Основы электроники. индуктивность и трансформатор

Как проводится опыт холостого хода

При проведении опыта холостого хода появляется возможность определить следующие характеристики агрегата:

  • коэффициент трансформации;
  • мощность потерь в стали;
  • параметры намагничивающей ветви в замещающей схеме.

Для опыта на устройство подаётся номинальная нагрузка.

При проведении опыта холостого хода и расчёте характеристик на основе данной методики необходимо учитывать разновидность устройства.

В данном состоянии трансформатор обладает нулевой полезной мощностью по причине отсутствия на выходной катушке электротока. Поданная нагрузка преобразуется в потери тепла на входной катушке I02×r1 и магнитные потери сердечника Pm. По причине незначительности значения потерь тепла на входе, их в большинстве случае в расчёт не принимают. Поэтому общее значение потерь при холостом ходе определяется магнитной составляющей.

Далее приведены особенности расчёта характеристик для различных видов трансформаторов.

Для однофазного трансформатора

Опыт холостого хода для однофазного трансформатора проводится с подключением:

  • вольтметров на первичной и вторичной катушках;
  • ваттметра на первичной обмотке;
  • амперметра на входе.

Приборы подключаются по следующей схеме:

Для определения электротока холостого хода Iо используют показания амперметра. Его сравнивают со значением электротока по номинальным характеристикам с использованием следующей формулы, получая итог в процентах:

Iо% = I0×100/I10.

Чтобы определить коэффициент трансформации k, определяют величину номинального напряжения U1н по показаниям вольтметра V1, подключённого на входе. Затем по вольтметру V2 на выходе снимают значение номинального напряжения U2О.

Коэффициент рассчитывается по формуле:

K = w1/w2 = U1н/ U2О.

Величина потерь составляет сумму из электрической и магнитной составляющих:

P0 = I02×r1 + I02×r0.

Но, если пренебречь электрическими потерями, первую часть суммы можно из формулы исключить. Однако незначительная величина электрических потерь характерна только для оборудования небольшой мощности. Поэтому при расчёте характеристик мощных агрегатов данную часть формулы следует учитывать.

Потери холостого хода для трансформаторов мощностью 30-2500 кВА

Для трёхфазного трансформатора

Трёхфазные агрегаты испытываются по аналогичной схеме. Но напряжение подаётся отдельно по каждой фазе, с соответствующей установкой вольтметров. Их потребуется 6 единиц. Можно провести опыт с одним прибором, подключая его в необходимые точки поочерёдно.

При номинальном напряжении электротока обмотки более 6 кВ, для испытания подаётся 380 В. Высоковольтный режим для проведения опыта не позволит добиться необходимой точности для определения показателей. Кроме точности, низковольтный режим позволяет обеспечить безопасность.

Применяется следующая схема:

Работа аппарата в режиме холостого хода определяется его магнитной системой. Если речь идёт о типе прибора, сходного с однофазным трансформатором или бронестержневой системе, замыкание третьей гармонической составляющей по каждой из фаз будет происходить отдельно, с набором величины до 20 процентов активного магнитного потока.

В результате возникает дополнительная ЭДС с достаточно высоким показателем – до 60 процентов от главной. Создаётся опасность повреждения изолирующего слоя покрытия с вероятностью выхода из строя аппарата.

Предпочтительнее использовать трехстержневую систему, когда одна из составляющих будет проходить не по сердечнику, с замыканием по воздуху или другой среде (к примеру, масляной), с низкой магнитной проницаемостью. В такой ситуации не произойдёт развитие большой дополнительной ЭДС, приводящей к серьёзным искажениям.

Для сварочного трансформатора

Для сварочных трансформаторов холостой ход – один из режимов их постоянного использования в работе. В процессе выполнения сварки при рабочем режиме происходит замыкание второй обмотки между электродом и металлом детали. В результате расплавляются кромки и образуется неразъёмное соединение.

После окончания работы электроцепь разрывается, и агрегат переходит в режим холостого хода. Если вторичная цепь разомкнута, величина напряжения в ней соответствует значению ЭДС. Эта составляющая силового потока отделяется от главного и замыкается по воздушной среде.

Чтобы избежать опасности для человека при нахождении аппарата на холостом ходу, значение напряжения не должно превышать 46 В. Учитывая, что у отдельных моделей значение данных характеристик превышает указанное, достигая 70 В, сварочный агрегат выполняют со встроенным ограничителем характеристик для режима холостого хода.

Расчет номинальной мощности трансформатора

Номинальная мощность, MB • А, трансформатора на подстанции с числом трансформаторов п > 1 в общем виде определяется из выражения

Для сетевых подстанций, где примерно до 25 % потребителей из числа малоответственных в аварийном режиме может быть отключено, обычно принимается равным 0,75…0,85. При отсутствии потребителей III категории К 1-2 = 1 Для производств (потребителей) 1й и особой группы известны проектные решения, ориентирующиеся на 50%ю загрузку трансформаторов.

Рекомендуется широкое применение складского и передвижного резерва трансформаторов, причем при аварийных режимах допускается перегрузка трансформаторов на 40 % на время максимума общей суточной продолжительностью не более 6 ч в течение не более 5 сут.

Так как К1-2 1 их отношение К = К 1-2 / К пер. всегда меньше единицы и характеризует собой ту резервную мощность, которая заложена в трансформаторе при выборе его номинальной мощности. Чем это отношение меньше, тем меньше будет закладываемый в трансформаторы резерв установленной мощности и тем более эффективным будет использование трансформаторной мощности с учетом перегрузки.

Уменьшение коэффициента возможно лишь до такого значения, которое с учетом перегрузочной способности трансформатора и возможности отключения неответственных потребителей позволит покрыть основную нагрузку одним оставшимся в работе трансформатором при аварийном выходе из строя второго трансформатора.

Таким образом, для двухтрансформаторной подстанции

В настоящее время существует практика выбора номинальной мощности трансформатора для двух трансформаторной подстанции с учетом значения к = 0,7, т.е.

Формально выражение (3.14) выглядит ошибочно: действительно, единица измерения активной мощности — Вт; полной (кажущейся) мощности — ВА. Есть различия и в физической интерпретации S и Р. Но следует подразумевать, что осуществляется компенсация реактивной мощности на шинах подстанции 5УР, ЗУР и что коэффициент мощности cos ф находится в диапазоне 0,92… 0,95.

Таким образом, суммарная установленная мощность двухтрансформаторной подстанции

При этом значении к в аварийном режиме обеспечивается сохранение около 98 % Рмах без отключения неответственных потребителей. Однако, учитывая принципиально высокую надежность трансформаторов, можно считать вполне допустимым отключение в редких аварийных режимах какойто части неответственных потребителей.

При двух и более установленных на подстанции трансформаторах при аварии с одним из параллельно работающих трансформаторов оставшиеся в работе трансформаторы принимают на себя его нагрузку. Эти аварийные перегрузки не зависят от предшествовавшего режима работы трансформатора, являются кратковременными и используются для обеспечения прохождения максимума нагрузки.

Далее приведены значения кратковременных перегрузок масляных трансформаторов с системами охлаждения М, Д, ДЦ, Ц сверх номинального тока (независимо от длительности предшествующей нагрузки, температуры окружающей среды и места установки).

Для трехобмоточных трансформаторов и автотрансформаторов указанные перегрузки относятся к наиболее нагруженной обмотке.

Виды силовых трансформаторов

Силовые трансформаторы можно разделить на несколько видов, основываясь на следующих характеристиках и показателях:

  • Тип охлаждения. Различают сухие и масляные трансформаторы. Первый вариант имеет воздушное охлаждение, используется там, где повышены требования к экологии и пожаробезопасности. Второй вариант представляет собой корпус, заполненный маслом с диэлектрическими свойствами, в который погружен сердечник с обмотками;
  • Климатическое исполнение: наружные и внутренние варианты;
  • Количество фаз. Бывают трехфазные (наиболее распространенные) и однофазные;
  • Количество обмоток. Различают двухобмоточные и многообмоточные варианты;
  • Назначение: повышающие и понижающие.

Дополнительным критерием служит наличие или отсутствие регулятора выходного напряжения.

Переходный процесс при включении трансформатора в холостую

Переходные режимы трансформаторов

При всяком изменении одной или нескольких величин, определяющих работу трансформаторов – напряжения, частоты, нагрузки и т.д., происходит переход от одного установившегося состояния к другому. Обычно этот переход длится очень короткое время, но он сопровождается опасными для трансформатора эффектами – большими механическими усилиями между обмотками, неравномерным распределением напряжения между витками трансформатора, нагрев обмоток и т.п.

Смотря по тому, какой фактор: ток или напряжение, определяет в основном переходный режим, различают две группы явлений:

1) явление сверхтоков;

2) явление перенапряжений.

Исследование этих явлений имеет весьма важное эксплутационное значение. Переходные процессы сверхтоков возникают при включении трансформаторов:

Переходные процессы сверхтоков возникают при включении трансформаторов:

1) в холостую;

2) при коротком замыкании.

а) Включение трансформатора с ненасыщенной сталью.

Включение трансформатора с разомкнутой вторичной обмоткой представляет собою включение катушки со сталью в цепь синусоидального напряжения.

Предположим, что трансформатор включен в момент показанный на рис (a0), где

U1 – мгновенное значение напряжения

U1m – амплитуда напряжения,

U1 = U1msin(wt + a0), тогда уравнение ЭДС первичной обмотки может быть написано в виде , где

i0– ток включения холостого хода трансформатора

i0r1 – составляющая напряжения уравновешивающая противодействие ЭДС сопротивления

– составляющая напряжения, которая уравновешивает ЭДС самоиндукции, созданную основным потоком и потоком рассеяния. Решение этого дифференциального уравнения относительно i0 дается в ТОЭ в разделе “Теория переменного тока”.

где — постоянная времени затухания.

В трансформаторах x >> r, поэтому j0 » p/2 » 90°, тогда формула примет упрощенный вид

Видим что ток и поток состоят из двух составляющих:

iуст – установившегося тока, изменяющегося по синусоидальному закону

iпер = iсв – переходный, который в момент включения имеет ту же амплитуду что и iуст, но представляет собою апериодическую функцию времени, затухающей по закону апериодической функции с постоянной времени T = L1/r1.

Характер протекания переходного процесса определяется моментом включения трансформатора (a0):

1) Включение трансформатора в момент, когда a0 = 0, t = 0, U1 = 0, тогда

, т.е. iуст = -Im, iпер = Im

В момент включения ток i0 = 0

Роль iпер и состоит в том, чтобы в момент включения катушки со сталью в сеть обеспечить это условие. Видим, что при включении в сеть ненасыщенного трансформатора

в момент, когда U1=0, амплитуде сверхтока холостого хода достигает в предельном случае двойного значения амплитуды установившегося тока холостого хода черезp/2.

Аналогичные кривые для потока.

2) Включение трансформатора на сеть в момент a0 = p/2, U1 = U1m …, iсв = 0, i0 = iуст = 0

Переходного процесса как такового не будет и процесс в первый же момент времени установится.

б) Включение трансформатора с насыщенной сталью.


Если сталь трансформатора насыщена, то картина переходного процесса не изменится в отношении потока (Ф), так как из условия равновесия ЭДС значение этого потока определяется для любого момента времени подведенным напряжением – U­1. Т.к. U1 уравновешивается Е, а ЭДС наводится Ф. Но ток включения холостого хода будет другой, так как при насыщении стали он растет значительно быстрее потока. Включение трансформатора при a0 = 0, t = 0, U1 = 0 является самым неблагоприятным.

Так как через время соответствующего p/2 поток достигает в пределе двойной амплитуды, то ударный ток холостого хода по отношению к амплитуде возрастает в 50-80 раз.

Данный ток не опасен с точки зрения нагрева, но может привести к ложному срабатыванию защиты.

От чего зависит индуктивное сопротивление

Данная величина связана напрямую с частотой приложенного напряжения (f) и значением индуктивности (L). Формула индуктивного сопротивления будет выглядеть следующим образом: XL = 2πfL. Прямая пропорциональная зависимость, в случае необходимости, позволяет путем преобразования основной формулы вычислить частоту или значение индуктивности.

Под действием переменного тока, проходящего по проводнику, вокруг этого проводника образуется переменное магнитное поле. Действие этого поля приводит к наведению в проводнике электродвижущей силы обратного направления, известной еще как ЭДС самоиндукции. Противодействие или сопротивление ЭДС переменному току получило название реактивного индуктивного сопротивления.

Существует такое понятие, как погонное индуктивное сопротивление, которое вычисляется по формуле: X0 = ω x (4,61g x (Dср/Rпр) + 0,5μ) x 10-4 = X0’ + X0’’, в которой ω является угловой частотой, μ – магнитной проницаемостью, Dср – среднегеометрическим расстоянием между фазами ЛЭП, а Rпр – радиусом провода.

Величины X0’ и X0’’ представляют собой две составные части погонного индуктивного сопротивления. Первая из них X0’ представляет собой внешнее индуктивное сопротивление, зависящее только от внешнего магнитного поля и размеров ЛЭП. Другая величина – X0’’ является внутренним сопротивлением, зависящим от внутреннего магнитного поля и магнитной проницаемости μ.

На линиях электропередачи высокого напряжения от 330 кВ и более, проходящие фазы расщепляются на несколько отдельных проводов. Например, при напряжении 330 кВ фаза разделяется на два провода, что позволяет снизить индуктивное сопротивление примерно на 19%. Три провода используются при напряжении 500 кВ – индуктивное сопротивление удается снизить на 28%. Напряжение 750 кВ допускает разделение фаз на 4-6 проводников, что способствует снижению сопротивления примерно на 33%.

Погонное индуктивное сопротивление имеет величину в зависимости от радиуса провода и совершенно не зависит от сечения. Если радиус проводника будет увеличиваться, то значение погонного индуктивного сопротивления будет соответственно уменьшаться. Существенное влияние оказывают проводники, расположенные рядом.

Сопротивление конденсатора.

Замкнем цепь. Конденсатор начал заряжаться и сразу стал источником тока, напряжения, Э. Д. С.. На рисунке видно что Э. Д. С. конденсатора направлена против заряжающего его источника тока.

Противодействие электродвижущей силы заряжаемого конденсатора заряду этого конденсатора называется емкостным сопротивлением.

Вся энергия затрачиваемая источником тока на преодоление емкостного
сопротивления превращается в энергию электрического поля конденсатора.
Когда конденсатор будет разряжаться вся энергия электрического поля
вернется обратно в цепь в виде энергии электрического тока. Таким
образом емкостное сопротивление является реактивным, т.е. не вызывающим безвозвратных потерь энергии.

Почему постоянный ток не проходит через конденсатор, а переменный ток проходит?

Включим цепь постоянного тока. Лампа вспыхнет и погаснет, почему? Потому что в цепи прошел ток заряда конденсатора. Как только конденсатор зарядится до напряжения батареи ток в цепи прекратится.

А теперь замкнем цепь переменного тока. В I четверти периода напряжение на генераторе возрастает от 0 до максимума. В цепи идет ток заряда конденсатора. Во II четверти периода напряжение на генераторе убывает до нуля. Конденсатор разряжается через генератор. После этого конденсатор вновь заряжается и разряжается. Таким образом в цепи идут токи заряда и разряда конденсатора. Лампочка будет гореть постоянно.

В цепи с конденсатором ток проходит во всей замкнутой цепи, в том числе и в диэлектрике конденсатора. В заряжающемся конденсаторе образуется электрическое поле которое поляризует диэлектрик. Поляризация это вращение электронов в атомах на вытянутых орбитах.

Одновременная поляризация огромного количества атомов образует ток, называемый током смещения.

Таким образом в проводах идет ток и в диэлектрике причем одинаковой величины.

конденсатора определяется по формуле

На активном сопротивлении напряжение U акт и ток I совпадают по фазе. На емкостном сопротивлении напряжение U c отстает от тока I на 90 0 . Результирующее напряжение приложенное генератором к конденсатору определяется по правилу параллелограмма. Это результирующее напряжение отстает от тока I на какой то угол φ всегда меньший 90 0 .

Задачи на переменный электрический ток

Прежде, чем мы перейдем непосредственно к примерам решения задач на переменный ток, скажем кое-что для тех, кто вообще не знает, с какой стороны подступиться к задачам по физике. У нас есть универсальный ответ – памятка по решению. А еще, вам могут пригодиться формулы.

Хотите разобраться в теории? Читайте в нашем блоге, что такое фаза и ноль в электричестве.

Задача№1. Переменный ток

Условие

Вольтметр, включённый в цепь переменного тока,показывает напряжение 220 В, а амперметр – ток 10 А.Чему равны амплитудные значения измеряемых величин?

Решение

Амперметр показывает мгновенные, действующие значения величин. Действующие значения силы тока и напряжения меньше амплитудных в 2 раз. Исходя из этого, рассчитаем:

IA=Iд·2=10·2=14,1 АUA=Uд·2=220·2=311 В

Ответ: 14,1 А; 311 В.

Задача№2. Переменный ток

Условие

Рамка вращается в однородном магнитном поле. ЭДС индукции, возникающая в рамке, изменяется по закону e=80sin25πt. Определите время одного оборота рамки.

Решение

Из условия можно найти угловую частоту вращения рамки:

e=εmsinωte=80sin25πtω=25π радс

Время одного оборота рамки – это период колебаний, связанный с угловой частотой:

T=2πω=2π25π=,08 с

Ответ: 0,08 с.

Больше задач на тему ЭДС в нашем блоге.

Задача№3. Переменный ток

Условие

Сила тока в колебательном контуре изменяется по закону I =0,4sin(400πt) (А). Определите емкосьть конденсатора в контуре, если индуктивность катушки равна 125 мГн.

Решение

Запишем закон изменения силы тока в контуре:

I=IAsinωt

Учитывая исходное уравнение, можно найти угловую частоту и период колебаний:

ω=400π радс

T=2πω=2π400π=5·10-3c

Емкость конденсатора найдем из формулы Томпсона:

T=2πLCT2=4π2LCC=T24π2L=25·10-64·9,85·125·10-3=5·10-6 Ф

Ответ: 5 мкФ.

Задача№4. Переменный ток

Условие

Чему равна амплитуда силы тока в цепи переменного тока частотой 50 Гц, содержащей последовательно соединенные активное сопротивление 1 кОм и конденсатор емкости С = 1 мкФ, если действующее значение напряжения сети, к которой подключен участок цепи, равно 220 В?

Решение

Запишем закон Ома для цепи переменного тока:

I=UZ

Z – полное сопротивление цепи, которое складывается из активного и реактивного сопротивлений.

Z=R2+Xc2Xc=12πϑC

Найдем полное сопротивление, подставив в формулу данные из условия:

X=12·3.14·50·1·10-6=3,18 кОмZ=12·106+3,22·106=3,3 кОм

Далее по действующему значению напряжения найдем амплитудное:

UA=Uд·2=220·2=311 В

Теперь подставим апмлитудное значение напряжения в выражение для закона Ома и вычислим силу тока:

IA=UAZ=3113,3·103=,09 А

Ответ: 0,09 А.

Задача№5. Переменный ток

Условие

Катушка с ничтожно малым активным сопротивлением включена в цепь переменного тока с частотой 50 Гц. При напряжении 125 В сила тока равна 3 А. Какова индуктивность катушки?

Решение

В данной задаче, исходя из условия, можно пренебречь активным сопротивлением катушки. Ее индуктивное сопротивоение равно:

xL=ωL

По закону Ома:

U=IxL=IωL

Отсюда находим индуктивность:

L=UIω=1253·314=,13 Гн

Ответ: 0,13 Гн.

Все еще мало задач? Держите несколько примеров на мощность тока.

Особые режимы работы цепи

Нажмите на соответствующую ссылку, чтобы посмотреть как работает калькулятор в особых режимах:

Примечания

  • Нулевая частота в объяснениях поведения этой цепи означает постоянный ток. Если f = 0, предполагается, что цепь подключена к идеальному источнику напряжения.
  • При нулевой частоте реактивное сопротивление конденсатора считается нулевым, если его емкость бесконечно большая. Если же емкость конденсатора конечная или нулевая, его реактивное сопротивление бесконечно большое и для источника постоянного напряжения он представляет собой обрыв цепи, иными словами отсутствующий конденсатор.
  • При нулевой частоте реактивное сопротивление идеальной катушки индуктивности считается бесконечно большим, если ее индуктивность бесконечно большая. Если же индуктивность катушки конечная или нулевая, ее реактивное сопротивление при нулевой частоте равно нулю и для источника постоянного напряжения она представляет собой короткое замыкание.

Как рассчитать емкостное реактивное сопротивление

Рассмотрим пример расчета емкостного реактивного сопротивления: предположим, что конденсатор 6 мкФ подключен к розетке переменного тока с напряжением 40 В и частотой F 60 Гц.

Для определения емкостного реактивного сопротивления используется определение, данное в начале. Угловая частота ω определяется как:

ω = 2πf = 2π x 60 Гц = 377 с-1

Затем этот результат подставляется в определение:

ИксC = 1 / ωC = 1 / (377 с-1х 6 х10 -6 F) = 442,1 Ом

Теперь посмотрим на амплитуду тока, циркулирующего в цепи. Поскольку источник предлагает напряжение амплитудой VC = 40 В, мы используем соотношение между емкостным реактивным сопротивлением, током и напряжением для вычисления амплитуды тока или максимального тока:

яC = VC / ИКСC = 40 В / 442,1 Ом = 0,09047 А = 90,5 м А.

Если частота становится очень большой, емкостное реактивное сопротивление становится небольшим, но если частота становится равной 0 и у нас есть постоянный ток, реактивное сопротивление стремится к бесконечности.

Основные различия между активным и реактивным сопротивлением

Когда электрический ток проходит через элементы с активным сопротивлением, происходят необратимые потери выделяемой мощности. Типичным примером служит электрическая плита, где в процессе работы происходят необратимые превращения электричества в тепловую энергию. То же самое происходит с резистором, в котором тепло выделяется, но обратно в электроэнергию не превращается.

Помимо резисторов, свойствами активного сопротивления обладают приборы освещения, электродвигатели, трансформаторные обмотки, провода и кабели и т.д.

Характерной особенностью элементов с активным сопротивлением являются напряжение и ток, совпадающие по фазе. Рассчитать этот параметр можно по формуле: r = U/I. На показатели активного сопротивления оказывают влияние физические свойства проводника – сечение, длина, материал, температура. Эти качества позволяют различать реактивное и активное сопротивление и применять их на практике.

Реактивное сопротивление возникает в тех случаях, когда переменный ток проходит через так называемые реактивные элементы, обладающие индуктивностью и емкостью. Первое свойство характерно для катушки индуктивности без учета активного сопротивления ее обмотки. В данном случае причиной появления реактивного сопротивления считается ЭДС самоиндукции. В зависимости от частоты тока, при ее возрастании, наблюдается и одновременный рост сопротивления, что отражается в формуле xl = wL.

Реактивное сопротивление конденсатора зависит от емкости. Оно будет уменьшаться при увеличении частоты тока, поэтому данное свойство широко используется в электронике для выполнения регулировочных функций. В этом случае для расчетов используется формула xc = 1/wC.

В электронике существует не только активное и реактивное, но и полное сопротивление цепи, представляющее собой сумму квадратов обоих сопротивлений. Этот параметр обозначается символом Z и отображается в виде формулы:

В графике это выражение выглядит в виде треугольника сопротивлений, где реактивное и активное сопротивление соответствуют катетам, а полное сопротивление или импеданс – гипотенузе.

Виды КЗ у трансформаторов

При возникновении короткого замыкания, трансформатор вплотную подходит к предельному рабочему режиму. В этом случае на первичную обмотку поступает какое-то напряжение, а вторичная оказывается замкнутой.

Короткое замыкание трансформатора может быть аварийным или испытательным. В первом случае опасная ситуация возникает в режиме эксплуатации устройства, при подключении его к номинальному первичному напряжению. В обмотках появляется ток короткого замыкания, многократно превышающий номинал, и прибор выходит из строя. Как правило, основные детали сгорают, и вся схема просто разваливается на части.

Избежать подобных негативных последствий возможно с помощью защитной аппаратуры – автоматов, предохранителей, реле и т.д. Она производит отключение в максимально короткие сроки со стороны первичной обмотки и тем самым сохраняет устройство от разрушения.

В испытательном режиме, известном в качестве опыта короткого замыкания, подобная ситуация создается искусственным путем. С этой целью на первичную обмотку подается пониженное напряжение. При этом, токи в каждой обмотке не выходят за пределы номинала. Данный опыт позволяет точно установить наиболее важные параметры и характеристики трансформаторного устройства. Каждое из коротких замыканий следует рассмотреть более подробно, с точки зрения его физического воздействия на трансформатор.

§ 64. Цепь переменного тока с активным сопротивлением

Рассмотрим цепь (рис. 134), состоящую из сопротивления r. Влиянием индуктивности и емкости для простоты пренебрегаем. К зажимам цепи приложено синусоидальное напряжение

u = Uм sin ωt.

Рис. 134. Цепь, содержащая активное сопротивление

По закону Ома, мгновенное значение тока будет равно:

i = u/r = Uм/r sin ωt = Iм sin ωt,

где

Iм = Uм/r,

или, переходя к действующим значениям, получаем

Iм/√2 = Uм/√2r,

т. е.

I = U/r.

Как следует из последнего выражения, вид закона Ома для цепи переменного тока, содержащей сопротивление r, тот же, что для цепи постоянного тока. Кроме того, из закона Ома видна пропорциональность между мгновенным значением напряжения и мгновенным значением тока. Отсюда следует, что в цепи переменного тока, содержащей сопротивление r, напряжение и ток совпадают по фазе. На рис. 135 даны кривые напряжения и тока и векторная диаграмма для рассматриваемой цепи, причем длины векторов обозначают действующие значения напряжения и тока.

Рис. 135. Графики и векторная диаграмма для цепи переменного тока, содержащей активное сопротивление

Сопротивление проводников переменному току несколько больше их сопротивления постоянному току* (см. § 65). Поэтому сопротивление проводников переменному току называют активным в отличие от сопротивления, которое оказал бы этот проводник при постоянном токе. Обозначается оно также буквой r.

* ()

В цепи, представленной на рис. 134, приложенное внешнее напряжение компенсирует падение напряжения в сопротивлении r, которое называется активным падением напряжения и обозначается Uа:

Ua = Ir.

Мгновенное значение мощности в рассматриваемой цепи равно произведению мгновенных значений напряжения и тока:

p = ui = i2 ⋅ r.

На рис. 136 дана кривая мгновенной мощности за один период. Из чертежа видно, что мощность не является постоянной величиной, она пульсирует с двойной частотой*.

* ()

Рис. 136. Кривая мгновенной мощности цепи с активным сопротивлением

Среднее за период значение мощности называется активной мощностью, обозначается буквой Р и измеряется в запах.

Для рассматриваемой цепи с активным сопротивлением

Р = (i2 ⋅ r)ср = (i2)ср ⋅ r.

Так как

(i2)ср = (Iм2/√2)2 = I2,

то

P = I2 ⋅ r = U ⋅ I,

т. е. формула мощности для цепи переменного тока с активным сопротивлением такая же, как формула мощности для цепи постоянного тока.

Активным сопротивлением обладают все проводники. В цепи переменного тока практически только одним активным сопротивлением обладают нити ламп накаливания, спирали электронагревательных приборов и реостатов, дуговые лампы, специальные бифилярные обмотки и прямолинейные проводники небольшой длины.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector