Электродвигатель переменного тока

Недостатки, решения

У сельсинов невысокая точность синхронизации, особенно когда на валу сельсина-приёмника присутствует существенная механическая нагрузка.

Для решения этой проблемы сельсинных связей, применяются следящие электромеханические комбинированные связи — приёмный вал вращают вспомогательным электродвигателем, который включается в контур авторегулирования, в этом случае сельсин-приемник выступает в роли датчика угла рассогласования поворотов ведущего и ведомого валов. Т.е. по сути, сельсин в данном случае передаёт только угол поворота, за синхронность вращения валов отвечает авторегулятор, который управляет вспомогательным электродвигателем.

Другой недостаток сельсинов — относительно невысокая точность передачи угла, обусловленная погрешностями изготовления магнитопровода сельсина. Для повышения точности применяют пару сельсинов — «грубый» и «точный» (последний установлен через редуктор и за один оборот основного вала делает несколько оборотов). Если сигнал с грубого сельсина слабее некоторого порога, автоматика передаёт в линию связи сигнал с точного сельсина. Так же, для обеспечения точности, оба сельсина (датчик и приёмник) подключаются через редуктор.

Не имеющий нагрузочного момента ротор сельсина колеблется с частотой питающего переменного тока, поэтому для подавления этих колебаний приходится использовать механические демпферы. Из-за этого, в помещениях, где установлены сельсины, наблюдается постоянный монотонный шум.

В современных устройствах сельсины всё чаще заменяются энкодерами. И только там, где простота, надёжность и ремонтопригодность важнее точности (например, в авиации), сельсины всё ещё находят широкое применение.

Режимы работы

Электродвигатель асинхронного типа универсальный механизм и по продолжительности работы имеет несколько режимов:

  • Продолжительный;
  • Кратковременный;
  • Периодический;
  • Повторно-кратковременный;
  • Особый.

Продолжительный режим – основной режим работы асинхронных устройств, который характеризуется постоянной работой электродвигателя без отключений с неизменной нагрузкой. Такой режим работы самый распространенный, используется на промышленных предприятиях повсеместно.

Кратковременный режим – работает до достижения постоянной нагрузки определенное время (от 10 до 90 минут), не успевая максимально разогреться. После этого отключается. Такой режим используют при подаче рабочих веществ (воду, нефть, газ) и прочих ситуациях.

Периодический режим – продолжительность работы имеет определенное значение и по завершении цикла работ отключается. Режим работы пуск-работа-остановка. При этом он может отключаться на время, за которое не успевает остыть до внешних температур и включаться заново.

Повторно-кратковременный режим – двигатель не нагревается максимально, но и не успевает остыть до внешней температуры. Применяется в лифтах, эскалаторах и прочих устройствах.

Особый режим – продолжительность и период включения произвольный.

В электротехнике существует принцип обратимости электрических машин — это означает, что устройство может, как преобразовывать электрическую энергию в механическую, так и совершать обратные действия.

Асинхронные электродвигатели тоже соответствуют этому принципу и имеют двигательный и генераторный режим работы.

Двигательный режим – основной режим работы асинхронного электродвигателя. При подаче напряжения на обмотки возникает электромагнитный вращающий момент, увлекающий за собой ротор с валом и, таким образом, вал начинает вращаться, двигатель выходит на постоянную частоту вращения, совершая полезную работу.

Генераторный режим – основан на принципе возбуждения электрического тока в обмотках двигателя при вращении ротора. Если вращать ротор двигателя механическим способом, то на обмотках статора образуется электродвижущая сила, при наличии конденсатора в обмотках возникает емкостный ток. Если емкость конденсатора будет определенного значения, зависящего от характеристик двигателя, то произойдет самовозбуждение генератора и возникнет трехфазная система напряжений. Таким образом короткозамкнутый электродвигатель будет работать как генератор.

Как проверить двигатель перед запуском

Перед тем, как запустить асинхронный двигатель в работу, желательно его проверить на работоспособность. С чего же начать?

Внешний осмотр двигателя. Проверьте, нет ли сколов, вмятин, покрутите вал двигателя. Он должен крутиться плавно и без рывков в обе стороны. Этим действием вы проверяете подшипники, на которых держится ротор двигателя. Если вал двигателя подклинивает, то на это могут быть несколько причин: разбиты посадочные места под подшипники, убитые подшипники, либо ротор затирает статор. Для того, чтобы выяснить причину, нужно будет полностью разобрать двигатель и выяснить реальную проблему. Если все ок, то двигаемся к следующему шагу.

Проверяем обмотки двигателя. Для этого берем мультиметр, ставим его на измерение сопротивления и проверяем сопротивление обмоток. Если обмотки подключены по схеме «звезда», то нам будет достаточно замерять сопротивление между клеммами, куда подается напряжение питания. Делается это в три этапа.

Раз.

Два.

Три.

Во всех трех случаях сопротивление должно быть одинаково. Допускается отклонение в несколько Ом.

Этими тремя действиями мы проверили обмотки нашего двигателя и убедились, что они все целые.

И заключительный шаг. Проверяем, не звонятся ли обмотки на землю. Так как все обмотки так или иначе соединяются между собой, достаточно будет встать щупом мультиметра на любую из обмоток, а вторым щупом встать на корпус двигателя. Переключатель на мультиметре поставить на измерение МОм.

В идеале должно получиться бесконечно большое сопротивление, в реале от 100 МОм и выше. Если сопротивление очень маленькое, что то около 1-10 Ом, то это означает, что какая-то из обмоток двигателя звонится на землю, что категорически недопустимо. На практике если же сопротивление меньше 1 МОм, то надо выяснить причину и устранить ее. Скорее всего в двигатель попала влага, грязь, либо произошел пробой диэлектрика медного провода. В этом случае поможет только полная разборка и визуальное выяснение причины.

Все те же самые операции применяются и к двигателю со схемой подключения «треугольник».

Большинство материала для статьи «асинхронный двигатель» было взято из видео ниже. Обязательно к просмотру.

Сельсин-двигатель

Сельсин-двигатель. Как упоминалось в предыдущем пункте, сельсин, работающий в трансформаторном режиме, используется для обеспечения поворота механизма на определенный угол. Для этого есть большой момент сопротивления. При использовании электродвигателя selsine можно выполнить относительно мощное дистанционное управление механизмом в соответствии с индикаторной схемой (рис. 12.14, а) без дополнительных усилителей. Структурно, клетк-тонкий мотор контакт (или внеконтактный) cell-thin. In в увеличенном воздушном зазоре между статором / Ротором 3 размещена полая немагнитная чашка 4(рис.12.14.6).Это ротор двигателя.

Источник

5.18.4 Электромагнитная асинхронная муфта

Электромагнитная асинхронная муфта (рис. 5.18.4.1)
устроена по принципу асинхронного двигателя и служит для соединения двух частей
вала. На ведущей части вала 1 помещается полюсная система 2, представляющая
собой систему явно выраженных полюсов с катушками возбуждения. Постоянный ток
в катушке возбуждения подводится через контактные кольца 4. Ведомая часть муфты
3 исполняется по типу роторной обмотки двигателя.

Принцип работы муфты аналогичен работе асинхронного
двигателя, только вращающийся магнитный поток здесь создается механическим вращением
полюсной системы. Вращающий момент от ведущей части вала к ведомой передается
электромагнитным путем. Разъединение муфты производится отключением тока возбуждения.

Управление электрическим током позволяет осуществлять
дистанционное управление муфтой (плавно сцеплять и расщеплять ее). Поэтому ее
применяют в автоматике и телемеханике.

Общие сведения, классификация

Машины синхронной связи предназначены для осуществления синхронного или синфазного поворотов двух осей, механически между собой не связанных, или для их вращения. Индукционные системы синхронной связи делятся на трехфазные и однофазные. Трехфазные системы применяются для синхронизации двух валов приводных двигателей, не связанных механически. Обычно это силовые системы относительно большой мощности, носящие название систем электрического вала. Их используют, например, в механизмах разводки мостов, ворот шлюзов, в установках бумажной промышленности и т. д. Однофазные системы применяются в маломощных установках и широко используются в схемах автоматических устройств. Микромашины, применяемые в индукционных системах синхронной связи в качестве датчиков и приемников, получили название сельсинов, подчеркивающее их способность к самосинхронизации (self synchron означает самосинхронизирующийся). В теории синхронной связи автоматических устройств различают два понятия: синхронную индикаторную передачу — индикаторный режим сельсинов и следящий привод — трансформаторный режим сельсинов. В первом случае требуется передать лишь незначительный момент, необходимый, например, для поворота стрелки прибора (индикатора) для указания на расстоянии положения какого-либо регулирующего органа — клапана, задвижки, заслонки, вентиля и т. д. Передача показаний на пульт управления особенно важна в случаях, когда по каким- либо причинам человек не может подойти к регулируемому органу. Схема синхронной индикаторной передачи дана на рисунке 347. Здесь сельсин-датчик Д (заводящее устройство) и сельсин-приемник П (отрабатывающее устройство) при угле заводки а отрабатывают пропорциональный угол са непосредственно, то есть стрелка индикатора находится на оси приемника П. При необходимости передать угол поворота механизму, к валу которого приложен более или менее значительный момент сопротивления, использовать индикаторную схему можно лишь при мощных силовых сельсинах. Мощной должна быть и линия связи. Рациональнее и проще поступить иначе: от датчика к приемнику передать слабый по мощности сигнал, который затем, будучи усилен, воздействует на исполнительный двигатель, связанный с приводным механизмом. В такой системе следящего привода схема связи построена так, чтобы напряжение приемника П (сигнал) было функцией угла поворота ротора датчика Д. Кроме того, между приемником и исполнительным двигателем должна быть обратная связь, приводящая роторы датчика и приемника в согласованное положение (положение нулевого сигнала) по окончании отработки. Схема следящего привода дана на рисунке 348. На заводящем устройстве Д, возбуждаемом напряжением сети, осуществляется механический поворот на угол а (угол заводки). Сигнал, выработанный в отрабатывающем устройстве Я, после предварительного усиления в усилительном устройстве УУ в виде напряжения управления подается на исполнительный двигатель ИД, возбуждаемый напряжением сети. Исполнительный двигатель, будучи соединен механически с валом нагрузки, приводит его во вращение.

Рис. 347. Схема синхронной индикаторной передачи. Рис. 348. Схема следящего привода.

Советуем изучить — Оперативно-диспетчерское управление энергосистемой – задачи, особенности организации процесса

Благодаря механической обратной связи исполнительного двигателя с отрабатывающим устройством П будет постепенно уменьшаться напряжение управления, и, когда отрабатывающее устройство П повернется на угол заводки a, Uy станет равным нулю и исполнительный двигатель остановится. В результате произойдет поворот вала нагрузки на угол а или пропорциональный ему са. Индукционным системам синхронной связи присущ ряд положительных свойств: отсутствие искровой коммутации, то есть разрывов цепи питания датчиков при работе системы; высокая точность, обеспечивающая малые углы ошибки между положениями роторов датчика и приемника в согласованном режиме (не выше 2,5° для машин низшего класса); плавность отработки приемником поворота датчика; возможность иметь датчик и приемник бесконтактными; однотипность датчика и приемника.

Функция датчика положения

Если взять и каким-либо способом (вручную, например) провернуть ротор одного из приборов на некоторый угол – равновесие токов в его катушке нарушается. Из-за электрической связи в катушках второго устройства наблюдается аналогичное рассогласование баланса токов. Вследствие этого появляется результирующая, отличная от нуля, что приводить к образованию э/м поля и момента индукции (вращающей силы). Под ее воздействием подвижный узел исполнительной части будет проворачиваться до состояния, в котором равновесие токов полностью восстановится. Нетрудно понять, что это состояние будет соответствовать положению другого прибора.

Авторегулирование

При авторегулировании приемник работает в трансформаторном режиме (на схеме – «б»). Его ротор в данной схеме неподвижен, а обмотка статора полностью отключена от сети. В ней наводится ЭДС за счет токов, протекающих в собственной роторной обмотке (их величина задается состоянием первого устройства). Отсюда следует, что величина наводимой в статоре приемника ЭДС полностью зависит от угла поворота подвижной части датчика.

Дополнительная информация: Из-за того, что обмотка статора приемника не подключена к сети – фаза напряжения в нем смещена на 90° относительно статорной катушки датчика.

Это обстоятельство учитываются при вычислении выходной ЭДС (через поправочный коэффициент).

Дифференциальный прибор

Это вариант исполнения применяется в тех случаях, когда возникает потребность в определении разности угловых положений двух электрически связанных приборов (таким образом, выявляется степень их рассогласования). Другими словами размещаемые на различных валах сельсиновые датчики в этом случае сравниваются по скорости перемещения их подвижных узлов, после чего определяется их рассогласование.

В данной схеме три катушки от двух крайних приборов электрически соединены с соответствующими обмотками ротора и статора еще одного (третьего) сельсина, который называется дифференциальным (на схеме – «в»). Угол вращения этого третьего определяется как разность показаний для двух приборов-датчиков.

Конструкция

Исполнение сельсинов диктует их принцип действия. Принято выделять:

  • контактные, у которых для соединения обмотки ротора и внешней цепи используются щетки и контактные кольца;
  • бесконтактные, в составе которых нет контактных элементов.

Каждая разновидность имеет свои отличительные особенности, с которым стоит обязательно ознакомиться, чтобы понять принцип работы.

Контактные

Контактные по своему исполнению аналогичны асинхронным электродвигателям с фазным ротором и малой мощностью. В их состав входят неявнополюсные ротор и статор. Благодаря этому обе обмотки – распределенные. У ротора предусмотрена обмотка возбуждения. Для подвода электротока используются два кольца.

У отдельных моделей уже имеется статор и ротор. Это их явное преимущество. В результате величина момента синхронизации возрастает. Однако контактные элементы в этом случае — явный недостаток.

Бесконтактные

Для их включения не нужны никакие контактные элементы. Обе обмотки изначально устанавливаются на статоре. Ротор имеет характерную цилиндрическую форму. Для его изготовления используется материал, имеющие ферримагнитные свойства. Алюминиевая прослойка делит роток на два полюса.

Торообразные сердечники располагаются на торцах сельсинов. Их внутренняя часть располагается над ротором. Наружная соединяется со стержнями внешнего магнитопровода. Для изготовления сердечников используется электротехническая листовая стали. Однофазная обмотка устройства состоит из двух дисковых катушек, располагающихся по обеим сторона статора между сердечниками и обмоткой синхронизации.

В процессе работы устройства происходит замыкание магнитного потока импульсного типа. Трехфазная синхронизирующая обмотка соединяется на статоре. Положение оси потока магнитной индукции по мере изменения пространственного положения ротора изменяется. Он занимает иное положение относительно синхронизирующих обмоток. Величина возникающей ЭДС напрямую зависит от величины угла, на который смог повернуться ротор.

К недостаткам подобных устройств является не такое эффективное использование активных материалов. Кроме того, они в среднем на 50% тяжелее контактных аналогов, что обусловлено большими воздушными зазорами. Благодаря последним, величина токов намагничивания возрастает.

Для чего служит сельсин датчик и что это такое

Всем кто хотел бы выяснить, что это такое сельсин датчик, необходимо подробно ознакомиться с его устройством и принципом действия. Для этого, прежде всего, следует понять, что он представляет собой разновидность электрических устройств, работающих только на переменном токе.

Лучший способ понять, что такое сельсин датчик – это разобраться с его назначением. После ознакомления с этим вопросом выясняется, что он позволяет отслеживать поведение подвижных частей двух устройств, удаленных на определенное расстояние. Такая возможность позволяет согласовывать их вращение в отсутствие механической связи (электрическим путем – по проводам). Другими словами, сельсиновые датчики это электрически синхронизированные передающие и приемные устройства.

Связанные материалы

Микроконтроллеры AVR в радиолюбительской практике. А. В. Белов… А. В. Белов Микроконтроллеры AVR в радиолюбительской практике Данная книга представляет собой…


Вторая жизнь лампового радиоприемника Philips 592LN (Голландия, 1947). Часть 3… В этой части разберемся с инсталляцией китайского ФМ-радиомодуля в древний Philips 592LN , с… Elect_60: программа микроконтроллерного управления внешними устройствами от ПК… Многие наши коллеги желающие создать микроконтроллерное устройство, управляемое от ПК сталкиваются…


Программирование точных часов с применением алгоритма Брезенхама (Bresenham’s Algorithm)… В свое время меня заинтересовала возможность реализации точного хода часов программно. Алгори class=»aligncenter» width=»350″ height=»350″ Трансивер 2,4 ГГц Nordic Semiconductor nRF24L01. Перевод таблиц даташита, пояснения и коды для организации сети… Wireless Transceiver Module NRF24L01+ 2.4GHz, 4 шт. на Али Привет, датагорцы! Выкладываю перевод…


Работа с датчиком DHT11. Строим термометр-гигрометр на ATMEGA8… Привет любителям электроники! Сегодня я решил познакомиться с датчиком влажности DHT11, который…

Программа ForMC в помощь программисту микроконтроллеров… Программа называется ForMC, изначально предназначалась для МК AVR. В ней объединены несколько…

Универсальный контроллер управления 7-сегментными LED индикаторами по двум проводам (Atmega16)… Занялся я конструированием нового устройства и встал вопрос — на чем отображать данные….

Термометр + термостат на микроконтроллере PIC16F876 и датчиках DS18B20… История этого термометра началась в далёком 2011 году. Мне понадобилось в подвале частного дома, в…

Простой модульный вольтметр переменного напряжения на PIC16F676… Простой вольтметр переменного напряжения с частотой 50 Гц, выполнен в виде встраиваемого модуля,…

Характеристика резистора для пассивного регулятора громкости… Давайте по простому разберемся, какая кривая зависимости сопротивления от угла поворота должна быть…

Цифровое телевидение, ч.1… Говорят про это много, но техническую сторону вопроса освещают нечасто. Поскольку работа моя…

Как определить мощность асинхронного электродвигателя.

Электродвигатель – обмотка статора

Время от времени в процессе работы, нужно найти количество оборотов асинхронного электродвигателя, на котором отсутствует бирка. И далековато не каждый электрик с этой задачей может совладать. Но мое мировоззрение, что каждый электрослесарь в этом должен разбираться. На собственном рабочем месте, как говорится – по долгу службы, вы понимаете все свойства собственных движков. А перебежали на новое рабочее место, а там ни на одном движке нет бирок. Найти количество оборотов электродвигателя, даже очень просто и просто. Определяем по обмоттке. Для этого нужно снять крышку мотора. Лучше это проделывать с задней крышкой, т. к. шкив либо полумуфту снимать не нужно. Довольно снять кожух

остывания и крыльчатку и крышка мотора доступна. После снятия крышки обмотку видно довольно отлично. Найдите одну секцию и смотрите сколько

Движок – 3000 об/мин

места она занимает по окружности круга (статора). А сейчас запоминайте, если катушка занимает половину круга (180 град.) – это движок на 3000 об/мин.

Движок – 1500 об/мин

Если в окружности вместится три секции (120 град.) – это движок 1500 об/мин. Ну и если в статоре вмещается четыре секции (90 град.) – этот движок на 1000 об/мин. Вот так совершенно просто можно найти количество оборотов “неизвесного” электродвигателя. На представленных рисунках это видно отлично.

Движок – 1000 об/мин

Это способ определения, когда катушки обмоток намотаны секциями. А бывают обмотки “всыпные”, таким способом уже не найти. Таковой способ намотки встречается изредка.

Еще есть один способ определения количество оборотов. В роторе электродвигателя, есть остаточное магнитное поле, которое может наводить небольшую ЭДС в обмотке статора, если мы будем крутить ротор. Эту ЭДС можно “изловить” – миллиамперметром. Наша задачка заключается в следующем: необходимо отыскать обмотку одной фазы, независимо как соединены обмотки, треугольником либо звездой. И к кончикам обмотки подключаем миллиамперметр, вращая вал мотора, смотрим сколько раз отклонится стрелка миллиамперметра за один оборот ротора и вот по этой таблице поглядеть, что за движок вы определяете.

(2p) 2 3000 r/min (2p) 4 1500 r/min (2p) 6 1000 r/min (2p) 8 750 r/min

Вот такие обыкновенные и думаю понятные два способа определения колличества оборотов на котором отсутствует бирка (табличка).

В СССР выпускался прибор ТЧ10-Р, может у кого и сохранился. Кто не лицезрел и не знал о таком измерителе, предлагаю поглядеть фото собственного. В комплекте имеется две насадки, – для измерения оборотов по оси вала и 2-ая для измерения по окружности вала.

Измерить колличество оборотов можно и при помощи “Цифрового лазерного тахометра”

“Цифровой лазерный тахометр”

Технические свойства:

Спектр: 2,5 об / мин ~ 99999 об / ми Разрешение / шаг: 0,1 об / мин для спектра 2,5 ~ 999,9 об / мин, 1 об / мин 1000 об / мин и поболее Точность: + / – 0,05% Рабочее расстояние: 50mm ~ 500mm Также указывается малое и наибольшее значение Для тех кому реально необходимо – просто супер вещь! Л. Рыженков

Недостатки, решения

У сельсинов невысокая точность синхронизации, особенно когда на валу сельсина-приёмника присутствует существенная механическая нагрузка.

Для решения этой проблемы сельсинных связей, применяются следящие электромеханические комбинированные связи — приёмный вал вращают вспомогательным электродвигателем, который включается в контур авторегулирования, в этом случае сельсин-приемник выступает в роли датчика угла рассогласования поворотов ведущего и ведомого валов. Т.е. по сути, сельсин в данном случае передаёт только угол поворота, за синхронность вращения валов отвечает авторегулятор, который управляет вспомогательным электродвигателем.

Другой недостаток сельсинов — относительно невысокая точность передачи угла, обусловленная погрешностями изготовления магнитопровода сельсина. Для повышения точности применяют пару сельсинов — «грубый» и «точный» (последний установлен через редуктор и за один оборот основного вала делает несколько оборотов). Если сигнал с грубого сельсина слабее некоторого порога, автоматика передаёт в линию связи сигнал с точного сельсина. Так же, для обеспечения точности, оба сельсина (датчик и приёмник) подключаются через редуктор.

Не имеющий нагрузочного момента ротор сельсина колеблется с частотой питающего переменного тока, поэтому для подавления этих колебаний приходится использовать механические демпферы. Из-за этого, в помещениях, где установлены сельсины, наблюдается постоянный монотонный шум.

В современных устройствах сельсины всё чаще заменяются энкодерами. И только там, где простота, надёжность и ремонтопригодность важнее точности (например, в авиации), сельсины всё ещё находят широкое применение.

Виды двигателей постоянного тока

К концу 19 века уже началась эксплуатация электрических машин постоянного тока: генераторов и моторов. Причем оба вида не отличаются конструктивно и могли применяться как для выработки электроэнергии, так и для производства работ.

Коллекторный мотор

Принцип вращения рамки с током в поле постоянного магнита наиболее ярко реализован в коллекторных электродвигателях. Такие электродвигатели работают как от постоянного, так и от переменного тока. Впервые судно с двигателем постоянного тока запустил Б.С. Якоби по реке Неве в 1838г.

Такой двигатель состоит из неподвижной части (статор), на которой устанавливаются магниты для маломощных двигателей или катушки из ферримагнитных сталей, и обмотки с медным проводом для мощных электрических машин.

Якорь МПТ собран из пластин электротехнической стали, изолированных от вала и друг от друга для уменьшения вихревых токов. В пазы цилиндра укладывается витки провода из меди разного сечения в зависимости от токов и выбранной схемы (петлевая, волновая). Концы проводов выводятся и ввариваются (впаиваются) в ламели коллектора.

Коллектор состоит из медных изолированных пластин (ламелей) закрепленных по окружности, изолированных друг от друга и корпуса якоря. По ним перемещаются притертые подпружиненные щетки, закрепленные в щеткодержателе, для последовательной подачи тока в обмотки якоря. При подаче напряжения на щетки, якорь начинает вращаться и двигатель постоянного тока выходит в заданный режим.

Универсальный коллекторный мотор

Дальнейшее развитие коллекторных ДПТ позволило использовать их при работе от источников переменного тока. Для этого шихтуется не только якорь, но и цилиндр статора набирается из пластин электротехнической стали, а обмотки возбуждения соединяются последовательно с якорными. Одновременная смена полярности на них при прохождении переменного тока не меняет направление вращения вала двигателей.

Основное отличие — шихтованные статор и якорь делают магнитный поток стабильным и не создают вихревых токов (меньше греются). В остальном универсальный двигатель мало чем отличается от обычного коллекторного.

Вентильно-индукторные двигатели

Такие электромоторы иногда называются бесщёточными или безколлекторными. Суть такой конструкции в том, что ротор имеет зубчатое строение, собранное из постоянных магнитов, а обмотки возбуждения размещаются на зубчатых полюсах статора.

Переключением полюсов (катушек) занимается встроенный контроллер, за обратную связь, контролирующую положение якоря (ротора), отвечает датчик Холла. При включении пары катушек магнит на роторе движется к ней, затем следующая пара получает питание. Скорость вращения определяется частотой переключения катушек — чем выше частота, тем выше скорость.

Недостатком такой конструкции является пульсирующий крутящий момент. Плюсы: нет коллектора и щеток, простая конструкция, хорошее управление скоростью и малые габариты.

Безколлекторный с независимым возбуждением

Конструкция ротора этого двигателя собрана из двух зубчатых пакетов из магнитной стали на общей оси. Вершины зубцов пакета смещены друг относительно друга на 120°. Пакеты отстоят друг от друга на расстоянии, а зубцы одного совпадают с впадинами другого, таким образом, что суммарный магнитный поток ротора равен нулю.

Размещенная на статоре обмотка возбуждения тоже распределена со смещением в 120°.  Собранный из электротехнической стали статор имеет размер такой, чтобы его магнитное поле перекрывало оба пакета магнитов ротора.

Поочередное включение катушек ротора создает магнитное поле в обоих магнитных блоках и ротор начинает плавно вращаться. Изменяя частоту и направление переключения секций обмотки возбуждения, а также силу тока в них, можно получить бесконтактный реверс, линейный крутящий момент и плавное изменение скорости.

Кроме этих достоинств есть еще отсутствие магнитов и графитовых щеток с коллектором. К недостаткам можно отнести сложность конструкции двигателей и питание обмоток от электронного преобразователя.

Несомненными достоинствами двигателей постоянного тока можно отнести:

  • уровень плавного регулирования скорости достигает 10000 об/мин;
  • легкость управления скоростью за счет напряжения, а крутящего момента — током якоря;
  • за счет обратной связи можно поддерживать хороший момент на малых оборотах.

Их недостатков можно отметить обязательное наличие преобразователя переменного тока в постоянный и сложность конструкции некоторых видов двигателей (коллектор со щетками, сложный якорь).

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: