Система отвода тепла
В процессе преобразования электроэнергии часть потерь выделяется в виде тепла, поэтому система его отвода неизменно присутствует в любом СТ. Мощные аппараты снабжены для этого специальной двухконтурной системой, охлаждение масла в которой производится следующими способами:
- Посредством радиаторов (см. Е на рис. 4), обеспечивающих отвод тепла во вторичную или внешнюю среду.
- Бак-корпус с гофрированной поверхностью (применяется в маломощных аппаратах).
- Установка вентиляционного оборудования. Такое решение позволяет увеличить производительность на четверть.
Вентиляторы принудительной системы охлаждения СТ
- Дополнительные системы водяного охлаждения. Это один из самых простых и эффективных способов отвода тепла.
- Применение специальных насосов, обеспечивающих циркуляцию масла в системе отвода тепла.
Устройства управления рабочим напряжением
В некоторых случаях возникает необходимость повысить или понизить напряжение нагрузки СТ, для этой цели в большинстве конструкций предусмотрено специальный переключатель. По сути, он меняет коэффициент трансформации путем переключения на большее или меньшее число витков в катушках.
Как правило, такие манипуляции выполняются при снятой нагрузке, но существуют устройства позволяющие изменять КТ без отключения потребителей.
Виды дополнительного оборудования
Для обеспечения стабильной работы и обслуживания СТ их конструкция может включать следующие устройства, именуемые навесным или дополнительным оборудованием:
- Реле давления газа, представляет собой защитную систему. Если СТ переходит в нештатный режим работы, то в результате большого выделения тепла происходит разложение масла. Данный процесс сопровождается выделением газа. При его быстром образовании срабатывает защита, отключающая аппарат от питания и нагрузки. Если процесс газообразования протекает медленно, включается оповещение.
- Термоиндикаторы, показывают нагрев масла в различных узлах системы отвода тепла.
Индикатор температуры масла
- Влагопоглотители. Применяются в негерметичных масляных системах отвода тепла, препятствуют образованию водяного конденсата.
- Системы маслорегенерации.
- Датчики давления, если оно превышает определенный порог, автоматически включается устройство сброса для нормализации.
- Датчик уровня заполнения масла в системе отвода тепла.
Классификация трансформаторов по схемным параметрам
Среди множества особенностей трансформаторов можно выделить параметры, характеризующие их применение и назначение в электрической схеме или схему самого трансформатора. Поэтому выделим несколько характеризующих трансформаторы факторы: схемное назначение и схема трансформатора.
1. Классификация трансформаторов по схемному назначению позволяет определить функции, которые он выполняет в конкретной схеме, и соответственно можно выделить три группы:
— силовые трансформаторы предназначены для питания переменным током различные звенья и узлы аппаратуры, поэтому силовые трансформаторы иногда называют трансформаторами питания ТП. Данная группа является наиболее распространённой и составляет до 70 % всех трансформаторов. Они находят широкое применение для питания самых различных нагрузок: электродвигатели, бытовые приборы, различные усилители, выпрямители, осветительные и нагревательные приборы.
Силовой трансформатор ТП-60.
— согласующие трансформаторы служат для согласования входных и выходных сопротивлений различных узлов электронной схемы и находят широкое применение в радиоприёмной, радиопередающей и усилительной технике. Их можно разделить на несколько типов в зависимости от места расположения в схеме: входные, промежуточные и выходные.
Трансформатор согласующий RCF TD507.
— импульсные трансформаторы используют для передачи импульсов напряжения и тока между отдельными участками электрической схемы. Особенностью данных трансформаторов является то, что они позволяют пропускать через себя импульсы различной длительности – от микросекундных до наносекундных. Форма импульса чаще всего прямоугольная, но возможно и любая другая: треугольная, пилообразная, колоколообразная и другие.
Трансформатор импульсный.
2. Кроме схемного назначения трансформаторы классифицируются по схеме трансформатора и позволяет выделить следующие типы:
— однообмоточный трансформатор, называемый автотрансформатором. Он характеризуется тем, что между первичной (входной) и вторичной (выходной) обмотками существует магнитная и электрическая связь. Первичная и вторичная обмотки определяются отводами от общей обмотки.
Обозначение автотрансформатора.
— двухобмоточный трансворматор, в отличие от однообмоточного имеет две электрически не связанных обмотки. Данный тип трансформатора является базовым и ри теоретическом анализе является базовым и электрические параметры первичной обмотки связаны однозначными соотношениями с электрическими парамтерами вторичной обмотки.
Обозначение двухобмоточного трансформатора.
— многообмоточные трансформаторы имеют несколько электрически не связанных вторичных обмоток, число которых доходит до десяти, но чаще всего четыре-пять. В данном типе трансформатора ток первичной обмотки определяется множеством соотношений с током вторичных обмоток. Данный тип трансформатора является наиболее распространённым.
Обозначение многообмоточного трансформатора (две вторичные обмотки).
Применение трансформаторов ТДН, ТРДН, ТДНС, ТРДНС, ТРДЦН
Силовые трехфазные трансформаторы используется на электростанциях для сетей электро потребления собственных нужд, как принудительной циркуляцией воздушного охлаждения и естественной на трансформаторном масле, используются ответвления под нагрузкой. Выполняется двух обмоточный с регулировкой под нагрузкой напряжения (РПН) с диапазоном регулирования ±8 х 1,5%. Высокая стойкость токам короткого замыкания.
Трансформаторы ТРДНС 25000 по технике безопасности соответствуют ГОСТ 12.2.007.2-75, выпускаются в соответствии с ГОСТ 11677-85 и ГОСТ 11920-85. ГОСТ 11677-85;ГОСТ 11920-85.
Тип изготовления баков для трансформаторов типа ТДНС, ТРДНС овал. Для усиления охлаждения могут применяться охлаждающие радиаторы. Для принудительного охлаждения применены внизу специальные вентиляторы мощностью для обдува радиаторов 250 Вт.
Два спец. крюка под верхней рамой бака позволяют осуществлять его транспортировку к месту установки трансформатора.
Критерии выбора оборудования
Существует множество различных аспектов, которые должны быть учтены при использовании силового оборудования. Так на выбор модели трансформатора влияют условия его потенциальной эксплуатации и в частности:
- Сфера применения;
- Место установки;
- Суммарная мощность потребителей.
Рассмотрим специфику выбора с учетом каждого из них. Одним из главных параметров является сфера применения. Ориентируясь на нее нужно определиться с такими характеристиками, как:
- Мощность, она должна соответствовать предполагаемым нагрузкам и позволять агрегату справляться с перегрузками;
- Возможность эксплуатации прибора при росте нагрузки;
- Стоимость и срок службы.
Однако выбирая трансформатор нужно уметь правильно определять его основные параметры:
- Первичное и вторичное напряжение;
- Частоту тока;
- Фазность;
- Нагрузку;
- Способ расположения;
- Особенности размещения.
Но кроме всех, перечисленных характеристик должны учитываться и функционал агрегата, а также его непосредственное назначение. Если предполагается подключение трансформатора к цепи измерительных приборов, то используют соответствующий вид устройства. Для защиты от скачков в сети выбирают агрегат, не отличающийся высокой точностью, но обладающий необходимыми функциями. Наибольшей популярностью в последнее время пользуются сухие трансформаторы, они часто используются вместо масляных и имеют большое количество плюсов.
Что касается масляных трансформаторов, то они находят применение в самых различных сферах деятельности человека.
Учесть все факторы и не ошибиться простому обывателя будет очень сложно. Поэтому лучший вариант – это обращение за помощью к профессионалам. Только они смогут выбрать оптимальную модель трансформатора с учетом особенностей вашего объекта.
Сфера применения
Такие устройства часто устанавливаются на узлах радиоэлектронного оборудования и выполняют разные функции. За последние годы несколько новых предприятий освоили технологию их изготовления. Повысилась приспособляемость устройства к работе с разными потребителями, поскольку возникла возможность производства по заданным техническим требованиям заказчика. Ранее ничего подобного не происходило.
Проектировщики оборудования пользовались стандартными схемами и комплектующими из справочников. Выбор изделий был большой, но полный перечень потребностей не охватывал. Поэтому многие разработчики устанавливали агрегаты с избыточным запасом мощности. Сегодня многие предприятия производят комплектующие с характеристиками, подходящими заказчику.
Виды обмоток трансформаторов
Обмотки выполняется обмоточным проводом круглого сечения, покрытым эмалевой или эмалево-волокнистой изоляцией. В качестве обмоточного провода используют алюминий или медь, но в основном медь, которая обладает наименьшим сопротивлением по сравнению с другими проводниковыми материалами.
Существуют два различных способа выполнения обмоток – многослойная и галетная (дисковая).
Многослойная обмотка наматывается непрерывно до получения заданного количества витков и располагается по всей длине стержня магнитопровода или его части, отведенной для данной обмотки. Разновидностью многослойной обмотки является секционная обмотка, которая разбивается на ряд секций, где каждая секция занимает часть длины стержня, но все вместе они составляют единую обмотку.
Рис. 21 — Многослойная и секционная обмотки
Многослойная обмотка отличается простотой выполнения и может быть намотана на каркасе или быть бескаркасной. При намотке на каркас провод укладывают беспорядочным расположением витков – намотка «внавал» или укладывают правильными рядами – рядовая намотка.
Намотка внавал проще в производстве, но из-за возможного западания отдельных витков в толщу намотки может понизится электрическая прочность обмотки. Как правило, такая намотка используется при изготовлении броневых трансформаторов малой мощности. На рисунке 22 показано схематичное заполнение каркаса витками обмоточного провода, а числами обозначена нумерация витков, показывающая, как витки провода могут укладываться при их намотке внавал.
Рис. 22 — Намотка внавал
При рядовой намотке провод укладывается виток к витку и каждый слой прокладывают изолирующей прокладкой, например, из конденсаторной или кабельной бумаги, что повышает электрическую и механическую прочности.
Рис. 23 — Рядовая намотка
При рядовой намотке можно отказаться от сложного каркаса и производить укладку провода на простую цилиндрическую гильзу, закрепляя витки клеем или лаком. Для повышения прочности каждый последующий слой делается короче предыдущего на 0,5–1 мм и такая бескаркасная намотка удобна для массового производства.
Рис. 24 — Бескаркасная намотка
Галетная обмотка выполняется в виде отдельных элементов, галет, где каждая галета представляет собой полностью законченную деталь. Галеты одна за другой нанизываются на стержень магнитопровода и соединяются между собой электрически или иным способом. Отдельные галеты могут изготавливаться независимо одна от другой, что допускает возможность замены отдельных секций трансформатора во время ремонта.
Рис. 25 — Галетная обмотка
Обмотки трансформаторов должны быть хорошо изолированы как от магнитопровода, так и друг от друга. Изоляция обмоток от магнитопровода осуществляется при помощи каркасов (катушек), изготавливаемых из листовых изоляционных материалов с хорошей электрической и механической прочностью, например, электрокартона, прессшпана, гетинакса, различных изоляционных пластмасс.
Выбор материала каркаса определяется его стоимостью, удобством обработки и теплостойкостью, а конструкция каркаса определяется способом намотки и устройством выводов. Намотка внавал требует применения каркаса в виде катушки, тогда как бескаркасная намотка выполняется на простых цилиндрических каркасах (гильзах), склеенных из кабельной бумаги. Широкое применение нашли склеенные и составные каркасы из листовых материалов. Конструкции различных каркасов показаны на рисунке 26.
Рис. 26 — Виды каркасов для обмоток трансформаторов
Выводы концов обмоток могут выполняться
- непосредственно обмоточным проводом, выпущенным из катушки на необходимую длину или специальным изолированным проводом;
- специальными ленточными выводами, укрепленными на внешней изоляции обмотки;
- при помощи специальных контактов, укрепленных на щечках каркаса или элементах магнитопровода.
Рис. 27 — Варианты выводов обмоток трансформаторов
Включение трансформаторов на параллельную работу
Стоит отличать данный режим (1 на рисунке ниже — трансформаторы подключены к общим шинам как со стороны ВН, так и со стороны НН) от другого, когда подключение к общим шинам есть только с высокой стороны (2 на рисунке, совместная работа), то есть к секции 10кВ подключены два транса, а с низкой стороны каждый из них питает свою секцию 0,4кВ.
Если отключается один из Т (1 на рис.), то на втором происходит перегрузка, но все механизмы остаются в работе. Если же отключается один из трансов (2 на рис.) — то нагрузка либо отключается, либо переходит на резервный источник питания по АВР.
Ну и естественно расчет схем замещения для данных случаев будет разным:
- 1 — складываем // сопротивления двигателей, затем складываем // иксы трансформаторов, а затем последовательно первое со вторым
- 2 — суммируем ветви (двигатель плюс трансформатор), затем полученные иксы складываем параллельно
Далее буду рассматривать только схему под цифрой 1 на рисунке. Для чего же может применятся параллельная работа трансформаторов:
- повышается надежность, так как при выходе из строя одного из трансов, потребитель не лишается энергии.
- резервная мощность параллельно включенных трансформаторов будет больше, чем у одного большого
- при сезонных снижениях нагрузки (зимой больше нагрузки, летом меньше) возможно отключение одного из нескольких. При этом будет обеспечен более экономичный режим работы, так как уменьшаться потери холостого хода
Все плюсы улетучиваются, если установлено два транса по причине нехватки мощности одного из-за роста нагрузки например.
Условия параллельной работы:
- Равенство номинальных напряжений первичных и вторичных обмоток. Следовательно и одинаковое число витков первичных и вторичных обмоток для всех параллельно работающих трансформаторов. Так же перед включением необходимо проверять положения ПБВ и РПН. Если всё подобрано правильно то не должны возникать уравнительные токи. Они возникают из-за неравенства коэффициентов трансформации и текут даже в режиме холостого хода. Воспользовавшись схемой аналогичной схеме замещения ТТ, можно вывести формулу уравнительного тока:
В данной формуле U’, U»; I’, I» — напряжения и токи первого и второго;
uk1, uk2 — напряжения короткого замыкания в процентах;
Избавиться от уравнительного тока можно либо переключив устройства регулировки в нужное положение, либо, устроив ремонт, добиться одного числа намотанных витков.
Равенство напряжений короткого замыкания. Напряжение короткого замыкания — такое напряжение, которое необходимо подать в одну из обмоток при замкнутой второй, чтобы в обеих тек номинальный ток. Данное условие необходимо выполнять потому, что отношение uk пропорционально распределению нагрузок и токов.
Принадлежность к одной группе присоединения
Отношение максимальной мощности к минимальной параллельно работающих трансформаторов должно быть не более 3 к 1. Если отношение мощности будет больше трех, то перегрузка меньшего из Тр может быть больше допустимой и целесообразнее будет вообще его отключить.
По ГОСТ 11677-85 ни одна из обмоток не должна быть перегружена током больше допустимого для данной обмотки
Если имеется РПН, то окончание переключения ответвлений должно происходить практически одновременно у всей группы. Трансформаторы с РПН мощностью ниже 1000кВА не предназначены для параллельной работы
Число параллельно работающих трансформаторов выбирается исходя из условия наименьших суммарных потерь холостого хода и нагрузочных потерь всех машин.
Первичные и вторичные обмотки соединяются параллельно. При отключении одного, на втором Т возникает перегрузка, которая должна быть учтена при отстройке уставки МТЗ.
На // подключенных т мощностью 4 МВА и выше должна устанавливаться ДЗТ. Она производит быстрое и селективное срабатывание, отключая только поврежденное оборудование. В случае с МТЗ, при аварии со стороны НН могут отключиться оба трансформатора за счет равенства выдержек времени.
Для более глубокого погружения в данный вопрос рекомендую прочитать книгу Г.В. Алексенко — Параллельная работа трансформаторов и автотрансформаторов (Трансформаторы, вып. 17) — 1967 года.
Схемы соединений обмоток треугольник и звезда для чайников
Наиболее распространенный вопрос у начинающих изучения устройства трансформаторов или иных электротехнических устройств это «Что такое звезда и треугольник?». Чем же они отличаются и как устроены, попробуем разъяснить в нашей статье.
Рассмотрим схемы соединений обмоток на примере трехфазного трансформатора. В своем строении он имеет магнитопровод, состоящий из трёх стержней. На каждом стержне есть две обмотки – первичная и вторичная.
На первичную подается высокое напряжения, а со вторичной снимается низкое напряжение и идет к потребителю.
Обратите внимание
В условном обозначении схема соединений обозначается дробью (например, Y⁄∆ или Y/D или У/Д), значение числителя – соединение обмотки высшего напряжения (ВН), а значение знаменателя – низшего напряжения (НН).
Каждый стержень имеет как первичную обмотку так и вторичную (три первичных и три вторичных обмотки). У каждой обмотки есть начало и конец. Обмотки можно соединить между собой способом звезда или треугольник. Для наглядности обозначим вышеперечисленное схематически (рис. 1)
При соединении звездой, концы обмоток соединяются вместе, а из начал идут три фазы к потребителю. Из вывода соединений концов обмоток, выводят нейтральный провод N (он же нулевой). В итоге получается четырёх – проводная, трёхфазная система, которая часто встречается вдоль линий воздушных электропередач.(рис. 2)
Преимущества такой схемы соединения в том, что мы можем получить 2 вида напряжения: фазное (фаза+нейтраль) и линейное. В таком соединении линейное напряжение больше фазного в √3 раз. Зная, что фазное напряжение дает нам 220В, то умножив его на √3 = 1,73, получим примерно 380В – напряжение линейное.
Так же стоит отметить что только в соединении звезда имеется нейтральный провод, который является «уравнителем» нагрузки, чтобы напряжение не менялось и не скакало.
Рассмотрим теперь соединение обмоток треугольником. Если мы конец фазы А, соединим с началом фазы В, конец фазы В соединим с началом фазы С, а конец фазы С соединим с началом фазы А, то получим схему соединения обмотки треугольником. Т.е. в этой схеме обмотки соединены последовательно. (рис. 3)
Важно
В основном такая схема соединения применяется для симметричной нагрузки, где по фазам нагрузка не изменяется. В таком соединении фазное напряжение равно линейному, а вот электрический ток, наоборот, в такой схеме разный. Ток линейный больше фазного тока в √3 раз. Соединение обмотки треугольником обеспечивает баланс ампер-виток для тока нулевой
последовательности. Простыми словами, схема соединения треугольником обеспечивает сбалансированное напряжение.
Подведем итоги.
Для базового определения схем соединения обмоток силовых трансформаторов, необходимо понимать, что разница между этими соединениями состоит в том, что в звезде все три обмотки соединены вместе одним концом каждой из обмоток в одной (нейтральной) точке, а в треугольнике обмотки соединены последовательно. Соединение звезда позволяет нам создавать два вида напряжения: линейное (380В) и фазное (220В), а в треугольнике только 380В.
Выбор схемы соединения обмоток зависит от ряда причин:
- Схемы питания трансформатора
- Мощности трансформатора
- Уровня напряжения
- Асимметрии нагрузки
- Экономических соображений
Так например, для сетей с напряжением 35 кВ и более выгодно соединить обмотку трансформатора схемой звезда, заземлив нулевую точку. В данном случае получится, что напряжение выводов трансформатора и проводов линии передачи относительно земли будет всегда в √3 раз меньше линейного, что приведёт к снижению стоимости изоляции.
На практике чаще всего встречаются следующие группы соединений: Y/Y, D/Y, Y/D.
Группа соединений обмоток Y/Y (звезда/звезда) чаще всего применяется в трансформаторах небольшой мощности, питающих симметричные трёхфазные электроприборы/электроприемники. Так же иногда применяется в схемах большой мощности, когда требуется заземление нейтральной точки.
Группа соединения обмоток D/Y (треугольник/звезда) применяется, в основном в понижающих трансформаторах больших мощностей. Чаще всего трансформаторы с таким соединением работают в составе систем питания токораспределительных сетей низкого напряжения. Как правило, нейтральная точка звезды заземляется, для использования как линейного, так и фазного напряжений.
Группа соединений обмоток Y/D (звезда/треугольник) используется, в основном, в главных трансформаторах больших силовых станций и подстанций, не служащих для распределения.
Автотрансформатор пример
Автотрансформатор требует повышающее напряжение от 220 вольт до 250 вольт. Общее количество витков катушки на главной обмотке трансформатора составляет 2000. Определите положение первичной точки ответвления, первичного и вторичного токов, когда мощность на выходе равна 10 кВА, а экономия меди сохраняется.
Таким образом, первичный ток составляет 45,4 А, вторичный ток, потребляемый нагрузкой, составляет 40 А, и через общую обмотку протекает 5,4 А. Экономия меди составляет 88%.
Основными областями применения устройств являются:
- Компенсация падения потенциала в распределительных системах, которое производится повышением значений напряжения питания.
- Системы управления асинхронных и синхронных двигателей, где наличие автотрансформатора с несколькими ответвлениями облегчает запуск.
- В условиях исследовательских лабораторий, когда требуется варьировать электрические переменные в широких пределах.
Данные устройства используются также для регулировки яркости света; такие приборы называют диммерами
В этих случаях особое внимание уделяют правильному подбору предохранителей, в противном случае более высокое напряжение питания может оказаться на вторичных клеммах
Эксплуатация
Срок службы
При правильном и своевременном обслуживании трансформаторное оборудование может прослужить до тех пор, пока морально не устареет. Срок службы зависит от условий эксплуатации, частоты возникновения аварийных ситуаций на участке электросети, где установлено оборудование.
Работа в параллельном режиме
Параллельный режим работы позволяет временно подменять мощное силовое оборудование трансформаторами средней или малой мощности. Это происходит тогда, когда на линии электропередачи падает нагрузка, что позволяет сокращать траты энергии при работе на холостом ходу.
Частота
При одинаковом напряжении частота тока может быть различной. Первичная обмотка, рассчитанная на частоту тока 50 Гц, без помех принимает входной ток частотой 60 Гц. В обратном случае трансформатор не будет полноценно исполнять свои функции. При меньшей номинальной частоте возрастает показатель индукции в сердечнике, что, как правило, вызывает резкое увеличение силы тока холостого хода. Если ток в сети имеет частоту, превышающую номинальную величину, то возникают паразитные токи в магнитопроводе. Сердечник и обмотки сильно перегреваются.
Регулирование напряжения трансформатора
Изменение напряжения в сети отображается на аналоговом экране или цифровом дисплее. Маломощные трансформаторы снабжены светодиодной индикацией уровня напряжения. С помощью органов управления устанавливается нужный уровень выходного напряжения в ручном или автоматическом режиме.
Изоляция трансформатора
Из-за частых перегревов обмоток и магнитопроводов изоляция может потерять свои диэлектрические свойства. Для осуществления контроля состояния изоляции проводятся регулярные испытания электрооборудования.
Перенапряжения трансформатора
В процессе интенсивной эксплуатации трансформаторы часто подвергаются перенапряжению. Оно бывает кратковременным и переходным.
Кратковременное превышение рабочих параметров оборудования происходит в течение от 1 секунды до нескольких часов. Переходное перенапряжение может набирать время, измеряемое в мили и наносекундах.
Перед тем, как покинуть завод-изготовитель, трансформаторы проходят тестовые испытания, в ходе которых создаются различные ситуации на грани потери работоспособности. В результате некондиция отсеивается от партии готовой продукции.
При установке того или иного трансформаторного оборудования нужно тщательно взвесить его возможности и состояние источника питания
Также принимают во внимание требуемые характеристики выходного напряжения для определённых потребителей
Конструктивные особенности
Несмотря на разнообразие видов СТ их конструкция неизменно включает следующие обязательные элементы:
- выводы катушек высокого и низкого напряжения (ВН и НН), их принято называть силовыми вводами;
- систему отвода тепла;
- устройства, позволяющие регулировать рабочее напряжение;
- дополнительное оборудование, для контроля работы и обслуживания аппарата.
На рисунке ниже представлена типовая конструкция СТ с масляной системой отвода тепла.
Конструкция силового трансформатора с масляным охлаждением
Обозначения:
- А – бак расширителя, служит для выравнивания уровня масла при изменении его объема вследствие температурных колебаний.
- В – силовой ввод для ВН.
- С — ввод для НН.
- D – переключатель рабочего напряжения.
- E – радиатор, представляет собой трубы, по которым циркулирует масло.
- F – корпус, также играет роль бака для масла.
- G и H – катушки ВН и НН.
- I – магнитопроводный сердечник.
Теперь рассмотрим подробно назначение основных конструктивных элементов.
Назначение силовых вводов
Данный элемент конструкции необходим для подключения питания и нагрузки к СТ. Их расположение может быт как внутренним (закрытые клеммные колодки) так и внешним
Обратим внимание, что первый вариант расположение используется только в СТ с воздушной системой отвода тепла
Обязательно наличие изоляции, между вводом и корпусом, она может быть маслобарьерной, элегазовой, конденсаторной-проходной или же выполнена из материалов, не проводящих электричество (фарфор, полимеры и т.д.).
Рис. 4. Фарфоровые изоляторы на вводах силового трансформатора
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ
К основным техническим параметрам трансформаторов напряжения относятся:
- номинальное значение напряжения электрической сети, для работы в которой предназначен ТН;
- коэффициент трансформации;
- мощность — номинальная величина и её максимально допустимое значение.
Поскольку величина U на низкой стороне трансформатора напряжения любого класса имеет одинаковое значение, числовое значение коэффициента трансформации равно напряжению первичной сети, делённому на 100 или на 100/√3.
Вторичные измерительные приборы обычно имеют шкалу на 100 вольт, которая проградуирована в первичных единицах. Например, при измерении в сети 35 кВ номинальное значение U вольтметра составляет 100 вольт, при этом показания прибора составляют 35 кВ.