Как сделать светодиодную гирлянду своими руками с простейшей схемой и на литиевых батарейках

Разбились лампочки

В случае если разбились лампочки и есть желание починить устройство, то желательно просто заменить поврежденный источник света. Следует отметить, что замена осуществляется исключительно при выключенном питании, чтобы избежать удара током. В подобных ситуациях следует отдать должное небьющимся лампочкам, так как не всегда приходится сталкиваться с неисправностями.

Итак, если обнаружилось, что гирлянда не работает, то следует попробовать визуально и при помощи тестера определить проблемный участок и вырезать его. После чего рабочие секции необходимо соединить с помощью специальных соединителей. На этом ремонт можно считать законченным.

Гирлянды со смешанным (последовательно-параллельным) включением ламп

3.1. Гирлянда типа «многоконтурное кольцо»

Увеличить количество ламп в одной гирлянде, не используя мощного источника питания и не повышая толщины проводов, позволяет смешанное (последовательно-параллельное) включение ламп на сетевое напряжение. Такие гирлянды содержат в себе сразу несколько последовательных контуров, включённых параллельно (рис. 4):

Как видим, дополнительные контуры позволяют практически неограниченно наращивать количество ламп в одной гирлянде. Кроме этого, если установить в каждый из контуров лампу с прерывателем («мигающую»), можно получить очень красивый декоративный эффект их хаотического перемигивания. Именно по этому принципу была построена советская двухконтурная новогодняя электрогирлянда «Салют» (рис. 9):

Зарубежные модели, использующие аналогичный принцип, могут содержать до 5 контуров и до 200 или более ламп в одной гирлянде. Не будет преувеличением сказать, что по этой схеме построено подавляющее большинство современных гирлянд с прямым питанием от сетевого напряжения и контроллером световых эффектов (в этом случае каждый из контуров питается от своего канала контроллера). Такие гирлянды могут иметь несколько типичных конфигураций, которые мы рассмотрим подробнее.

3.2. Гирлянда типа «многоконтурная нитка»

Последовательно-параллельная схема включения ламп является базовой для построения практически всех многоконтурных гирлянд с контроллером световых эффектов. Однако проще всего понять принцип её работы можно именно на гирляндах типа «многоконтурная нитка», где количество посторонних ответвлений и прочих сбивающих с толку «отвлекающих манёвров» минимально (рис. 10):

Наиболее часто встречаются варианты с 4 и 2 контурами (в первом случае каждый из имеющихся в гирлянде цветов управляется раздельно, а во втором цвета группируются по парам, чаще всего «красный-жёлтый» и «синий-зелёный»). Для управления ими используются соответственно 4- и 2-канальные контроллеры (они НЕ взаимозаменяемы!)

3.3. Гирлянда типа «сетка»

С появлением смешанной схемы количество гирлянд, построенных на её основе, стало расти как на дрожжах. Второй очень популярный вариант известен в обиходе как «сетка», так как имеет соответствующую конфигурацию (рис. 12):

На самом деле это всё та же «многоканальная нитка», уложенная определённым образом (рис. 13):

Обратите внимание, что в «сетке» обязательно присутствуют «лишние» провода, выполняющие исключительно несущую функцию (на рисунке они показаны серым пунктиром)

3.4. Гирлянда типа «занавес»

Это ещё один популярный форм-фактор новогодних гирлянд, в первую очередь предназначенный для украшения больших вертикальных поверхностей – окон, витрин, стен и т.д. На самом деле, он представляет собой всё ту же «многоканальную нитку», но разделённую на части, объединённые общим горизонтальным проводом (рис. 14):

На рисунке 14 серым пунктиром показаны границы между «нитками» занавеса (все провода в пределах одной нитки увязываются в один жгут).

3.5. Гирлянда типа «сосульки»

По сути, это несколько видоизменённый (и чуточку упрощённый) вариант предыдущей гирлянды типа «занавес». Отличается он тем, что в разных нитках присутствует разное количество ламп, а также отсутствием упорядоченности в управляемых цветах. Чаще всего гирлянды этого вида бывают вообще одноцветными, причём могут вовсе не содержать контроллера (рис. 15):

Практические примеры для повторения

Наибольшей популярностью среди радиолюбителей пользуются схемы, предназначенные для управления яркостью светильника и изменения мощности паяльника. Такие схемы просты для повторения и могут собираться без использования печатных плат простым навесным монтажом.

Схемы, выполненные самостоятельно, ничем не уступают по работоспособности заводским, так как не требуют настроек и при исправных радиодеталях сразу готовы к использованию. В случае отсутствия возможности или желания изготовить прибор своими руками с «нуля», можно приобрести наборы для самостоятельного изготовления. Такие комплекты содержат все необходимые радиоэлементы, печатную плату и схему с инструкцией по сборке.

Доминирующая схема

Такой прибор проще всего собрать на тиристоре. Работа схемы основана на способности открывания тиристора при прохождении входной синусоиды через ноль, в результате чего сигнал обрезается, и величина напряжения на нагрузке изменяется.

Схема для повторения тиристорного регулятора мощности построена на использовании тиристора VS1, в качестве которого используется КУ202Н. Это радиоэлемент изготавливается из кремния и имеет структуру p-n-p типа. Применяется в качестве симметричного переключателя сигналов средней мощности и коммутации силовых цепей на переменном токе.

При подаче напряжения 220в входной сигнал выпрямляется и поступает на конденсатор C1. Как только значение падения напряжения на C1 сравняется с величиной разности потенциалов, в точке между сопротивлениями R3 и R4 биполярные транзисторы VT1 и VT2 открываются. Уровень напряжения ограничивается стабилитроном VD1. Сигнал поступает на управляющий вывод КУ202Н, а конденсатор C1 разряжается. При возникновении сигнала на управляющем выводе тиристор отпирается. Как только конденсатор разрядится, VT1 и VT2 закрываются, соответственно запирается и тиристор. При следующем полупериоде входного сигнала всё повторяется вновь.

Такой регулятор возможно использовать не только как диммер, но и для управления мощностью коллекторного двигателя. Доминирующая схема может работать при токах до 10 ампер, эта величина напрямую зависит от характеристик используемого тиристора, при этом он обязательно устанавливается на радиатор.

Контроллер нагрева паяльника

Управление мощностью паяльника не только положительно сказывается на сроке его службы, предотвращая жало и внутренние его элементы от перегревания, но и позволяет выпаивать радиоэлементы, критичные к температуре устройства.

Читать также: Двутавровая балка для чего нужна

Приборы для контроля температуры паяльника выпускаются давно. Одним из его видов был отечественный прибор, выпускающийся под названием «Добавочное устройство для электропаяльника типа П223». Он позволял подключать низковольтный паяльник к сети 220В.

Проще всего выполняется регулятор для паяльника с применением симистора КУ208Г.

Силовые контакты подключаются последовательно к нагрузке. Поэтому ток, протекающий через симистор, совпадает с током нагрузки. Для управления ключевым режимом применяется динистор VS2. Конденсатор C1 заряжается через резисторы: R1 и R2. Индикация работы организовывается под средством VD1 и светодиода LED. Из-за того, что для изменения напряжения на конденсаторе требуется время, образуется сдвиг фаз между сетевым и конденсаторным напряжением. Изменяя величину сопротивления R2, регулируется величина фазового сдвига. Чем дольше конденсатор заряжается, тем меньше находится в открытом состоянии симистор, а значит и значение мощности ниже.

Такой регулятор рассчитан на подключение нагрузки с мощностью до 300 ватт. При использовании паяльника с мощностью более 100 ватт симистор следует устанавливать на радиатор. Изготовленная плата с лёгкостью помещается на текстолите размером 25х30 мм и свободно размещается во внутренней сетевой розетке.

В электрических схемах для изменения уровня выходного сигнала используется регулятор напряжения. Основное его назначение — изменять подаваемую на нагрузку мощность. C помощью устройства управляют оборотами электродвигателей, уровнем освещённости, громкостью звука, нагревом приборов. В радиомагазинах можно приобрести готовое изделие, но несложно изготовить регулятор напряжения своими руками.

Из чего состоит елочная гирлянда

Что же из себя представляет гирлянда из светодиодов, хуже она или лучше обычной?

Внешне это почти то же самое изделие, что и раньше — провода, лампочки (светодиодные), блок управления.

Самый главный элемент — это конечно блок управления. Маленькая пластиковая коробочка, на которой указаны всевозможные режимы работы подсветки.

Меняются они простым нажатием кнопки. Сам блок может быть с довольно хорошо защищенным уровнем влаго и пылезащиты IP44.

Что у него внутри? Чтобы его вскрыть, острым кончиком ножа или тонкой отверткой поддеваете защелки снизу и скидываете защитную крышку.

Кстати, иногда она бывает приклеена, а не просто сидеть на защелках.

Первым делом, внутри увидите припаянные к плате провода. Более толстый провод, это как правило сетевой, подающий напряжение 220В.

На плате припаяны:

контроллер, который и создает все световые эффекты

тиристоры, каждый из них идет на отдельный канал гирлянды

резисторы

конденсатор

и диодные мосты

Количество элементов платы, зависит в первую очередь от числа световых каналов гирлянды. В более дорогих моделях может присутствовать предохранитель.

Виды тиристоров

Есть несколько образов тиристоров, которые можно классифицировать следующими методами:

  • по режимам контроля;
  • согласно электропроводности;
  • в соответствии с порядком работы;
  • по форме управления.

Итак, начнем с классификации тиристоров по режимам контроля. Следует сказать о том, что полупроводниковый инструмент обладает двумя выходными путями, различающиеся в своих открытиях.

Если один открывается вводом напряжения на анодный блок, то другой — на катодный. Однако, есть некоторое замечание: подают не только напряжение, но и импульс. Если импульс связывают с управляющим выходом и катодом, то устройство будет иметь такое название: “Тиристор с катодным управлением”. В противном случае — с анодным.

По электропроводности

Перейдем к другой классификации устройства. Как было сказано ранее — тиристоры (единичные) проводят ток лишь в одном направлении, то есть обратного провода не существует (это первый вид электропроводности). Однако, следует оговориться, ведь мы знаем, что наш прибор работает благодаря подачи напряжения в роли ключа (переключателя), а если использовать двойной элемент, то бишь симметричный тиристор, тогда устройство сможет проводить ток сразу в двух направлениях (это есть обратная электропроводность — 2-й вид).

По режиму работы

Наконец, перейдем к рассмотрению последнего вида классификации. Выделяют три главных, которые чаще всего используется в современных, более усовершенствованных, полупроводниковых элементах:

Также есть возможность рассказать о следующих подвидах тиристора: Запирающиеся и не запирающиеся (в первом случае: «+» прикреплен к отрицательно заряженному электроду, а «-» приложен к положительно заряженному; во 2-ом случае — противоположное положение дел); Быстродейственные (способны за короткий временной отрезок, без потери коэффициента полезного действия, перейти из “закрытого” состояния в “открытое”); Электроимпульсные (с минимальными потерями проводят переходный процесс фаз).

Причины поломки

Существует множество причин, способных привести гирлянду в неисправное состояние:

  • недостаточный контакт на проводниках;
  • вышедший из строя световой диод в одной из ламп;
  • поломка конденсатора или тиристора;
  • сгоревшая микросхема контроллера.

Микросхема на плате горит не часто. Среди всех причин сгоревшие микросхемы встречаются примерно в каждом десятом случае.

Лампочки одного из цветов горят тускло

В этой ситуации проблема может быть в повреждении провода. Для проверки нужно аккуратно на включённой гирлянде пошевелить провода и если свечение восстановиться, то необходимо найти место перелома провода или ослабления контакта и устранить проблему. Неисправность может быть в тиристоре, работоспособность которого можно проверить способом из предыдущего пункта, а устранить проблему можно лишь заменой элемента на новый.

Это интересно: Не работает музыкальный центр LG FFH -1079: в чем причина

Регулятор для индуктивной нагрузки

Тех, кто попытается управлять индуктивной нагрузкой (например, трансформатором сварочного аппарата) при помощи выше указанных схем, ждет разочарование. Устройства не будут работать, при этом вполне возможен выход из строя симисторов. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.

Существует два варианта решения проблемы:

  1. Подача на управляющий электрод серии однотипных импульсов.
  2. Подавать на управляющий электрод постоянный сигнал, пока не будет проход через ноль.

Первый вариант наиболее оптимален. Приведем схему, где используется такое решение.

Если некоторые светодиоды не горят

Знакома многим та ситуация, когда не горит не вся гирлянда, а только некоторые ее лампочки. Сразу же встает вопрос о том, что проверять и как ремонтировать неисправности.

В первую очередь, обратите внимание на соединения контактов на печатной плате. Плата находится в блоке, который расположен обычно рядом с штекером включения

Если вы заметили, что какой-то контакт отстал и испорчен, то лучше всего его сразу припаять или заменить. В зависимости от ситуации, лучшим вариантом будет воспользоваться видео ремонта гирлянды своими руками.

Если с контактами порядок, то необходимо задуматься о том, что могла перегореть лампочка. Лед приборы освещения, в том числе и гирлянды, имеют связную последовательность. Именно поэтому, когда одна лампочка на определенной линии перегорает, остальные тоже не горят.

Для того, чтобы починить такую поломку, нужно проверить всю гирлянду.

Как вы видите, ремонт новогодней гирлянды своими руками не так уж сложен в данном случае.

Повреждение светодиода

Если контакты проводов в порядке и вы пропустили один из диодов, как проверить, исправен ли он? И самое главное, как найти его среди всей серии лампочек?

Первым делом отключите гирлянду от розетки. Начнем с последнего диода. Кабель питания идет прямо от блока управления.

К этой же ножке припаивается отходящий проводник. Переходим к следующей ветке светового канала. Также необходимо проверить диод между двумя его проводами питания (вход-выход).

Вам понадобится мультиметр и его щупы, несколько модернизированные.

Плотно наденьте тонкие иглы на кончики щупов тестера так, чтобы их кончик выступал максимум на 5-8 мм.

Оберните все сверху плотным слоем изоленты.

Поскольку светодиоды припаяны, просто вытащить их из колбы, как в обычных гирляндах, не получится.

Поэтому вам нужно будет проткнуть изоляцию проводов, чтобы добраться до медных проводов проводов. Переключите мультиметр в режим проверки целостности диодов.

И начинаешь последовательно пробивать провода питания возле каждого подозрительного диода.

Если у вас гирлянда не 220В, а 12В или 24В, которая подключается таким блоком питания:

тогда должен загореться светодиод исправной батареи мультиметра.

Если это подсветка 220В, проверьте показания мультиметра.

На рабочих элементах они будут примерно одинаковы, а вот неисправный покажет обрыв цепи.

Метод, конечно, варварский и вредный для изоляции, но он работает достаточно. Правда, уличные гирлянды после таких проколов на улице лучше не использовать.

Ремонтные работы

Ремонт мигающего осветительного прибора осуществляем в такой последовательности:

  1. Проверяем напряжение в электросети и качественность контактов.
  2. Меняем лампочку на исправную.
  3. Если светильник продолжает мигать, меняем стартер в светильниках ЭмПРА, проверяем дроссель. В случае с ЭПРА понадобится починка или замена электронного балласта.

Для выполнения ремонтных работ понадобится определенный набор инструментов, в том числе паяльник, мультиметр, отвертки. Очень неплохо, если кроме инструмента имеется хотя бы базовый набор познаний в электротехнике.

Электромагнитный балласт

Чтобы починить устройство с ЭмПРА, выполняем следующие действия:

  1. Проверяем конденсаторы. Применяются для снижения электромагнитных помех и компенсации недостатка реактивной мощности. В некоторых случаях неисправность связана с утечками тока в конденсаторах. Эту причину нужно исключить первой, чтобы избежать ненужной замены достаточно дорогостоящего конденсатора.
  2. Прозваниваем электромагнитный балласт, чтобы найти пробой. Если мультиметр имеет опцию замера индуктивности, по характеристикам дросселя ищем межвитковое замыкание. Перемотка балласта своими руками не стоит потраченного времени — это очень трудоемкая операция. В связи с этим балласт проще поменять или поставить электронный аналог. Нужный ЭПРА можно купить в магазине или достать из вышедшей из строя лампы.

Электронный балласт

Схемы ЭПРА отличаются в зависимости от производителя. Однако принцип их работы ничем не отличается друг от друга: нити накала характеризуются определенной индуктивностью, что дает возможность задействовать их в автоколебательном контуре. Контур включает конденсаторы и катушки, обладает обратной связью с инвертором, состоящим из мощных транзисторных ключей.

Когда нити нагреваются, их сопротивление возрастает, параметры колебаний меняются. Реакция инвертора состоит в выдаче напряжения для розжига лампочки. Происходит шунтирование током через ионизированную газовую среду напряжения на нитях, вследствие чего снижается накал. Обратная связь инвертора с автоколебательным контуром дает возможность управлять силой тока в лампочке.

Для запитывания инвертора используется диодный выпрямитель, оснащенный системой фильтрации и преодоления помех. Высокочастотный инвертор — одна из причин, почему ЭПРА пользуется повышенным спросом у потребителей. Такая лампа не мигает с удвоенной частотой сети 100 Гц, работает практически бесшумно (в отличие от ЭмПРА).

Ремонт электронного балласта

Для диагностирования состояния ЭПРА в условиях мастерской применяют осциллограф, частотный генератор или другую измерительную технику. Если ремонт проводится дома, поиск проблемы осуществляется путем визуального осмотра электронной платы и последовательного поиска испорченного компонента с помощью подручных измерительных устройств.

Вначале проверяем предохранитель (если есть). Поломка предохранителя нередко оказывается причиной выхода из строя светильника. Бывает это в случае скачка напряжения в электросети. Предохранитель перегорает из-за неправильной работы пускорегулирующего устройства.

Причиной неисправности может быть практически любой элемент балласта, в том числе конденсатор, резистор, транзистор, диоды, дроссели и трансформаторы. На проблему указывает почернение электронных компонентов, произошедшее вследствие выгорания.

Работоспособность системы проверяют мультиметром. Чтобы проверка была качественной, рекомендуется разобрать систему на детали, выпаяв нужные компоненты из платы. Когда детали находятся вместе, возможны ложные результаты измерений. Без выпаивания достоверные показатели можно получить лишь на пробой.

Совет! При тестировании элементов системы нередко появляются проблемы с их идентификацией. В связи с этим рекомендуется еще до начала ремонта обзавестись схемой устройства.

Найденные неисправные детали следует заменить. Пайка полупроводников (диодов и транзисторов) должна осуществляться очень аккуратно, так как эти компоненты легко выходят из строя после перегрева.

Обратите внимание! Запуск электронного балласта без нагрузки недопустим. Вначале следует подключить к балласту лампочку дневного света подходящей мощности

Типичная схема использования

В большинстве случаев схема применения тиристорного регулятора остаётся прежней, мало меняющейся с годами:

  1. Программные установки (ПУ) в виде кода закладываются в память арифметического устройства (АУ) электронного блока. В стиральной машине это самая дорогая часть. Настолько, что замена часто нецелесообразна.
  2. Тиристорный регулятор служит вводным устройством (ВУ), куда поступает управляющий сигнал.
  3. Изменённое напряжение воздействует на сервисный привод (СП), обмотки двигателя, коллектор и пр. Линия обратной связи показывает, что малая нестабильность компенсируется непосредственно без участия центрального процессора. Выше уже говорилось про величину искрения.
  4. Механизм (М) отрабатывает команды. На валу стоит централизованный датчик положения (ЦДП), по которому процессор понимает, что происходит в результате подачи команд. При необходимости алгоритм корректируется.
Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: