Солнечные батареи принцип работы

Схема электропитания

В цепь солнечного электроснабжения дома входит несколько элементов. Каждый из них выполняет свою функцию и должен присутствовать в системе. Электропитание от гелиобатареи включает такие устройства:

  • панели;
  • инвертор;
  • контроллер;
  • аккумуляторы.

Контроллер выполняет защитную функцию как для панелей, так и для аккумуляторов. Он не даёт проходить обратным токам ночью и в облачную погоду, а также защищает АКБ от полной разрядки или чрезмерной зарядки.

Инвертор трансформирует постоянный ток в переменный. Из 12 Вт или 24 Вт получается 220 Вт. Не стоит включать в систему автомобильные аккумуляторы, так как они не способны переносить постоянные заряды и разряды. Лучше всего для этой цели использовать специализированные аккумуляторы.

Преимущества и недостатки

Солнечные батареи, так же как другие устройства обладают своими достоинствами и недостатками. К несомненным плюсам этих систем можно отнести следующие:

  • Возможность автономной работы позволяет организовать питание объектов, электронных устройств и освещения, удаленных на значительное расстояние от стационарных электрических сетей.
  • Значительная экономия денежных средств в процессе эксплуатации. Солнечный свет, превращающийся в электроэнергию, ничего не стоит и не требует дополнительных расходов. Платить приходится лишь за инверторы и аккумуляторные батареи, требующие периодической замены. И даже в этом случае солнечные панели окупятся примерно за 10 лет при среднем гарантийном сроке службы в 25-30 лет. При соблюдении всех правил эксплуатации, батареи смогут прослужить еще дольше.
  • По сравнению с обычными электростанциями, потребляющими топливо и загрязняющими окружающую среду, схема работы солнечных панелей отличается экологической чистотой и отсутствием шума.

Тем не менее, данные устройства обладают и серьезными недостатками, которые следует заранее учитывать в предварительных расчетах:

  • Высокая стоимость не только панелей, но и дополнительных компонентов – инверторов, контроллеров, аккумуляторных батарей.
  • Окупаемость наступает слишком долго. Деньги в течение длительного времени оказываются извлеченными из оборота.
  • Солнечные системы с фотоэлектрическими элементами требуют очень много места. Довольно часто для этих целей приходится задействовать не только всю крышу, но и стены здания, серьезно нарушая проектные дизайнерские решения. Дополнительное место необходимо аккумуляторным батареям с большой емкостью, которые в отдельных случаях могут занять целое помещение.
  • Процесс вырабатывания электроэнергии происходит неравномерно, в зависимости от времени суток. Этот недостаток компенсируется аккумуляторными батареями, которые днем накапливают электроэнергию, а ночью отдают ее потребителям.

Преимущества и недостатки

Солнечные батареи, так же как другие устройства обладают своими достоинствами и недостатками. К несомненным плюсам этих систем можно отнести следующие:

  • Возможность автономной работы позволяет организовать питание объектов, электронных устройств и освещения, удаленных на значительное расстояние от стационарных электрических сетей.
  • Значительная экономия денежных средств в процессе эксплуатации. Солнечный свет, превращающийся в электроэнергию, ничего не стоит и не требует дополнительных расходов. Платить приходится лишь за инверторы и аккумуляторные батареи, требующие периодической замены. И даже в этом случае солнечные панели окупятся примерно за 10 лет при среднем гарантийном сроке службы в 25-30 лет. При соблюдении всех правил эксплуатации, батареи смогут прослужить еще дольше.
  • По сравнению с обычными электростанциями, потребляющими топливо и загрязняющими окружающую среду, схема работы солнечных панелей отличается экологической чистотой и отсутствием шума.

Тем не менее, данные устройства обладают и серьезными недостатками, которые следует заранее учитывать в предварительных расчетах:

  • Высокая стоимость не только панелей, но и дополнительных компонентов – инверторов, контроллеров, аккумуляторных батарей.
  • Окупаемость наступает слишком долго. Деньги в течение длительного времени оказываются извлеченными из оборота.
  • Солнечные системы с фотоэлектрическими элементами требуют очень много места. Довольно часто для этих целей приходится задействовать не только всю крышу, но и стены здания, серьезно нарушая проектные дизайнерские решения. Дополнительное место необходимо аккумуляторным батареям с большой емкостью, которые в отдельных случаях могут занять целое помещение.
  • Процесс вырабатывания электроэнергии происходит неравномерно, в зависимости от времени суток. Этот недостаток компенсируется аккумуляторными батареями, которые днем накапливают электроэнергию, а ночью отдают ее потребителям.

Как соединить солнечные панели?

Схема подключения солнечных батарей для подготовленного человека не представляет заметной сложности, но для неопытных пользователей необходимы некоторые разъяснения. Необходимо знать, как производится соединение солнечных панелей между собой, как выполняется подключение солнечных батарей к остальным приборам, входящим в состав комплекта. Существуют разные варианты соединения, которые используются для получения определенных параметров выходного тока и напряжения. Схема подключения солнечных батарей загородного дома представляет собой систему соединения всех компонентов, которые, в свою очередь, так же соединяются друг с другом определенным образом. Например, необходимо знать, как соединить солнечные панели — параллельно или последовательно. Кроме того, надо выбрать тот или иной способ соединения в батарею аккумуляторов.

Схема устройства солнечной электростанции

Перед тем, как подключить солнечную батарею, необходимо выяснить ее конфигурацию. В состав солнечной электростанции, помимо солнечных модулей, входит комплект оборудования, включающий следующие приборы и устройства:

  • контроллер заряда
  • аккумуляторные батареи (АКБ)
  • инвертор
  • коммутационные приспособления, предохранители

Контроллер выполняет диспетчерские функции, переключая систему либо в режим заряда АКБ, либо на подачу питания потребителей. Аккумуляторы получают заряд и накапливают его, отдавая энергию по мере необходимости. Если напряжение батарей достигло 14 В, контроллер прекратит процесс, иначе от перезаряда АКБ выйдут из строя. Инвертор — прибор, преобразующий постоянный ток в переменный и повышающий напряжение до стандартных значений.

Как правило, весь комплект используется в полном составе. Однако, существуют и другие, упрощенные варианты комплектации. В отдельных случаях потребители, питающиеся от постоянного тока, подключают напрямую к модулям. Это возможно только в дневное время, поэтому встречается лишь у специализированных устройств.

Также есть осветительные системы на солнечных батареях, которые не нуждаются в инверторах и работают на прямом питании от аккумуляторов. Иногда из комплекта исключают инвертор, если напряжение нагрузки не превышает 12 В постоянного тока. Этот вариант также встречается не часто и используется по возможности.

Пайка и сборка панелей

Для питания потребителей используют определенное количество модулей, которые соединяются в том или ином порядке. Сначала разрабатывается схема подключения солнечных панелей, которая позволяет получить от них максимальную эффективность.

Параллельно или последовательно?

  • Параллельное соединение увеличит силу тока (и мощность), оставляя напряжение неизменным.
  • Последовательное соединение солнечных панелей повысит напряжение до 24 В, если соединить 2 модуля. Больше не делают, так как для аккумуляторов есть только 2 допустимых варианта — либо 12, либо 24 В.

Поэтому приходится комбинировать, добиваясь, чтобы схема подключения солнечной батареи к аккумулятору давала наиболее удачный результат.

Контактный отсек

Кроме того, надо иметь четкое представление, как соединить солнечные батареи между собой. Все модули оснащены специальным контактным отсеком, размещенным на задней стороне. Он устроен очень просто — два резьбовых зажима, отмеченные знаками «+» и «-». Пайка как таковая не требуется, поскольку монтаж производят в сложных условиях, где работа с паяльником не всегда возможна. Однако, если есть возможность сделать контакт более надежным и защитить его от окисления, никаких противопоказаний нет.

Тип провода

Для соединения обычно используют одножильный медный провод сечением 4 мм2

Важно, чтобы его изоляция была устойчива к воздействию ультрафиолета. Если этого нет, производят укладку проводов в защитный гофрированный рукав

Расположения модулей

Во время соединения следует учитывать способ расположения модулей. Если они развернуты под одинаковым углом к солнцу, то все будут работать в одинаковом режиме. Однако, иногда приходится устанавливать разнонаправленные панели. Это бывает вызвано особенным устройством крыши, или желанием обеспечить более равномерную подачу питания в течение дня.

Монтаж солнечных батарей

К установке солнечных батарей не применяется жестких требований. Смонтировать гелиоприемник можно под наклоном, на вертикальной или горизонтальной поверхности. При этом жесткие панели (моно- и поликристаллические) устанавливают на жесткий каркас, фиксируют в местах крепления при помощи комплектного крепежа. Батареи на эластичной подложке допускают укладку на неровные поверхности (например, волнистую крышу).

Соединения между панелями осуществляют многожильными проводниками с оконцевателями. Сечение токоведущих элементов рассчитывают по величине номинального и максимального тока.

Этого можно достичь:

  • Ориентировкой модулей в южном направлении.
  • Размещением их под углом, равным географической широте местности.

Кроме того, для монокристаллических панелей критически важно позаботиться об отсутствии затенения – при рассеянном свете их эффективность сильно падает

Устройство солнечных батарей

Солнечная батарея – это набор фотоэлементов. Эти полупроводниковые (фотоэлектрические) устройства, объединенные в панели, преобразуют энергию солнечных лучей непосредственно в постоянный ток.

Конструктивно гелиопанель (она представлена схематически ниже на фото) в общем виде состоит из следующих частей:

  • рамки;
  • стеклянного покрытия;
  • фотоэлементов;
  • токопроводящих металлических контактов;
  • основы (обратной стенки);
  • пленки из полимерного материала.

Устройство гелиопанели

Корпус (рамка, основа, стеклянное покрытие) предназначены для фиксации фотоэлементов, защиты их от разрушительного воздействия внешней среды. Каркасные детали изготавливают из диэлектрических материалов. Фотоэлементы к корпусу крепятся таким способом, чтобы их замена была возможной.

Фотоэлектрические преобразователи (ФЭП) на сегодняшний день изготавливают из различных химических элементов. Но широкое промышленное распространение получили кремниевые фотоэлементы. Эти пластины состоят из двух, отличающихся физическими свойствами, слоев кремния.

Кремний – это полупроводник. Каждый слой батареи имеет свои особенности:

  • внешний слой фотоэлектрического преобразователя содержит избыточное количество электронов (n-слой) – выступает в роли катода (отрицательного полюса);
  • во внутреннем слое электронов не хватает (p-слой) – является анодом (положительным полюсом).

В результате неоднородности (разного типа проводимости) кремниевых полупроводниковых слоев ФЭП между ними устанавливается р-n переход. Возникает электронно-дырочная проводимость.

Неоднородность слоев фотоэлемента достигается несколькими способами:

  • добавлением в один и тот же полупроводниковый материал разнообразных примесей (легирование);
  • соединением разных по свойствам полупроводников;
  • изменением состава;
  • комбинированием нескольких способов.

Коэффициент полезного действия (КПД) заводских ФЭП в среднем составляет 16 %. Эффективность лабораторных моделей достигла почти 45 %. Идет процесс усовершенствования гелиопанелей.

Как рассчитать количество солнечных батарей

Прежде всего необходимо рассчитать, сколько электроэнергии потребляет Ваша семья за день. Приблизительное количество можно понять из показателей в квитанциях на оплату электричества, которые приходили Вам ранее. Просто разделите этот показатель на количество дней в месяце. Если это совсем новый дом и раньше Вам не приходили квитанции, то придется подсчитать потребляемую мощность всех электроприборов за сутки. К этой цифре прибавьте еще 20%, которые пойдут на работу самих аккумуляторов батареи. Полученные данные помогут определить, сколько панелей и какой мощности Вам нужны

При расчетах стоит брать во внимание и уровень инсоляции в Вашем регионе

Почему человек не перешел на солнечную энергию полностью?

Можно много рассуждать о политике, бизнесе и прочей конспирологии, но в рамках этой статьи хотелось бы рассказать о других проблемах.

  1. Неравномерное распределение солнечной энергии по поверхности планеты. Одни области более солнечные, чем другие и это тоже непостоянною. Солнечной энергии гораздо меньше в пасмурные дни и совсем нет ночью. И чтобы полностью рассчитывать на солнечную энергию, необходимы эффективные способы получения электричества для всех областей.
  2. КПД. В лабораторных условиях удалось достичь результата в 46%. Но коммерческие системы не достигают даже 25% эффективности.
  3. Хранение. Самым слабым звеном в солнечной энергетике является отсутствие эффективного и дешевого способа сохранять полученную электроэнергию. Существующие аккумуляторные батареи тяжелы и значительно снижают эффективность и без того слабые показатели солнечной системы. В целом, хранить 10 тонн угля проще и удобнее, чем 46 мегаватт, выработанных этим же углем или солнцем.
  4. Инфраструктура. Для того, чтобы питать мегаполисы – площадей крыш этих городов будет недостаточно, чтобы удовлетворить все запросы, поэтому для внедрения солнечной энергетики нужно транспортировать энергию, а для этого необходимо строить новые энергетические объекты

Видео о том, как производят солнечные батареи.

В ролике подробно описывается процесс изготовления поликристаллических солнечных батарей, принцип их работы в системе солнечных электростанций, принцип работы контроллера заряда и инвертора.

Эффективность батарей гелиосистемы

Один фотоэлемент даже в полдень при ясной погоде выдает совсем немного электроэнергии, достаточной разве что для работы светодиодного фонарика.

Чтобы повысить выходную мощность, несколько ФЭП объединяют по параллельной схеме для увеличения постоянного напряжения и по последовательной для повышения силы тока.

Эффективность солнечных панелей зависит от:

  • температуры воздуха и самой батареи;
  • правильности подбора сопротивления нагрузки;
  • угла падения солнечных лучей;
  • наличия/отсутствия антибликового покрытия;
  • мощности светового потока.

Чем ниже температура на улице, тем эффективней работают фотоэлементы и гелиобатарея в целом. Здесь все просто. А вот с расчетом нагрузки ситуация сложнее. Ее следует подбирать исходя из выдаваемого панелью тока. Но его величина меняется в зависимости от погодных факторов.

Гелиопанели выпускаются с расчетом на выходное напряжение, кратное 12 В – если на аккумулятор надо подать 24 В, то две панели к нему придется подсоединить параллельно

Постоянно отслеживать параметры солнечной батареи и вручную корректировать ее работу проблематично. Для этого лучше воспользоваться контроллером управления, который в автоматическом режиме сам подстраивает настройки гелиопанели, чтобы добиться от нее максимальной производительности и оптимальных режимов работы.

Идеальный угол падения лучей солнца на гелиобатарею – прямой. Однако при отклонении в пределах 30-ти градусов от перпендикуляра эффективность панели падает всего в районе 5%. Но при дальнейшем увеличении этого угла все большая доля солнечного излучения будет отражаться, уменьшая тем самым КПД ФЭП.

Если от батареи требуется, чтобы она максимум энергии выдавала летом, то ее следует сориентировать перпендикулярно к среднему положению Солнца, которое оно занимает в дни равноденствия по весне и осени.

Для московского региона – это приблизительно 40–45 градусов к горизонту. Если максимум нужен зимой, то панель надо ставить в более вертикальном положении.

И еще один момент – пыль и грязь сильно снижают производительность фотоэлементов. Фотоны сквозь такую “грязную” преграду просто не доходят до них, а значит и преобразовывать в электроэнергию нечего. Панели необходимо регулярно мыть либо ставить так, чтобы пыль смывалась дождем самостоятельно.

Некоторые солнечные батареи имеют встроенные линзы для концентрирования излучения на ФЭП. При ясной погоде это приводит к повышению КПД. Однако при сильной облачности эти линзы приносят только вред.

Если обычная панель в такой ситуации будет продолжать генерировать ток пусть и в меньших объемах, то линзовая модель работать прекратит практически полностью.

Солнце батарею из фотоэлементов в идеале должно освещать равномерно. Если один из ее участков оказывается затемненным, то неосвещенные ФЭП превращаются в паразитную нагрузку. Они не только в подобной ситуации не генерируют энергию, но еще и забирают ее у работающих элементов.

Панели устанавливать надо так, чтобы на пути солнечных лучей не оказалось деревьев, зданий и иных преград.

Разновидности солнечных батарей

Все солнечные панели могут быть кремниевыми или пленочными. Панели, основой для которых служит кремний, разделяются на типы:

  • поликристаллические;
  • монокристаллические;
  • аморфные.

Поликристаллическая солнечна батарея представляет собой квадратное устройство темно-синего цвета. Ее поверхность имеет вкрапления неоднородных кристаллов кремния. Несмотря на низкий КПД 18%, данное устройство обладает возможностью вырабатывать ток во время пасмурной погоды, что делает их незаменимыми в местностях, где преобладает рассеянный солнечный свет.

Монокристаллические преобразователи солнечной энергии представлены черными панелями со скошенными углами, для которых используется чистый кремний. Все ячейки устройства направлены в одну сторону, что позволяет получить максимальный КПД 25%. Недостатком таких батарей является то, что их лицевая сторона всегда должна быть обращена к солнцу. Если оно не успело взойти, спряталось за тучами и опустилось за горизонт, солнечные панели будут производить ток слабой мощности. Это самый дорогостоящий, но и обеспечивающий максимальную производительность, тип устройства.

Гибкая солнечная панель удобна в работе — ее легко можно прикрепить на неровные участки крыши

Каждая аморфная батарея состоит из множества тончайших слоев кремния, которые получаются путем напыления мельчайших частиц материала на стекло, пластмассу или фольгу. Такие слои достаточно быстро выгорают, что уже через полгода приводит к падению эффективности работы устройства на 15-20%. КПД таких преобразователей составляет всего 6%. Они являются самыми дешевыми и способны работать даже в пасмурную погоду. Однако максимальный срок их службы составляет 2 года.

В основе пленочных батарей лежит не твердая подложка из металла или стекла, а полимерная пленка. Поэтому они выпускаются в рулонах, что позволяет расстелить батареи на больших площадях. Благодаря своей конструкции, их можно разрезать на различные по форме и размеру части, разместить солнечные батареи на крышу дома с плавными изгибами. Они компактные и легкие. Рулонная панель обойдется значительно дешевле, чем кремниевая, для изготовления которой используется дорогостоящий материал. Однако такие модели менее мощные. Приобрести их сегодня достаточно непросто, поскольку производство только развивается.

Все солнечные батареи, независимо от типа устройства, оснащаются контроллерами, которые следят за степенью заряда панели. Они перераспределяют полученную энергию, направляя ее к источнику потребления напрямую или сохраняя в аккумуляторе.

Устанавливать стационарные солнечные панели стоит только с солнечной стороны дома

Панели из редких металлов

Описание

КПД у них высокий. По этому показателю они впереди кремниевых. В основе устройств, способных к работе в условиях экстремальных, лежит теллурид кадмия. Применяются они для облицовки строений в экваториальных странах, где в дневное время поверхности нагреваться порой выше 80 градусов.

Также растет популярность селенид –индий – медно – галлиевых панелей и селенид- индий – медных.

Но, не забывая о токсичности кадмия, и о том, что галлий с индием достаточно редко встречающиеся металлы, невозможно даже предположить, что они будут использоваться для массового производства.

На панели маленькой площади концентрируются лучи сотен зеркал. Она генерирует ток и передает одновременно водяному теплообменнику тепло. Он нагревает воду до парообразного состояния. Пар приводит во вращение турбину, генерирующую энергию электрическую. То есть, с наибольшей эффективностью энергия солнца сразу двумя способами превращается в электрическую.

Солнечная батарея своими руками

Те, кто хочет сэкономить, задумываются, как сделать солнечную батарею в домашних условиях самостоятельно, чтобы она обладала необходимыми эксплуатационными параметрами и полностью обеспечивала энергетические потребност. Это особенно актуально для мест отдаленных от главных артерий цивилизации.

Солнечные батареи своими руками в домашних условиях изготавливаются из соответствующих элементов, которые можно купить в открытом доступе в специализированных компаниях или через интернет магазины. Если кремниевые пластины должны приобретаться у производителей, то остальные элементы, такие как лента, рамка, пленка, стекло, припой и прочее можно вполне обнаружить и дома в хозяйстве.

Солнечная батарея своими руками из подручных средств изготавливается некоторыми умельцами из медных листов, зажимов, мощных электроплит, соли и из других материалов. Такие кустарные устройства не смогут полностью обеспечить необходимой электроэнергией и могут использоваться лишь в небольших масштабах.

Лучше всего солнечные батареи купить у производителя, поскольку они обладают гарантией и необходимыми функциональными и эксплуатационными параметрами, и, значит, не подведут. Производство солнечных батарей базируется на применении новейших технологий, которые постоянно развиваются, предлагая более усовершенствованные модели. В зависимости от размеров устройств, они могут использовать для различных целей в местах, где нет снабжения электроэнергией. Они встречаются на калькуляторах, часах, различных мобильных устройствах.

Так, например, рюкзак с солнечной батареей будет незаменимым помощником тех, кто любит путешествовать с комфортом. Он накопит достаточно энергии, чтобы зарядить фонарик для освещения туристической палатки или чтобы во время похода заряжать необходимые гаджеты. Судя по отзывам, солнечные батареи используются часто и с удовольствием для удовлетворения разнообразных нужд не только на природе, но и в быту.

Современные устройства со встроенными солнечными модулями

Power bank с солнечной батареей – внешний накопитель с фотоэлементами для преобразования солнечных лучей в заряд аккумулятора. Он обладает несколькими портами и предназначен для зарядки смартфонов или планшетов. Это незаменимое устройство для тех кто, много времени тратят в дороге и пользуются гаджетами. Устройство, зависимо от модели может дополняться различными функциями, как, к примеру, фонариком.

Робот конструктор – наборы с различными элементами, из которых можно собрать несколько конструкций, которые двигаются автономно. Это лучшая игрушка для любознательных детей. Робот конструктор на солнечной батарее купить интересно будет не только малышам, но и вполне взрослым дяденькам, поскольку захватывающим является не только движение робота, но и сам процесс сборки.

Уличные садовые светильники на солнечных батареях – идеальное решение для сада, огорода или приусадебного участка. Благодаря накопленному заряду они будут светиться всю ночь. Для этого не нужно прокладывать специальную проводку. Их можно брать с собой на рыбалку или семейный поход. Чрезвычайная мобильность, компактность и удобство делают фонари самыми востребованными изделиями на солнечных батареях.

Возможности эксплуатации настолько разнообразны, а технологии так быстро развивается, что скоро солнечные модули охватят все сферы жизни современного человека.

Аморфные кремниевые батареи

Изготавливаются из аморфного (некристаллического) кремния a-Si, путем осаждения на гибкую подложку паров гидрида кремния. В результате образуется добиться стабильного фотоэлектрического эффекта получается уже при толщине пленки в несколько микрон.

Эффективность преобразования составляет порядка 8-11%, стоимость генерации лежит в пределах 0.5-0.7% за 1 Вт. Главный недостаток таких батарей – низкий КПД преобразования, что требует значительной площади для обеспечения необходимой мощности. Однако он с лихвой компенсируется возможностью установки на любые поверхности – гибкая подложка не требует ровных оснований и специальных конструкций для монтажа.

Кроме того, современные полиморфные модули могут работать с инфракрасным диапазоном, что существенно уменьшает потери эффективности при рассеянном освещении. В результате на долю аморфных элементов сегодня приходится порядка 10% мирового рынка.

Как сделать правильный выбор

Для владельцев домов, расположенных на Европейском континенте выбор довольно прост — это поликристалл либо монокристалл из кремния. При этом, при ограниченных площадях стоит сделать выбор в пользу монокристаллических панелей, а при отсутствии таких ограничений — в пользу поликристаллических батарей. При выборе производителя, технических параметров оборудования и дополнительных систем стоит обратиться к компаниям, которые занимаются как продажей, так и установкой комплектов. Учитывайте, что вне зависимости от производителя — качество систем у «топовых» производителей вряд ли будет отличаться, поэтому не дайте себя обмануть, изучая ценовую политику.

Бюджетным, но эффективным выбором станут панели от компании Amerisolar, поликристаллическая модель носит название AS–6P30 280W, имеет размер 1640х992 мм и выдаёт, соответственно — 280 Вт мощности. КПД модуля составляет 17.4%. Из минусов — гарантия всего 2 года. Но стоимость ∼7 тыс. рублей.
Аналогичным по мощности будет модуль RS 280 POLY от китайской Runda, стоимость ещё ниже — около 6 тыс

рублей.
Если место ограничено, стоит обратить внимание на продукт компании LEAPTON SOLAR — LP72–375M PERC, КПД составляет 19.1%, и при размерах 1960х992 мм получаем на выходе 375 Вт энергии. Стоимость такой батареи будет в районе 10 тыс

рублей.
Ещё одним эффективным вариантом с меньшими габаритами, 1686х1016 мм будет новинка от LG — NeOn 340 W. «Не он» может похвастаться КПД в 19.8%, но не может похвастаться стоимостью, она будет более чем в половину выше предыдущего образца — примерно 16 тысяч рублей.
Для тех, кто хочет обратить своё внимание на премиальный сегмент, тайваньская компания BenQ выпустила на рынок монокристальный модуль SunForte PM096B00 333W, выдающий на выходе 333 Вт мощности, имеющий номинальный КПД в 20.4% при размерах 1559х1046 мм. Этот модуль получил впечатляющую стоимость в почти 35 тысяч рублей.

Преимущества и недостатки

Солнечные батареи доступны всем желающим, и они характерны следующими плюсами:

  • энергоэффективность. Все зависит от состава солнечной батареи, но в среднем КПД находится в пределах 14 – 30%;
  • востребованы для установки на дачных участках. Во-первых, дачи обычно находятся вдали от города, где зачастую отсутствуют централизованные источники энергоснабжения. Во-вторых, летом начинается дачный сезон, и энергия, полученная от солнца, как нельзя кстати;
  • систему можно дополнить новыми панелями с целью повышения мощности;
  • экономия энергии, особенно если солнечные батареи используются для ГВС;
  • выгода – надо один раз потратиться, чтобы получить возобновляемый источник энергии, не требующий дополнительных трат на обслуживание;
  • экологический источник энергии. В нынешних климатических условиях это важный аспект, так как энергоносители планеты не бесконечны;
  • надежность. Конечно, здесь многое зависит от того, насколько грамотно был выполнен монтаж, а также от модели панелей. В сети есть немало рейтингов, где описаны плюсы и минусы изделий разных производителей.

Что до окупаемости, система, построенная на солнечных батареях, окупится за 3 – 4 года для частного дома, в котором живет семья из 5 – 7 человек (при переходе с электричества или дизеля). Если переходить с газа, срок окупаемости – 8 – 10 лет.

Область применения

Сегодня отсутствуют ограничения на использование солнечных батарей. Это обусловлено их преимуществами, в частности, выработкой достаточного количества электроэнергии для энергообеспечения всего объекта или решения локальных проблем (применения в качестве элемента питания и пр.). Освещение – это пока основное направление применения таких модулей. Реже их используют для обогрева, причем в большинстве случаев солнечные батареи обсуживают малогабаритные объекты. Их применяют:

в частных и многоквартирных домах;

Применение солнечных батарей в многоквартирных домах

коммерческих зданиях;

Использование солнечных панелей на промышленных зданиях

Солнечная энергетика в аграрном секторе

на придомовой территории.

Крытый навес из солнечных панелей

Условия, при которых предпочтительно устанавливать такие модули:

  • для обогрева/освещения местности, где отсутствуют ЛЭП, в данном случае применение преобразователей солнечной энергии позволит сократить затраты на энергообеспечение объекта, это более выгодный метод, если сравнивать с применением дизельных генераторов;
  • в некоторых многоквартирных домах, построенных за последние годы, использовался альтернативный источник энергии (в системах водоснабжения) или в качестве резервного;
  • в местности (селах, деревнях) время от времени случается отключение электричества, такие модули позволяют обеспечить бесперебойную работу техники.

Принцип работы солнечной батареи

Как работает солнечная батарея, во многом зависит от ее устройства. Первоначально фотоэлементы изготавливались из кремния. Они и сейчас очень популярны, но поскольку процесс очистки кремния достаточно трудоемок и затратен, разрабатываются модели с альтернативными фотоэлементами из соединений кадмия, меди, галлия и индия, но они менее производительны.

КПД солнечных батарей с развитием технологий вырос. На сегодняшний день это показатель возрос от одного процента, который регистрировался в начале столетия, до более двадцати процентов. Это позволяет в наши дни использовать панели не только для обеспечения бытовых нужд, но и производственных.

Технические характеристики

Устройство солнечной батареи довольно простое, и состоит из нескольких компонентов:

Непосредственно фотоэлементы / солнечная панель;

Инвертор, преобразовывающий постоянный ток в переменный;

Контроллер уровня заряда аккумулятора.

Аккумуляторы для солнечных батарей купить следует с учетом необходимых функций. Они накапливают и отдают электроэнергию. Запасание и расход происходит в течение всего дня, а ночью накопленный заряд только расходуется. Таким образом, происходит постоянное и непрерывное снабжение энергией.

Чрезмерная зарядка и разрядка батареи укорачивает ее эксплуатационный срок. Контроллер заряда солнечной батареи автоматически приостанавливают накопление энергии в аккумуляторе, когда он достиг максимальных параметров, и отключают нагрузку устройства при сильной разрядке.

(Tesla Powerwall — аккумулятор для солнечных панелей на 7 КВт — и домашняя зарядка для электромобилей)

Сетевой инвертор для солнечных батарей является самым важным элементом конструкции. Он преобразовывает полученную от солнечных лучей энергию в переменный ток различной мощности. Являясь синхронным преобразователем, он совмещает выходное напряжение электрического тока по частоте и фазе со стационарной сетью.

Фотоэлементы могут соединяться как последовательно, так и параллельно. Последний вариант увеличивает параметры мощности, напряжения и тока и позволяет устройству работать, даже если один элемент потеряет функциональность. Комбинированные модели изготовлены с использованием обеих схем. Эксплуатационный срок пластин около 25 лет.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: