольный эффект

В области приводов важны два основных эффекта. Для этих двух эффектов уравнение разложения упрощается следующим образом

  1. Пьезоэлектрический поперечный или поперечный эффект ( эффект d 31 ). Механическая сила действует поперек приложенного поля.
    С.1знак равноs11Э.⋅Т1+d31 год⋅Э.3{\ Displaystyle S_ {1} = s_ {11} ^ {E} \ cdot T_ {1} + d_ {31} \ cdot E_ {3}}
  2. Пьезоэлектрический продольный или продольный эффект ( эффект d 33 ). Механическая сила действует параллельно приложенному полю.
    С.3знак равноs33Э.⋅Т3+d33⋅Э.3{\ Displaystyle S_ {3} = s_ {33} ^ {E} \ cdot T_ {3} + d_ {33} \ cdot E_ {3}}

Конструкционные особенности преобразователей

Если необходимо изготовить датчик акселерометра, то важно правильно прикрепить пьезочувствительные пластины к основанию. Это действие осуществляется паянием

Кабель должен соответствовать следующим требованиям:

  • изоляционное сопротивление должно быть высоким;
  • экран размещен рядом с жилой;
  • антивибрационность;
  • гибкость.

То есть на вход усилителя не должна производиться тряска кабеля. Измерительная цепь создается симметрично, чтобы не возникало помех. В датчике связь несимметричная, сопротивление выводов и корпуса соединено таким образом, что получается изоляция внешних пластин. Чтобы добиться нужного результата, требуется измеритель выполнить из нечетного количества материалов, которые используются в процессе. Элементы прижимаются к усилителю сквозь отверстия в центральной части и через изоляторы, которые привинчены к корпусу.

Использование пьезоэффекта на практике

Пьезоэлектрические свойства кристаллов и материалов искусственного происхождения успешно применяются в различных областях. В качестве примеров можно привести ультразвуковую дефектоскопию, позволяющую выявлять дефекты внутри металлических конструкций, электромеханические преобразователи, стабилизирующие радиочастоты, различные датчики и другие приборы.

В электротехнике широко используется обратный пьезоэлектрический эффект, связанный с деформацией кристалла под действием приложенного напряжения. В случае наложения на кристалл электрических колебаний с частотой звука, в нем возникнут колебания такой же частоты с выделением в окружающее пространство звуковых волн. Таким образом, один и тот же кристалл может быть использован не только как микрофон, но и как динамик.

Все пьезоэлектрики имеют собственную частоту механических колебаний. Они проявляются с наибольшей силой, когда совпадают с частотой подведенного напряжения. Подобное наложение колебаний известно, как электромеханический резонанс. Данное свойство позволило создать различные виды пьезоэлектрических стабилизаторов, поддерживающих постоянную частоту в генераторах незатухающих колебаний.

Точно такая же реакция наблюдается при действии механических колебаний с частотой, совпадающей с собственными колебаниями кристалла. Подобный эффект и его применение позволил создать акустические приборы, способные выделять из всей массы звуков лишь необходимые для конкретных целей.

При изготовлении приборов и устройств цельные кристаллы не используются. Они распиливаются на пластинки, имеющие строгую ориентацию с их кристаллографическими осями. Пластинки изготавливаются определенной толщины, в зависимости от того, какую резонансную частоту колебаний нужно получить. Они соединяются с металлическими слоями, и в результате происходит рождение готового пьезоэлемента.

Эффект Зеебека

Скин-эффект. Принцип работы

Пьезоэлемент

Элегаз и его свойства

Постоянные магниты и их свойства

Электрическое поле

Механизм действия пьезоэлемента

Основа

— это блок пьезоэлемента, который отправляет от кнопки силу давления на сам пьезоэлемент. Основная составляющая пьезоэлемента —пьезокристалл . Это пластинка, вырезанная из кварцевого кристалла.Ее функция — механическую деформацию превращать в электрическое напряжение . Пластинка очень твердая, способна выдержать значительные изгибы и сжатия и выдавать высокое напряжение. При плавном нажатии на кристалл, выдаваемое напряжение будет невелико, но оно будет длительным. При нажатии на кристалл с той же силой, но быстро и мгновенно — выдаваемое напряжение сильнее, но оно будет моментальным.Поэтому для создания искры в пьезозажигалке используется это свойство кристалла . Для изменения силы удара с плавного на резкий в зажигалке имеется механизм: упругая пружина, которая находится под кнопкой пьезозажигалки. Нажимая на кнопку — сжимается и пружина. После нажатия на кнопку до конца — пружина отодвигает рычажок, на который она опирается. После этого пружина резко распрямляется. На другом конце пружины расположен металлический молоточек, который при раскрытии пружины с огромной скоростью ударяет в кристалл. На обратной стороне кристалла имеется металлическая подкладка, которая не дает кристаллу сдвинуться от движения молоточка. В результате получается мгновенный и сильный удар по кристаллу, который вызывает искру.

Умельцы научились применять его в ремонте (точнее, в «убийстве») смартфонов или мобильных телефонов. Сразу же появляется логичный вопрос: а зачем индивиду со здоровой нервной системой ломать свой смартфон? Ситуация может быть разной. Кто-то желает сдать телефон по гарантии, так как он ему уже разонравился. Кто-то просто решил приколоться над дружком.

Описание и свойства [ править | править код ]

Пьезоэлектрики — кристаллы (пьезокристаллы), которые обладают (наделены) свойством при сжатии продуцировать электрический заряд (прямой пьезоэффект) или обратным свойством под действием электрического напряжения изменять форму: сжиматься/расширяться, скручиваться, сгибаться (обратный пьезоэффект).

Пьезоэлектричество открыто братьями Жаком и Пьером Кюри в 1880—1881 гг.

Исполнительные устройства — конвертируют электрическую энергию в механическую.

Сенсоры (датчики, генераторы), наоборот, конвертируют механическую энергию в электрическую.

Существуют однослойные, двухслойные и многослойные пьезокристаллы.

Однослойные — под воздействием электричества изменяются в ширину, длину и толщину. Если их растянуть или сжать, они генерируют электричество.

Двухслойные — могут быть использованы как однослойные, могут сгибаться или удлиняться. «Сгибатели» создают наибольшую величину перемещения относительно других видов, а «расширители», будучи более упругими, развивают гораздо большее усилие при гораздо меньшем перемещении.

Многослойные — развивают наибольшую силу при минимальном перемещении (изменении формы).

Пьезоизлучатели

Основу конструкции пьезоизлучателей составляют пьезокерамические преобразователи. Различают пьезоизлучатели, служащие для генерации звука слышимого диапазона и ультразвука.

Пьезоизлучатели звука широко применяются в телефонных аппаратах, часахбудильниках, микрофонах, бытовой технике, офисном оборудовании (ноутбуки, принтеры и др.), системах аварийной, противопожарной и охранной сигнализации, электронных игрушках.

Они также используются в охранных целях в качестве источников зашумления, обеспечивающих защиту от утечки речевой информации в помещениях путем создания заградительного шума. При этом становится возможным нейтрализовать как непосредственное подслушивание в условиях плохой звукоизоляции помещения, так и подслушивание, осуществляемое с помощью специальных технических средств: микрофонов, установленных в полостяхе снт , в надпотолочном пространстве, вентиляционных коробах и т.п.; стетоскопов, установленных в стенах, потолках или полах, а также в трубах водо- (тепло-, и газо-) снабжения и т.п.; лазерных и микроволновых систем съема аудиоинформации с окон и элементов интерьера.

Одним из эффективных применений пьезоизлучателей звука является создание звуковых индикаторов, предназначенных для повышения безопасности вождения автомобилей, особенно в ночное время. Такие устройства препятствуют засыпанию водителя во время движения. Благодаря специальной конструкции их можно закреплять за ухом, так что при глубоком наклоне головы (в момент засыпания) они включатся, генерируя громкий сигнал, который мгновенно будит водителя.

Пьезоизлучатели ультразвука получили большое распространение, прежде всего, благодаря особенностям воздействия ультразвука на различные вещества. В частности, пьезкерамические преобразователи играют роль активных элементов в ультразвуковой (УЗ) аппаратуре, предназначенной для обработки жидких и жидкодисперсных сред (рис. 1.15). При этом под действием ультразвука в этих средах интенсифицируются процессы диспергирования, экстракции, растворения, кристаллизации, очистки, гомогенизирования и др. Разновидностью такой аппаратуры, используемой в быту, являются ультразвуковые стиральные машины.

Рис. 1.15. Ультразвуковые колебательные системы на основе пьезокерамических преобразователей для воздействия на жидкие среды

Подобного рода ультразвуковая аппаратура широко используется для мелкодисперсного распыления жидкостей, например, при сушке кофе, молока, молочных продуктов, растительных лекарственных препаратов, полировальных составов в электронной промышленности.

Важная область применения ультразвуковых пьезоизлучателей – медицина.

В терапии используются разнообразные аппараты, действие которых основано на явлениях, возникающих в биологических тканях при прохождении через них ультразвуковых волн, а именно: локальный нагрев тканей в результате поглощения ультразвука, эффекты физикохимического характера, инициированные ультразвуком, и т.п. (рис. 1.16).

Рис. 1.16. Рабочие наконечники блока ультразвуковой терапии

В хирургии используются непосредственный контакт ультразвукового излучателя с тканью, а также воздействие на ткани фокусированным ультразвуком, что особенно эффективно для создания локальных разрушений в тканях организма.

В стоматологической практике получили распространение ультразвуковые инструменты для механической обработки поверхностей зубов.

Ультрозвуковая аппаратура применяется для приготовления экстрактов из растительного сырья, приготовления кремов, мазей и других лекарственных препаратов.

Одним из хорошо известных применений ультразвуковых пьезоизлучателей является создание устройств отпугивания грызунов и насекомых, которые не переносят действие ультразвуковых колебаний и покидают места своего обитания.

Просмотров:
1 044

Пьезоэлектрический эффект

Пьезоэлектрические вещества (пьезоэлектрики ), в частности пьезокерамика, имеет то свойство, что при деформации под действием внешнего механического давления на их поверхности возникают электрические заряды. Этот эффект называется прямым пьезоэлектрическим эффектом и был открыт в 1880 г. братьями Кюри.

Вскоре после этого (в 1881 г.) был подтвержден и обратный пьезоэффект, а именно что такое вещество, расположенное между двумя электродами, реагирует на приложенное к нему электрическое напряжение изменением своей формы. Первый эффект в настоящее время используется для измерений, а второй – для возбуждения механических давлений, деформаций и колебаний.

Более детальные исследования пьезоэффекта показали, что он объясняется свойством элементарной ячейки структуры материала. При этом элементарная ячейка является наименьшей симметричной единицей материала, из которой путем ее многократного повторения можно получить микроскопический кристалл. Было показано, что необходимой предпосылкой для появления пьезоэффекта является отсутствие центра симметрии в элементарной ячейки.

Вам нужны устройства сбора и обработки данных с ультразвуковых датчиков? Обращайтесь к нам, мы поможем Вам выбрать!

Здесь можно кратко пояснить пьезоэлектрический эффект на примере титаната бария, часто применяемой пьезоэлектрической керамики со сравнительно простой конструкцией элементарной ячейки. Титанат бария ВаТiO3, как и многие другие пьезокерамические вещества, аналогичен по структуре перовскиту (СаТiО3), по которому и назван этот класс материалов. Элементарная ячейка при температурах выше, критической, которая называется также точкой Кюри, является кубической. Если температура ниже этой критической, то элементарная ячейка тетрагонально искажается по направлению к одной из кромок. В результате изменяются и расстояния между положительно и отрицательно заряженными ионами (рисунок 1, для ВаТiO3 вместо Pb — Ba). Смещение ионов из их первоначального положения очень мало: оно составляет несколько процентов параметра элементарной ячейки. Однако такое смещение приводит к разделению центров тяжести зарядов внутри ячейки, так что образуется электрический дипольный момент. По энергетическим условиям диполи соседних элементарных ячеек кристалла упорядочиваются по областям в одинаковом направлении, образуя так называемые домены.

Направления поляризации доменов распределяются в поликристаллической структуре по статическому закону. Таким образом, неупорядоченные скопления отдельных микрокристаллов в структуре вещества, образующиеся только в спеченной керамики, в макроскопическом смысле вообще не могут давать никакого пьезоэлектрического эффекта. Только после так называемого процесса поляризации, в котором при наложении сильного электрического поля на керамику происходит выравнивание возможно большего числа доменов параллельно друг другу, удается использовать пьезоэлектрические свойства элементарных ячеек. Поляризация обычно проводится при температуре немного ниже температуры Кюри, чтобы облегчить ориентацию доменов. После охлаждения это упорядоченное состояние остается стабильным.

Современные средства проектирования позволяют рассчитать / промоделировать отдельно пьезоэлемент или пьезоэлектрический преобразователь целиком. По согласованию с Инженерными решениями Вы можете заказать расчет парметров пьезоэлектрического преобразователя

Механическое сжатие или растяжение, действующее на пьезоэлектрическую пластину параллельно направлению поляризации, приводит к деформации всех элементарных ячеек. При этом центры тяжести зарядов взаимно смещаются внутри элементарных ячеек, которые расположены теперь преимущественно параллельно, и в результате получается заряд на поверхности .

Пьезоэлектрический преобразователь

Пьезоэлектрическая пластина представляет собой устройство, которое использует пьезоэлектрический эффект для измерения давления, ускорения, деформации или силы путем преобразования их в электрический заряд.

Пьезоэлектричество — это электричество, генерируемое пьезоэлементом, эффект которого называется пьезоэлектрическим эффектом. Это способность некоторых материалов генерировать напряжение переменного тока (переменного тока) при механическом напряжении или вибрации или вибрировать при воздействии переменного напряжения или и то и другое. Наиболее распространенным пьезоэлектрическим материалом является кварц.

Этот эффект оказывает определенная керамика, соли Рошеля и другие другие твердые вещества. Когда звуковая волна ударяет по одной или обеим сторонам пластин, пластины вибрируют. Кристалл поднимает эту вибрацию, что приводит к слабому напряжению переменного тока. Следовательно, между двумя металлическими пластинами возникает напряжение переменного тока, с формой волны, подобной форме звуковых волн. И наоборот, если к пластинам подается сигнал переменного тока, это заставляет кристалл вибрировать синхронно с сигнальным напряжением. В результате металлические пластины также вибрируют и создают акустические помехи.

Практически каждый человек хотя бы один раз в жизни пользовался газовой зажигалкой, например моделью IMCO TRIPLEX, с пьезоэлементом. Это простое в исполнении и полезное в быту устройство позволяет добывать огонь всего одним щелчком. Огонь образуется из-за возгорания газа при контакте с электрическим разрядом, производимым пьезоэлементом зажигалки при нажатии на соответствующую клавишу.

При нажатии кнопки на пьезозажигалке мы слышим треск искры, далее газовая горелка разгорается.

Пьезоэлектрические устройства

Гидролокатор

Гидролокатор был изобретен в 1900-х годах Льюисом Никсоном. Первоначально он использовался для обнаружения айсбергов.

Однако интерес к нему очень сильно возрос в период Первой мировой войны, где он использовался для обнаружения подводных лодок.

В наше время гидролокатор является распространенным прибором с большим количеством различного рода применений.

На рисунке ниже показан принцип работы гидролокатора:

Принцип работы довольно прост – передатчик, который использует обратный пьезоэлектрический эффект, посылает звуковые волны в определенном направлении. При попадании волны на объект она отражается и возвращается обратно, где ее обнаруживает приемник.

Приемник, в отличии от передатчика, использует прямой пьезоэлектрический эффект. Он преобразует возвращаемую отраженную звуковую волну в электрический сигнал и передает его в электронную систему, которая и будет производит дальнейшую обработку сигнала. Расстояние от источника сигнала до определяемого объекта вычисляется на основании временных характеристик сигналов передатчик – приемник.

Пьезоэлектрические исполнительные устройства

Ниже показана работа силового привода на  основе пьезоэлектрического эффекта:

Работа привода довольно проста – под воздействием приложенного к материалу напряжения происходит его расширение или сужение, которое и приводит привод в движение.

Например, некоторые вязальные машины используют этот эффект для своей работы благодаря его простоте и минимальному количеству вращающихся частей. Такие приводы применяются даже в некоторых видеокамерах и мобильных телефонах в качестве приводов фокусировки.

Пьезоэлектрические громкоговорители и зуммеры

Такие устройства используют обратный пьезоэлектрический эффект для создания и воспроизведения звука. При подаче напряжения к динамикам и зуммерам он начинает вибрировать и таким образом генерирует звуковые волны.

Пьезоэлектрические динамики обычно используют в будильниках или других несложных акустических системах для создания простой аудиосистемы. Эти ограничение вызваны частотой среза данных систем.

Пьезо драйверы

Пьезо драйверы могут преобразовывать низкое напряжение батареи в высокое для питания силовых пьезоэлектрических устройств. Пьезо драйверы помогают инженерам создавать большие значения синусоидального напряжения.

Ниже представлена блок схема, показывающая принцип работы пьезо драйвера:

Пьезо драйвер будет получать низкое напряжение от батареи и повышать его с помощью усилителя.

Осциллятор будет подавать на вход драйвера синусоидальное напряжение малой амплитуды, которое в последующем будет повышено пьезо драйвером и отправлено на пьезо устройство.

Свойства и характеристики веществ, обладающих пьезоэффектом

Так как поляризация происходит только во время упругой деформации, важной характеристикой пьезоматериала является его способность изменять форму под действием внешних сил. Величину этой способности определяет упругая податливость (или упругая жесткость)

Кристаллы, обладающие пьезоэффектом, обладают высокой упругостью – при снятии усилия (или внешнего напряжения) они возвращаются к первоначальной форме.

Также пьезокристаллам присуща собственная механическая резонансная частота. Если заставить кристалл колебаться на этой частоте, амплитуда будет особенно большой.

Так как пьезоэффект проявляют не только целые кристаллы, а и пластины из них, нарезанные с соблюдением определенных условий, то можно получать куски пьезовеществ с резонансом на различных частотах – в зависимости от геометрических размеров и направления реза.

Также колебательные свойства пьезоэлектрических материалов характеризует механическая добротность. Она показывает, во сколько раз возрастает амплитуда колебаний на резонансной частоте при равной приложенной силе.

Существует явная зависимость свойств пьезоэлектрика от температуры, которую надо учитывать при использовании кристаллов. Эту зависимость характеризуют коэффициенты:

  • температурный коэффициент резонансной частоты показывает, насколько уходит резонанс при нагревании/охлаждении кристалла;
  • температурный коэффициент расширения определяет, насколько изменяются линейные размеры пьезопластины при изменении температуры.

При определенной температуре пьезокристалл теряет свои свойства. Этот предел называется температурой Кюри. Эта граница индивидуальна для каждого материала. Например, для кварца она составляет +573 °C.

Виды пьезоэлектрических материалов

Основным свойством таких материалов является возможность получения электроэнергии за счет сжатия или растяжения, то есть, деформации.

Все материалы, используемые на практике, классифицируются следующим образом:

  • Кристаллы. Включают в себя кварц и другие виды природных образований.
  • Керамические изделия. Представляют собой группу искусственных материалов. Типичными представителями являются цирконат-титанат свинца – ЦТС, а также титанат бария и ниобат лития. Они обладают более ярким пьезоэлектрическим эффектом по сравнению с природными материалами.

Если сравнивать ЦТС и кварц, становится заметно, что при одной и той же деформации, искусственный элемент вырабатывает более высокое напряжение. Когда на него влияет обратный пьезоэлектрический эффект он соответственно сильнее деформируется, когда к нему приложено такое же напряжение, как и к кварцу. Благодаря своим качествам, искусственные материалы получили широкое распространение в конструкциях керамических конденсаторов, ультразвуковых преобразователей и прочих электронных устройств.

Особенности приборов, измеряющих вибрации

Чтобы увеличить чувствительность измерительного прибора, необходимо применить пьезоэлементы с высоким модулем. Этот материал укладывают параллельно в ряд и соединяют металлическими прокладками и пластинами. Для подобного эффекта еще могут применяться вещества, которые работают на изгиб. Однако они имеют низкую частоту и уступают механике сжатия.

Материал может быть биморфным, его обычно собирают последовательно или параллельно, все зависит от положительно расположенных осей. Как правило, это две пластины. Если учитывать нейтральный слой, то над ним вместо пьезоэлемента может использоваться накладка из металла со средней толщиной.

Чтобы измерить сигналы, которые двигаются достаточно медленно, необходимо сделать следующее:

  • пьезопреобразователь включают в автогенератор;
  • кристалл находится на резонансной частоте;
  • как только произойдет нагрузка, показатели изменятся.

Сегодня пьезоакселерометры – усовершенствованные приборы, которые могут быть высокочастотными, с сильной чувствительностью.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: