Что такое напряжение нулевой последовательности? Схемы, применение, физический смысл
Система трехфазных напряжений в нормальном режиме работы является симметричной. Но, стоит произойти короткому замыканию, как симметрия нарушается. Для удобства распознавания видов КЗ и проведения расчетов применяется метод симметричных составляющих. Согласно ему любую трехфазную систему с момента КЗ можно, для удобства расчетов, представить в виде суммы напряжений трех симметричных систем:
- прямой последовательности;
- обратной последовательности;
- нулевой последовательности.
Все они являются мнимыми величинами, не существующими на самом деле. Но с помощью некоторых ухищрений их можно сделать реально осязаемыми, и применить на практике.
Устройства, выделяющие из системы трехфазных напряжений напряжение нужной последовательности, называют фильтрами. Рассмотрим одно из таких устройств, применяемое на практике для фиксации замыканий на землю.
Назначение дополнительных обмоток ТН
Особенностью напряжения нулевой последовательности (3Uo) является тот факт, что оно не появляется в результате междуфазных замыканий, а является только следствием КЗ на землю
Причем, не важно, где происходит замыкание: в электроустановке с изолированной или глухозаземленной нейтралью
Фильтром для выделения этой величины являются специальные обмотки трансформаторов напряжения (ТН).
Этот процесс происходит по-разному в зависимости от конструкции трансформаторов. Если используются три одинаковых ТН, у каждого из них имеется специальная обмотка, выводы которой обозначены буквами «Ад» и «Хд». Эти обмотки соединяются между собой последовательно, с обязательным соблюдением направления. Провод от вывода «Хд» фазы «А» идет на вывод «Ад» фазы «В» и так далее. Такая схема включения называется разомкнутым треугольником.
В итоге на оставшихся разомкнутыми выводах «Ад» первой фазы и «Хд» последней в любого случае повреждения в сети, связанного с замыканием на землю, появится 3Uo. Можно его измерить, а также использовать для работы сигнализации, подключив к обмотке реле напряжения. Можно использовать и для работы защит, но об этом – немного позднее.
В трансформаторах напряжения, объединяющих обмотки трех фаз в одном корпусе, не требуется выполнять внешние соединения для фильтра 3Uo. Все уже выполнено заранее, внутри корпуса трансформатора.
Если в предыдущем случае выделение 3Uo происходит путем последовательного сложения векторов напряжений за счет коммутации проводников, то внутри трехфазного ТН это происходит за счет сложения магнитных потоков в сердечнике. Поэтому, в зависимости от его формы, внутренняя схема соединений обмоток Ад-Хд может отличаться.
Но сути это не меняет: в итоге на корпусе рядом с выводами основных обмоток, использующихся для учета, измерения и защиты, появляется выводы от объединенной дополнительной обмотки 3Uo. Обозначается она точно так же, как и на однофазных ТН.
Интересное видео о ТЗНП смотрите ниже:
Защита на токах нулевой последовательности
Но при наличии замыкания на землю нулевая последовательность токов выходит из равновесия. Появляется результирующий ток, на который и реагирует релейная защита.
На ЛЭП — 110 кВ это выполнить невозможно и токи замыкания на землю определяются по другому принципу. Для этого на обычных трансформаторах тока, использующихся для релейной защиты, выделяется отдельная обмотка на каждой фазе. Обмотки фаз соединяются между собой последовательно особым способом: начало следующей соединяется с концом предыдущей. В эту же цепь включаются и токовые обмотки реле.
Обычно защищаемый участок разделяется на участки (зоны), примерно, как у дистанционной защиты. Сама защита выполняется многоступенчатой. Ток срабатывания первой ступени максимальный, выдержка времени – минимальна или равна нулю. Следующая ступень срабатывает при меньшем токе, но с большей выдержкой по времени. И так далее.
На другом конце линии установлена такая же защита. А линий может быть много. Наличие ступеней позволяет обеспечить отключение именно участка с повреждением, а также – резервировать другие защиты в случае их отказа.
Защита на токах нулевой последовательности
Но при наличии замыкания на землю нулевая последовательность токов выходит из равновесия. Появляется результирующий ток, на который и реагирует релейная защита.
На ЛЭП — 110 кВ это выполнить невозможно и токи замыкания на землю определяются по другому принципу. Для этого на обычных трансформаторах тока, использующихся для релейной защиты, выделяется отдельная обмотка на каждой фазе. Обмотки фаз соединяются между собой последовательно особым способом: начало следующей соединяется с концом предыдущей. В эту же цепь включаются и токовые обмотки реле.
Обычно защищаемый участок разделяется на участки (зоны), примерно, как у дистанционной защиты. Сама защита выполняется многоступенчатой. Ток срабатывания первой ступени максимальный, выдержка времени – минимальна или равна нулю. Следующая ступень срабатывает при меньшем токе, но с большей выдержкой по времени. И так далее.
На другом конце линии установлена такая же защита. А линий может быть много. Наличие ступеней позволяет обеспечить отключение именно участка с повреждением, а также – резервировать другие защиты в случае их отказа.
Защита бытовых сетей (УЗО)
Защита от перенапряжения в частном доме
Работа устройств с дифзащитой, устанавливаемых на вводах в административные и жилые здания, ничем существенно не отличается от уже рассмотренного ранее принципа действия для трансформаторов и двигателей. В них также имеется чувствительный элемент, реагирующий на дисбаланс втекающего и вытекающего тока и реагирующий при его появлении отключением потребителя от питающей линии.
Устройства этого класса, используемые в обозначенных выше целях, получили название УЗО (смотрите рисунок ниже).
Защита линии с УЗО
Причиной возникновения дисбаланса токов в бытовых условиях могут быть следующие факторы:
- Прикосновение человека или животного к оголенным токовым носителям (проводам) или к оказавшемуся под опасным потенциалом корпусу оборудования;
- Разрушение изоляции электропроводки с угрозой КЗ;
- Повышенная влажность в обслуживаемом помещении (в ванной, например);
- Повреждение кабелей бытовых электроприборов с образованием утечки на землю.
Обратите внимание! В тех случаях, когда система узо срабатывает без наличия нарушений в работе потребителя (без нагрузки токами утечки), следует считать, что этот прибор неисправен и подлежит ремонту. Особенностью функционирования систем УЗО является реагирование на микроскопические токи утечки (мкА), фиксируемые при появлении малейшей «подозрительной» пассивной или емкостной связи с землёй
При этом такая система срабатывает практически мгновенно, обеспечивая стопроцентную защиту человека от поражения электричеством
Особенностью функционирования систем УЗО является реагирование на микроскопические токи утечки (мкА), фиксируемые при появлении малейшей «подозрительной» пассивной или емкостной связи с землёй. При этом такая система срабатывает практически мгновенно, обеспечивая стопроцентную защиту человека от поражения электричеством.
В электротехнике принимается за правило, что обеспечить эффективную дифференциальную защиту с помощью УЗО удаётся лишь при использовании трехуровневой схемы. Это означает, что в защищаемую линию последовательно включается несколько устройств, рассчитанных на три уровня значений токов утечки: 100-300, 30 и 10 мА, соответственно.
Важно! Такая токовая защита, работающая по дифференциальному принципу, может быть эффективной даже на объектах, где в составе проводки шина заземления отсутствует. Ещё одной особенностью этого устройства является необходимость периодически (не реже раза в месяц) проверять его работоспособность, для чего на нём имеется специальная кнопка под названиями «Тест» или «Проверка»
В проверочную схему, помимо контрольной кнопки, входит ограничительный резистор, через который во время тестирования пропускается определённый ток, соответствующий аварийной ситуации
Ещё одной особенностью этого устройства является необходимость периодически (не реже раза в месяц) проверять его работоспособность, для чего на нём имеется специальная кнопка под названиями «Тест» или «Проверка». В проверочную схему, помимо контрольной кнопки, входит ограничительный резистор, через который во время тестирования пропускается определённый ток, соответствующий аварийной ситуации.
Устройство и принцип действия сетей с глухозаземлённой нейтралью
Принцип работы источников электроэнергии, в частности, понижающих трансформаторов основан на законе взаимоиндукции и передаче энергии по магнитному сердечнику. Первичная обмотка при этом может и не иметь нулевого провода, в отличие от вторичной, где соединение его с нулём через проводник с низким сопротивлением, который можно приравнять с нулевым значением, будет являться эффективным средством защиты от поражения человека опасным для его жизни и здоровья напряжением.
Главной особенностью сетей с глухозаземлённой нейтралью является появление не только линейного, но и фазного напряжения. Что это такое и чем оно отличается друг от друга, рассмотрим на примере простой принципиальной схемы.
Фазное напряжение — это потенциал между одним из проводов линии и нулевой точкой, присоединенной к земле, то есть наглухо заземлённой. Линейное напряжение — разница потенциалов между двумя выводами линий, то есть L1 и L2, L1-L3, или же L2-L3, называется оно также межфазное. Такие источники электрической энергии в бытовых условиях имеют распространенное значение напряжения в виде 380 В — линейного, и 220 — фазного. Линейное напряжение больше фазного на √3, то есть на 1,72.
Но основная задача такой системы это не только транспортировка к потребителям напряжений двух значений при разном количестве фаз в одной системе электроснабжения, но и защита человека при пробое изоляции и появлении напряжения в точках, которые в нормальном состоянии не имеют опасного потенциала. В жилых зданиях это:
- корпуса всех бытовых приборов, которые проводят электрический ток, то есть сделаны из стали или другого токопроводящего металла;
- металлоконструкции щитовых и распределительных устройств;
- защитная оболочка кабелей.
Также для обеспечения безопасности все перечисленные выше элементы должны быть заземлены, именно в этом случае опасность от использования напряжения и применения бытовых приборов в сетях с глухозаземлённой нейтралью будет минимальна. При этом для таких цепей обязательна равномерность распределения однофазных нагрузок.
Терминал «ТОР 300 РЗТ 52Х»
Цепи тока | IA,ВН, IB,ВН, IC,ВН – фазные токи стороны ВН
3I0,ВН – ток нулевой последовательности стороны ВН |
Цепи напряжения | UAВ,СН, UBС,СН – линейные напряжения стороны СН
UAВ,НН1, UBС,НН1 – линейные напряжения стороны НН1 UAВ,НН2, UBС,НН2 – линейные напряжения стороны НН2 |
Цепи постоянного тока и напряжения | IЭМО1, IЭМО2, IЭМВ – постоянные токи электромагнитов
UЭМ1, UЭМ2 – постоянные напряжения электромагнитов |
Дискретные входы | 53 шт. |
Выходные реле | 53 шт. |
Терминал обеспечивает осциллографирование с частотой дискретизации до 2000 Гц и хранение в энергонезависимой памяти до 200 записей.
Релейная защита и автоматика систем электроснабжения
Газовая защита
Обеспечивается действие от сигнальной и отключающей ступеней газовой защиты бака трансформатора и газовой защиты (струйного реле) бака РПН. Реализован контроль изоляции цепей газовой защиты с помощью РКТУ с действием на сигнализацию, предусмотрена возможность блокирования действия на отключение от неисправной газовой защиты. Обеспечивается минимальная длительность отключения от газовой защиты для исключения влияния дребезга контакта.
Отключающая ступень газовой защиты может быть переведена на сигнал с помощью оперативного переключателя, сигнальная ступень – на отключение с помощью программной накладки.
УРОВ ВН
Устройство резервирования отказов выключателя ВН выполнено с контролем по току с использованием реле тока с малым временем возврата (не более 20 мс). При отказе выключателя УРОВ ВН осуществляет действие на отключение смежных выключателей через цепи ДЗШ. Предусмотрена возможность выполнения УРОВ с автоматическим действием на свой выключатель (действие «на себя») для проверки его исправности, или с контролем действия на электромагнит отключения по факту пропадания сигнала РПВ из автоматики управления выключателя.
ТЗНП ВН
Токовая защита нулевой последовательности стороны ВН выполнена ненаправленной и действует на отключение через четыре выдержки времени: на отключение смежного трансформатора с разземленной нейтралью, деление ШСВ/СВ, отключение своего выключателя ВН и трансформатора со всех сторон. Предусмотрена ступень для отключения выключателя ВН при работе трансформатора с разземленной нейтралью, ввод данной ступени производится автоматически по факту отсутствия тока нулевой последовательности в нейтрали «своего» трансформатора и наличия его в нейтрали смежного трансформатора, а также пуска реле тока обратной последовательности ВН.
МТЗ ВН
Максимальная токовая защита стороны ВН выполнена с пуском по напряжению сторон СН, НН1 и НН2 и действует на отключение трансформатора со всех сторон. Предусмотрено включение реле тока МТЗ ВН на разность токов фаз. МТЗ ВН имеет до трех ступеней, одна из которых может использоваться в качестве токовой отсечки.
Основные и резервные защиты: мифы и реальность
Автоматика управления выключателем
- трёхфазное автоматическое повторное включение присоединения и шин с контролем и улавливанием синхронизма;
- включение выключателя от ключа управления и по логике АПВ;
- отключение выключателя от ключа управления и от защит (через ЭМО 1 и ЭМО 2);
- подхват отключения выключателя при протекании тока в ЭМО;
- подхват включения выключателя при протекании тока в ЭМВ.
Защиты выключателя
Неравенство — напряжение — короткое замыкание
Неравенство напряжений короткого замыкания вызовет распределение нагрузки между параллельно включенными трансформаторами, непропорциональное их номинальным мощностям. Такое же распределение нагрузок возникает и при неодинаковых коэффициентах трансформации включаемых на параллельную работу трансформаторов. Коэффициент трансформации может быть при необходимости изменен, если эксплуатационные условия потребуют этого. Для изменения коэффициента трансформации предусматриваются ответвления у трансформаторных обмоток.
При неравенстве напряжений коротких замыканий параллельная работа трансформаторов нежелательна, так как нельзя получить полной мощности от этих трансформаторов.
При неравенстве напряжений коротких замыканий параллельная работа трансформаторов нежелательна, так как нельзя получить полной мощности этих трансформаторов. При номинальной нагрузке трансформатора с меньшим напряжением короткого замыкания трансформатор с большим напряжением короткого замыкания будет недогружен. Если же трансформатор с большим напряжением короткого замыкания нагрузить номинальной мощностью, то трансформатор с меньшим напряжением короткого замыкания окажется перегруженным и длительно работать не сможет.
При неравенстве напряжений короткого замыкания двух трансформаторов один из них будет перегружаться, а другой недогружаться. Различие в напряжениях короткого замыкания допускается не более 10 % их среднего значения.
При неравенстве напряжений коротких замыканий параллельная работа трансформаторов нежелательна, так как нельзя получить отдачи полной мощности этими трансформаторами. При номинальной нагрузке трансформатора с меньшим напряжением короткого замыкания трансформатор с большим напряжением короткого замыкания будет недогружен. Если же трансформатор с большим напряжением короткого замыкания нагрузить номинальной мощностью, то трансформатор с меньшим напряжением короткого замыкания окажется перегруженным и длительно работать не сможет.
При неравенстве напряжений коротких замыканий параллельная работа трансформаторов нежелательна, так как нельзя получить полной мощности этих трансформаторов. При номинальной нагрузке трансформатора с меньшим напряжением короткого замыкания трансформатор с большим напряжением короткого замыкания будет недогружен. Если же трансформатор с большим напряжением короткого замыкания нагрузить номинальной мощностью, то трансформатор с меньшим напряжением короткого замыкания окажется перегруженным и длительно работать не сможет.
При неравенстве напряжений коротких замыканий нагрузка между параллельно работающими трансформаторами распределяется неравномерно, и трансформатор с меньшим напряжением короткого замыкания нагружается в большей мере, чем трансформатор с большим напряжением короткого замыкания.
Определение распределения тока по внешним характеристикам при параллельной работе трансфорыа. |
Это выражение показывает, что при неравенстве напряжений короткого замыкания относительные токи трансформаторов обратно пропорциональны напряжениям короткого замыкания. Поэтому при повышении нагрузки раньше других достигает номинальной мощности трансформатор, имеющий меньшее напряжение короткого замыкания. Дальнейшее увеличение общей нагрузки трансформаторов недопустимо, иначе первый трансформатор будет перегружаться, вследствие чего установленная мощность трансформаторов остается недоиспользованной.
Это выражение показывает, что при неравенстве напряжений короткого замыкания относительные токи трансформаторов обратно пропорциональны напряжениям короткого замыкания.
Напряжения короткого замыкания, их активные и реактивные составляющие определяют распределение нагрузки между трансформаторами при их параллельной работе. При неравенстве напряжений короткого замыкания нагрузка между параллельно работающими трансформаторами распределяется неравномерно и трансформатор с меньшим напряжением короткого замыкания нагружается в большей мере, чем трансформатор с большим напряжением короткого замыкания.
Напряжения короткого замыкания, их активные и реактивные составляющие определяют распределение нагрузки между трансформаторами при их параллельной работе. При неравенстве напряжений короткого замыкания нагрузка между параллельно работающими трансформаторами распределяется неравномерно и трансформатор с меньшим напряжением короткого замыкания нагружается в большей мере, чем трансформатор с большим напряжением короткого замыкания.
Режим холостого хода трансформатора
Холостым ходом (ХХ) называют такое подключение устройства, когда на первичную обмотку подается номинальное переменное напряжение, а цепи всех вторичных – разомкнуты (нагрузки не подключены).
В преобразователе напряжения, деление обмоток (катушек) на первичную и вторичные условно. Любая из них становится первичной, когда на нее поступает исходное переменное напряжение. Прочие, в них наводится ЭДС — становятся, соответственно, вторичными.
Опыт холостого хода проводится по схеме показанной на рисунке
Следовательно, любой трансформатор, соответственно способу подключения, может быть как понижающим, так и повышающим (кроме разделительного – с коэффициентом трансформации, равным единице).
Поскольку цепь вторичной катушки разъединена, тока в ней нет (I2 = 0). В первичной протекает I1, формирующий в магнитопроводе поток вектора магнитной индукции Ф1. Последний меняется по синусоидальному закону, но из-за перемагничивания стали отстает по фазе от I1 на угол B (угол потерь).
Применяют следующую терминологию:
- I1: ток ХХ трансформатора;
- Ф1: рабочий магнитный поток.
Под действием Ф1 во всех катушках возникает ЭДС:
- в первичной – самоиндукции (Е1);
- во вторичных – взаимоиндукции (Е2).
Зависимость ЭДС от различных параметров определяется формулами:
Е1 = 4,44 * f * W1 * Ф1max *10 -8 ,
Е2 = 4,44 * f * W2 * Ф1max * 10 -8 , где
W1 и W2 — число витков в обмотках;
Ф1max — величина магнитного потока в точке максимума.
Следовательно, числовое значение ЭДС находится в прямой зависимости от числа витков катушки. Из соотношения ЭДС в первичной и вторичной обмотках, определяют главный параметр аппарата— коэффициент трансформации (К): К = Е1 / Е2 = W1 / W2.
Вторичная катушка по сравнению с первичной содержит витков:
- в повышающем трансформаторе – больше (К меньше единицы);
- в понижающем – меньше (К больше единицы).
Помимо рабочего (основного), в установке образуется магнитный поток рассеяния Фр1. Это силовые линии, ответвляющиеся от рабочего магнитного потока Ф1 в сердечнике и замыкающиеся по воздуху вокруг витков катушек. Как и Ф1, Фр1 является переменным, а значит, он, согласно закону электромагнитной индукции, наводит в первичной обмотке ЭДС самоиндукции Ер1.
Е1 и Ер1 всегда направлены против приложенного к первичной обмотке напряжения U1. По характеру действия на ток, они подобны резистору, потому и обозначаются термином «индуктивное сопротивление» (Х).
Емкостное и индуктивное сопротивление
Следовательно, создавая I1, напряжение U1 преодолевает активное сопротивление R1 первичной катушки и обе ЭДС самоиндукции. Математически это выглядит так: U1 = I1 * R1 + (-Е1) + (-Ер1).
Запись выполнена в векторной форме, поэтому перед обозначениями ЭДС самоиндукции проставлены значки «-»: они говорят о противоположном направлении этих векторов относительно напряжения U1. Ток холостого хода I1 не является строго синусоидальным.
Он искажается, поскольку имеет в своем составе так называемую третью гармоническую составляющую (ТГС), обусловленную вихревыми токами, гистерезисом и магнитным насыщением магнитопровода. Но с определенной долей приближения, годной для практических расчетов, его можно заменить эквивалентным синусоидальным током с равноценным действующим значением.
Выбор уставок для ТЗНП
Для обеспечения ступенчатого принципа вывода линии, токовая защита, контролирующая появление нулевой последовательности в цепях, должна соответствовать селективности срабатывания. Здесь под селективностью понимается последовательное отключение определенных участков цепи, в зависимости от их значимости, с целью определения места повреждения или выделения поврежденного промежутка. Для этого выбираются соответствующие уставки срабатывания по времени для защиты. Рассмотрите пример выбора уставок на такой схеме.
Пример выбора уставок
Как видите, ТЗНП в данном случае отстраивается по тому же принципу, что и максимальная токовая защита, но с меньшей величиной выдержки времени. В этом примере каждая последующая ступень защиты выдерживает временную задержку на промежуток Δt больше, чем предыдущая. То есть время срабатывания первой токовой отсечки, в сравнении со второй будет рассчитываться по формуле: t1 = t2+ Δt. А время срабатывания второй по отношению к третей будет составлять t2 = t3+ Δt. Таким образом каждое последующее реле выполняет функцию резервной защиты.
Такая система ступенчатых защит позволяет минимизировать дальнейший переход повреждения на другие участки сети и силовое оборудование. А также помогает вывести из-под угрозы персонал, обслуживающий эти устройства. Главное требование к токовой защите – предотвращение ложных коммутаций по отношению к соответствующей зоне срабатывания.