Алгоритм действий
Серьезные компании, занимающиеся переработкой электронного лома, предлагают полный спектр услуг по данному вопросу, от консультации и аудита устаревшей техники до рациональной утилизации с предоставлением полного пакета экологической и бухгалтерской документации:
- Консультация.
- Инвентаризация оборудования клиента. Цель – определение морально устаревших устройств.
- Подготовка программы утилизации: составляется список деталей для замены, устанавливаются сроки.
- Проводится демонтаж и вывоз списанного оборудования с учетом требований ФЗ № 89 «Об отходах производства и потребления», ФЗ № 41 «О драгоценных металлах», Инструкции Минфина РФ о порядке учета драгметаллов.
- На участке утилизации ЭО взвешиваются, ожидают переработки.
- Проводится механическая разборка до базовых компонентов. При этом извлеченные носители конфиденциальной информации уничтожаются шредером. Иногда компании готовы предоставить видеоотчет об уничтожении электронных носителей или пригласить представителя клиента
- Компоненты сортируются: черный металл, пластик, алюминий, аккумуляторы, платы.
- Материалы передаются на предприятия для окончательной переработки, например, в качестве лома для производства стальных заготовок.
- Клиент получает пакет подтверждающих документов, с которыми экологи подготовят отчетность, а бухгалтеры спишут оборудование с баланса.
Это пример грамотно выстроенного процесса утилизации электронных отходов.
Способы уничтожения отходов, негодных для переработки
Доступные варианты обращения с мусором, который не подлежит утилизации из-за содержащихся опасных компонентов:
- захоронение;
- сжигание.
Захоронение
Процедура предполагает необходимость отправки материалов на специальные объекты – полигоны. Здесь отходы сохраняются в особых условиях. Причем заранее определяется срок их содержания, а также объемы.
Процедура захоронения и требования к полигонам
Технология захоронения реализуется поэтапно:
- прием неуплотненных материалов, ведется учет объемов и видов мусора;
- контроль доставленных материалов;
- разгрузка отходов;
- размещение материалов, которые подлежат захоронению.
Требования к полигонам:
- обеспечивается возможность подъезда транспорта;
- полигон должен быть расположен как можно дальше от природоохранных зон, населенных пунктов, мест отдыха, водоемов;
- определяется уровень залегания грунтовых вод – не менее 2 м;
- требуется получить санитарно-эпидемиологическое заключение, подтверждающее соответствие объекта санитарным правилам.
Подготовка полигона
Сжигание
Метод применим к отходам разных агрегатных состояний, часто используется для выполнения операций с отработанным топливом. Топочные устройства:
- камерные: в них уничтожают разные виды топлива (газообразное, жидкое, пылеобразное во взвешенном состоянии);
- слоевые: топки этой группы применяют для сжигания твердого топлива, его располагают на определенной опорной поверхности;
- с кипящим слоем: агрегаты уничтожают топливо при переходе в газообразное состояние.
Система для сжигания промышленных отходов
Общие сведения
Упорядоченное движение электрических зарядов в физическом теле называют током. Значит, для того чтобы он существовал необходима какая-то сила, воздействующая на обладающие энергией элементарные частицы. Причём её действие должно быть постоянной для поддержания необходимого электротока в установленный промежуток времени. Именно для этого и используют источники электрического тока, приборы, которые умеют генерировать электричество.
Создание первого источника датируется 1800 годом, когда физик Вольт представил сообществу прибор, названный им «электродвижущий аппарат». Позже он получил официальное название «вольтов столб». Принцип работы этого устройства заключался в растворении цинковой пластины, соединённой с медным проводником. Физик придал приспособлению вертикальную форму и разместил химические вещества поочерёдно. В итоге получился как бы слоёный пирог. Между пластинами цинка и меди заливался электролит.
Полуметровый столб Вольта подключался к замкнутой цепи, причём медный вывод считался плюсовым, а цинковый минусовым. Таким образом, Вольт, не поняв действительной причины возникновения тока, практически пришёл к созданию гальванического элемента, действие которого основывалось именно на превращении химической энергии в электрическую.
Несмотря на то что Вольт так и не смог понять действительную причину появления тока его прибор стал популярен среди учёных исследовавших электричество. Как выяснилось впоследствии «вольтов столб» стал прототипом гальванической батареи. В 1830 году русский учёный Петров на базе изобретения француза создал источник, выдающий 1,7 киловольта. Длина его установки составляла 12 метров, а мощность 85 ватт.
Сегодня под источником тока понимают генератор способный преобразовывать различного рода матерею в электричество, то есть создавать электромагнитное поле.
Следует отметить, что в электротехнике источники разделяют на два вида: тока и напряжения.
Отличия их в следующем:
- генератор тока выдаёт постоянный поток электронов в независимости от напряжения и, по сути, является конденсатором с бесконечной ёмкостью;
- источник напряжения обеспечивает постоянную разность потенциалов и похож на аккумулятор.
Но на самом деле эти различия чисто теоретические, на практике же отличия не существуют. Это связано с тем, что изготовить идеальный прибор невозможно. То есть такой, на который не влияет нагрузка приёмника, а внутреннее сопротивление нулевое.
Электропитающие устройства и линейные сооружения автоматики, телемеханики и связи железнодорожного транспорта
- Введение
- Классификация воздушных линий
- Типовые профили опор ВЛ, ВСЯ СЦБ и воздушных линий связи
- Материалы и арматура воздушных линий
- Деревянные опоры, железобетонные приставки и железобетонные опоры
- Основные типы опор воздушных линий СЦБ и связи
- Оборудование высоковольтных линий автоматики и телемеханики
- Оборудование воздушных линий связи
- Устройство удлиненных пролетов, пересечений и переходов
- Заземления в устройствах автоматики, телемеханики и связи
- Типы и конструкции заземляющих устройств
- Строительство воздушных линий
- Техническое обслуживание и ремонт воздушных линий
- Механизация работ при строительстве и ремонте воздушных линий
- Техника безопасности при работах на воздушных линиях
- Назначение и классификация кабельных линий
- Конструкция кабелей
- Кабели для устройств автоматики и телемеханики
- Железнодорожные кабели связи
- Оборудование, арматура и материалы кабельных линий
- Строительство кабельных линий
- Монтаж силовых электрических кабелей
- Монтаж силовых и контрольных кабелей. Паспортизация кабельных линий
- Механизация кабельных работ
- Техническое обслуживание и ремонт кабельных линий
- Техника безопасности при работах на кабельных линиях
- Влияние электрических железных дорог и линий электропередачи на воздушные и кабельные линии
- Средства защиты устройств автоматики, телемеханики и связи от опасных и мешающих влияний железных дорог и линий электропередачи
- Защита полупроводниковых приборов от перенапряжений
- Воздействие молнии на устройства автоматики, телемеханики и связи. Приборы защиты
- Защита устройств автоматики, телемеханики и связи от атмосферных перенапряжений
- Защита кабелей от коррозии
- Генераторы постоянного тока
- Реакция якоря и коммутация тока
- Типы генераторов и их характеристики
- Общие сведения о двигателях постоянного тока
- Электродвигатели постоянного тока и их характеристики
- Однофазный и трехфазный трансформаторы
- Автотрансформаторы и дроссели насыщения
- Трансформаторы железнодорожной автоматики и телемеханики
- Путевые дроссель-трансформаторы
- Асинхронные электродвигатели
- Синхронные генераторы
- Первичные химические источники тока
- Свинцовые аккумуляторы
- Электролит и химические процессы в свинцовых аккумуляторах
- Электрические характеристики свинцовых аккумуляторов
- Аккумуляторные батареи
- Правила эксплуатации и способы устранения неисправностей свинцовых аккумуляторов
- Щелочные никепь-железные и никель-кадмиевые аккумуляторы. Аккумуляторные помещения
- Электрические вентили и выпрямительные устройства
- Классификация схем выпрямления переменного тока и их параметры
- Влияние характера нагрузки на работу выпрямительных схем
- Выпрямители, применяемые в устройствах автоматики и телемеханики
- Электромагнитные и полупроводниковые преобразователи
- Особенности электроснабжения устройств
- Энергоснабжение устройств автоблокировки
- Системы питания
- Электропитание устройств переездной сигнализации и полуавтоматической блокировки
- Техническое обслуживание устройств электропитания на перегонах и станциях
- Питающие пункты устройств автоматики и телемеханики
- Расчеты питающих устройств сигнальной точки автоблокировки
- Электропитание устройств автоматики и телемеханики крупных станций
- Унифицированная щитовая установка электропитания устройств централизации на крупных станциях при безбатарейной системе питания
- Электропитание устройств электрической централизации малых станций
- Устройства электропитания электрической централизации промежуточных станций
- Электропитающие установки безбатарейной и батарейной систем питания ЭЦ промежуточных станций
- Расчеты электропитающих устройств электрической централизации
- Автоматизированные дизель-генераторные установки и резервные электростанции
Требования к дезинфекционным мероприятиям на различных объектах
В РФ действуют санитарные правила, согласно которым работы по обеззараживанию и уничтожению патогенной микрофлоры проводятся в лечебно-профилактических комплексах, в школах, детских садах, в общежитиях отелях, хостелах, в торговых учреждениях.
Для каждой группы предприятий процесс имеет свои особенности:
- в медицинских учреждениях применяются исключительно химические препараты 3 и 4 класса опасности. Для проведения обеззараживающих процедур в штате предусматривается специально обученный специалист;
- регламент проведения дезинфекционных работ в образовательных учреждениях определяется нормативными актами. Сотрудник, выполняющий их, может состоять в штате или быть сотрудником специализированной компании. Допускается применение средств только 4 класса опасности. Работы производятся при отсутствии в школах, детских садах сотрудников и детей. Перед возобновлением учебного процесса необходимо провести влажную уборку помещений;
- в отелях, хостелах, общежитиях дезинфекционные процедуры выполняют в очаговой или профилактической форме, в зависимости от данных по уровню заражения. Работы включают обработку санузлов, ванн, душевых, мусоропроводов, лифтов, номеров.
На всех типах объектов уничтожение вредоносной флоры проводится на оборудовании, которое контактировало с инфекционным очагом, предметах мебели, медицинских инструментах, поверхностях в помещении, кухонных принадлежностях, предметах обуви и одежды. Уборочный инвентарь должен быть промаркирован надписями с указанием помещения, для которого он предназначен и видом работ. После уборки инвентарь обрабатывают дезраствором, высушивают и хранят в емкости с соответствующей маркировкой.
Вторичный химический источник — ток
Вторичные химические источники тока допускают многократное их использование — аккумуляторы. Анод аккумулятора при разрядке служит катодом при зарядке. Наиболее распространены свинцовый ( кислотный) и железо-никелевый ( щелочной) аккумуляторы.
Вторичные химические источники тока, действие которых основано на использовании обратимых электрохимических систем. Под обратимыми электрохимическими системами понимают такие, в которых вещества, образовавшиеся в процессе разряда, могут быть превращены в первоначальные активные вещества.
Вторичные химические источники тока допускают многократное их использование — это аккумуляторы. Анод аккумулятора при разрядке служит катодом при зарядке.
Распространяется на первичные и вторичные химические источники тока. Устанавливает требования безопасности к конструкции источников тока.
Противоэлемент — это вторичный химический источник тока, практически не имеющий полезной емкости и используемый для встречного включения в цепь аккумуляторной батареи с целью регулирования ее напряжения.
Настоящий стандарт распространяется на первичные и вторичные химические источники тока.
Стартерные свинцовые аккумуляторные батареи являются вторичными химическими источниками тока. Заложенные в них активные вещества используются многократно.
Свинцовые аккумуляторы пользуются наибольшим спросом среди вторичных химических источников тока. Многообразие их электрических и эксплуатационных параметров в зависимости от назначения обеспечивается прежде всего различием технологии и конструкции электродных пластин. Наибольшее распространение получили стартерные аккумуляторы с пастиро-ванными пластинами, которые изучаются в предлагаемой лабораторной работе.
Группу щелочных аккумуляторов с окисно-никелевым электродом составляют вторичные химические источники тока трех систем: никель-железный ( сокращенно HJK), никель-кадмиевый ( сокращенно НК) и никель-цинковый. Последний обладает рядом существенных недостатков и прежде всего — малым сроком службы ( меньше 200 циклов) и большим саморазрядом ( до 90 % за месяц), поэтому в настоящее время его не применяют. Однако высокая удельная энергия никель-цинкового аккумулятора, достигающая 60 Вт — ч / кг, дает основания считать его перспективным в будущем.
Кислотные свинцовые аккумуляторы являются наиболее распространенными среди вторичных химических источников тока. Разнообразие их электрических и эксплуатационных параметров в зависимости от назначения обеспечивается прежде всего различием технологии и конструкции электродных пластин.
Из сказанного следует, что один и тот же электрод вторичного химического источника тока может являться и анодом и катодом в зависимости от того, подвергается ли источник заряду или разряду. Поэтому, чтобы правильно применять при рассмотрении вторичных ХИТ термины анод и катод, необходимо знать природу процессов, протекающих на данном электроде при заряде и разряде источника тока, учитывая при этом, что процессу окисления отвечает термин анод, а процессу восстановления — термин катод.
В отличие от простых ( первичных) гальванических элементов ( см. 8.4) аккумуляторы являются вторичными химическими источниками тока.
Пропускание электрического тока через электролитическую ячейку вызывает в ней определенные изменения. Если протекающие электрохимические поцессы обратимы, то можно вновь получить электрическую работу за счет накопленной химической энергии. Такие обратимые элементы называются аккумуляторами, или вторичными химическими источниками тока.
Пропускание электрического тока через электролитическую ячейку вызывает в ней определенные изменения. Если протекающие электрохимические процессы обратимы, то можно вновь получить электрическую работу за счет накопленной химической энергии. Такие обратимые элементы называются аккумуляторами, или вторичными химическими источниками тока.
Отечественной промышленностью выпускается обширный ассортимент малогабаритных источников питания, которые могут использоваться в переносной аппаратуре. Герметические дисковые кадмиево-никелевые аккумуляторы и батареи типа Д-006; Д-01; Д-02; 7Д — 0.1, применяющиеся в приборах широкого потребления, имеют небольшие габариты и вес, однако ограниченный температурный диапазон ( от 5 до 35 С), при котором техническими условиями гарантируется их работоспособность, недостаточен для полевой аппаратуры. Серебряно-цинковые аккумуляторы по своим характеристикам превосходят все вторичные химические источники тока.
«Постоянный электрический ток. Действие электрического тока»
Электрический ток — это упорядоченное движение заряженных частиц. Для того чтобы в проводнике существовал электрический ток, необходимы два условия: 1) наличие свободных заряженных частиц, 2) электрическое поле, которое создаёт их направленное движение. Проходя по цепи, происходит действие электрического тока (тепловое, магнитное, химическое).
При существовании тока в разных средах: в металлах, жидкостях, газах — электрический заряд переносится разными частицами. В металлах этими частицами являются электроны, в жидкостях заряд переносится ионами, в газах — электронами, положительными и отрицательными ионами.
Дистиллированная вода не проводит электрический ток, поскольку она не содержит свободных зарядов. Если в воду добавить поваренную соль или медный купорос, то в ней появятся свободные заряды, и она станет проводником электрического тока.
Газы в обычных условиях тоже не проводят электрический ток, так как в них нет свободных зарядов. Однако если в воздушный промежуток между двумя металлическими пластинами, соединёнными с источником тока, внести зажжённую спичку или спиртовку, то газ станет проводником и гальванометр зафиксирует протекание тока по цепи.
Постоянный электрический ток
Постоянный электрический ток — это электрический ток, который с течением времени не изменяется по величине и направлению. Постоянный ток является разновидностью однонаправленного тока (англ. direct current), т.е. тока, не изменяющий своего направления. Часто можно встретить сокращения DC от первых букв англ. слов, или символом по ГОСТ 2.721-74.
На рисунке красным цветом изображён график постоянного тока. По горизонтальной оси отложен масштаб времени t, а по вертикальной — масштаб тока I или электрического напряжения U. Как видно, график постоянного тока представляет собой прямую линию, параллельную горизонтальной оси (оси времени).
При постоянном токе через каждое поперечное сечение проводника в единицу времени протекает одинаковое количество электричества (электрических зарядов). Постоянный электрический ток — это постоянное направленное движение заряженных частиц в электрическом поле.
Источник тока
Направленное движение зарядов обеспечивается электрическим полем. Электрическое поле в проводниках создаётся и поддерживается источником тока. В источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц. Эти частицы накапливаются на полюсах источника тока. Один полюс источника заряжается положительно, другой — отрицательно. Между полюсами источника образуется электрическое поле, под действием которого заряженные частицы начинают двигаться упорядоченно.
В источнике тока совершается работа при разделении заряженных частиц. При этом различные виды энергии превращаются в электрическую энергию. В электрофорной машине в электрическую энергию превращается механическая энергия, в гальваническом элементе — химическая.
Действие электрического тока
Электрический ток, проходя по цепи, производит различные действия. Тепловое действие электрического тока заключается в том, что при его прохождении по проводнику в нём выделяется некоторое количество теплоты. Пример применения теплового действия тока — электронагревательные элементы чайников, электроплит, утюгов и пр. В ряде случаев температура проводника нагревается настолько сильно, что можно наблюдать его свечение. Это происходит в электрических лампочках накаливания.
Магнитное действие электрического тока проявляется в том, что вокруг проводника с током возникает магнитное поле, которое, действуя на магнитную стрелку, расположенную рядом с проводником, заставляет её поворачиваться. Благодаря магнитному действию тока можно превратить железный гвоздь в электромагнит, намотав на него провод, соединённый с источником тока. При пропускании по проводу электрического тока гвоздь будет притягивать железные предметы.
Химическое действие электрического тока проявляется в том, что при его прохождении в жидкости на электроде выделяется вещество. Если в стакан с раствором медного купороса поместить угольные электроды и присоединить их к источнику тока, то, вынув через некоторое время эти электроды из раствора, можно обнаружить на электроде, присоединённом к отрицательному полюсу источника (на катоде), слой чистой меди.
Некоторые источники утверждают, что существует также механическое действие (например, рамка, по которой течет ток, поворачивается, если её поместить между полюсами магнитов) и световое (светодиоды).
Конспект по по физике в 8 классе: «Постоянный электрический ток. Действие электрического тока».
Следующая тема: «Сила тока. Напряжение»
Источник постоянного напряжения
Аккумуляторная батарея — это типичный источник постоянного напряжения. Для питания электронных схем применяются преимущественно источники постоянного напряжения. Напряжение измеряется между положительным и отрицательным выводами (полюсами) источника. Для того, чтобы образовать замкнутую электрическую цепь, в которой протекает постоянный ток, полюсы источника питания должны быть соединены с выводами схемы (нагрузки), потребляющей энергию от источника, или с выводами измерительного прибора. Считается, что в нагрузке, подключённой к источнику питания, ток течёт в направлении от положительного потенциала к отрицательному.
Состав лома
Электронные отходы относятся к сложным по компонентному составу.
Из высокотехнологичного мусора можно извлечь:
- черные и цветные металлы;
- пластик;
- охладители;
- двигатели;
- стекло;
- резина;
- электропровода;
- печатные платы;
- термостаты;
- лампы: люминесцентные и накаливания.
В качестве примера самой насыщенной по составу электроники ГОСТ Р 55102-2012 приводит персональный компьютер.
В национальном стандарте также перечисляются отдельные элементы ЭО, которые целесообразно использовать в качестве источников вторичных редких (и редкоземельных) металлов для их же производства.
включает также следующие элементы
- алюминий;
- барий;
- бериллий;
- ванадий;
- висмут;
- галлий;
- германий;
- европий;
- железо;
- золото;
- кобальт;
- медь;
- ртуть;
- свинец;
- серебро;
- хром;
- цинк.
Отдельные элементы ОЭЭО могут стать источником вторичных редких (в том числе редкоземельных) металлов, которые используются для их производства:
- празеодим (Pr), неодим (Nd), самарий (Sm) и диспрозий (Dy) — высокоэффективные магниты (например, в наушниках и жестких дисках компьютеров;
- индий (In) — сенсорные экраны и фотоэлементы;
- галлий (Ga) и теллур (Te) — фотоэлементы;
- эрбий (Ert) — оптоволокно;
- тантал (Ta) — конденсаторы;
- лантан (La) и церий (Ce) — аккумуляторы;
- лантан (La), церий (Ce), европий (Eu), тербий (Tb) и иттрий (Y) — флуоресцентные покрытия и энергосберегающие лампы.
Основными компонентами электронного лома считаются железо, алюминий и медь.
Некоторые виды химических источников тока
Гальванические элементы
Гальванический элемент — химический источник электрического тока, названный в честь Луиджи Гальвани. Принцип действия гальванического элемента основан на взаимодействии двух металлов через электролит, приводящем к возникновению в замкнутой цепи электрического тока.
Тип | Катод | Электролит | Анод | Напряжение,В |
Марганцево-цинковый элемент | MnO2 | KOH | Zn | 1,56 |
Марганцево-оловянный элемент | MnO2 | KOH | Sn | 1,65 |
Марганцево-магниевый элемент | MnO2 | MgBr2 | Mg | 2,00 |
Свинцово-цинковый элемент | PbO2 | H2SO4 | Zn | 2,55 |
Свинцово-кадмиевый элемент | PbO2 | H2SO4 | Cd | 2,42 |
Свинцово-хлорный элемент | PbO2 | HClO4 | Pb | 1,92 |
Ртутно-цинковый элемент | HgO | KOH | Zn | 1,36 |
Ртутно-кадмиевый элемент | HgO2 | KOH | Cd | 1,92 |
Окисно-ртутно-оловянный элемент | HgO2 | KOH | Sn | 1,30 |
Хром-цинковый элемент | K2Cr2O7 | H2SO4 | Zn | 1,8—1,9 |
Другие типы:
- Свинцово-плавиковый элемент
- Медно-окисный гальванический элемент
- Висмутисто-магниевый элемент
- Ртутно-висмутисто-индиевый элемент
- Литий-хромсеребряный элемент
- Литий-висмутатный элемент
- Литий-окисномедный элемент
- Литий-йодсвинцовый элемент
- Литий-йодный элемент
- Литий-тионилхлоридный элемент
- Литий-оксидванадиевый элемент
- Литий-фторомедный элемент
- Литий-двуокисносерный элемент
- Диоксисульфатно-ртутный элемент
- Серно-магниевый элемент
- Хлористосвинцово-магниевый элемент
- Хлорсеребряно-магниевый элемент
- Хлористомедно-магниевый элемент
- Иодатно-цинковый элемент
- Магний-перхлоратный элемент
- Магний-м-ДНБ элемент
- Цинк-хлоросеребряный элемент
- Хлор-серебряный элемент
- Бром-серебряный элемент
- Йод-серебряный элемент
- Магний-ванадиевый элемент
- Кальций-хроматный элемент
Электрические аккумуляторы
Электрический аккумулятор — химический источник тока многоразового действия (то есть в отличие от гальванического элемента химические реакции, непосредственно превращаемые в электрическую энергию, многократно обратимы). Электрические аккумуляторы используются для накопления энергии и автономного питания различных устройств.Смотри также Категория: Аккумуляторы.
- Железо-воздушный аккумулятор
- Железо-никелевый аккумулятор
- Лантан-фторидный аккумулятор
- Литий-железо-сульфидный аккумулятор
- Литий-ионный аккумулятор
- Литий-полимерный аккумулятор
- Литий-фторный аккумулятор
- Литий-хлорный аккумулятор
- Литий-серный аккумулятор
- Марганцево-оловянный элемент
- Натрий-никель-хлоридный аккумулятор
- Натрий-серный аккумулятор
- Никель-кадмиевый аккумулятор
- Никель-металл-гидридный аккумулятор
- Никель-цинковый аккумулятор
- Свинцово-водородный аккумулятор
- Свинцово-кислотный аккумулятор
- Свинцово-оловянный аккумулятор
- Серебряно-кадмиевый аккумулятор
- Серебряно-цинковый аккумулятор
- Цинк-бромный аккумулятор
- Цинк-воздушный аккумулятор
- Цинк-хлорный аккумулятор
Топливные элементы
Топливный элемент — электрохимическое устройство, подобное гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне — в отличие от ограниченного количества энергии, запасенного в гальваническом элементе или аккумуляторе.Смотри также Категория: Топливные элементы.
- Прямой метанольный топливный элемент.
- Твердооксидный топливный элемент.
- Щелочной топливный элемент.
Химические источники
Получение положительных и отрицательно заряженных частиц в химических источниках постоянного тока осуществляется за счет химических реакций. По классификации химических источников они делятся на 3 группы:
- гальванические элементы, являющиеся первичными источниками ;
- электрические аккумуляторные батареи (АКБ), или вторичные ХИТ;
*ХИТ — химические источники тока.
Гальванические элементы используют принцип действия, основанный на взаимодействии двух металлов через среду электролита. Вид и характеристики ХИТ зависят от выбранной пары металлов и состава электролита. Два металлических электрода источника тока по аналогии с прибором односторонней проводимости получили название анода («+») и катода («-«).
Материалом для изготовления анода могут служить свинец, цинк, кадмий и другие. Катод изготавливают из оксида свинца, графита, оксида марганца, гидрооксида никеля. По составу электролита гальванические элементы разделяются на 3 вида:
- солевые или «сухие»;
- щелочные;
- литиевые.
В элементах первых двух видов графито-марганцевый стержень (катод) помещен по оси цинкового цилиндрического стаканчика (анода). Свободное пространство между ними заполнено пастой на основе хлорида аммония (солевые) или гидрооксида калия (щелочные).
В литиевых элементах цинковый анод заменен щелочным литием, что привело к значительному увеличению продолжительности работы. Материал катода в них определяет выходное напряжение батарейки (1,5-3,7) В. Первичные ХИТ являются источниками одноразового действия. Его реагенты, расходующиеся в процессе работы, не подлежат восстановлению.
Аккумуляторы представляют собой устройства, в которых производится преобразование электрической энергии внешнего источника тока в химическую энергию при заряде и ее накопление. В процессе работы (разряд) происходит обратное преобразование — химическая энергия служит источником постоянного электрического тока.
К основным видам аккумуляторов относятся:
- свинцово-кислотные;
- никель-кадмиевые щелочные;
- литий-ионные.
Для создания химических процессов набор пластин помещен в раствор электролита. В АКБ, созданных по современным технологиям, раствор представляет собой не жидкость, а гелиевый состав (GEL) или сотовые сепараторы, пропитанные электролитом и помещенные между свинцовыми пластинами (AGM).
Свинцово-кислотные и никель-кадмиевые щелочные аккумуляторы для работы в качестве источников постоянного тока для запуска двигателей автомобилей собирают из набора отдельных аккумуляторных элементов («банок»). Каждая «банка» обеспечивает на своих клеммах напряжение 2,1 В. Соединенные последовательно 6 элементов и помещенные в ударопрочный корпус, имеют на выходных клеммах аккумулятора необходимые для запуска двигателя 12 В.
В литий-ионных аккумуляторах носителями электрического тока служат ионы лития. Они образуются на катоде, изготовленному из соли лития. Анод может быть изготовлен из графита или оксидов кобальта. Напряжение постоянного тока на выходе аккумулятора может варьироваться в пределах (3,0-4,2) В в зависимости от используемых материалов. Эти аккумуляторы имеют низкое значение тока саморазряда и допускают большое количество циклов заряд/разряд. Благодаря этому все современные гаджеты используют аккумуляторы этого вида.
Классификация приборов
Наиболее верным, с точки зрения науки, источнику тока даёт определение теория электрических цепей. Согласно ей под ним понимают двухполюсник, прохождение через который упорядоченных зарядов не зависит от приложенного потенциала на его выводах. В то же время в электротехнике им называют любой источник электрического поля.
Все существующие источники тока разделяют по виду преобразуемой ими энергии. Иными словами, по виду трансформируемой материи в силу, которая затем совершает работу по перемещению элементарных носителей зарядов. Существующие типы генераторов электротока можно представить таблицей:
Механические | В их принципе работы используется преобразование двигательной энергии в электрическую. Трансформирование происходит в специальных устройствах — турбогенераторах. По сути, это машины, приводящиеся в работу газовым или паровым потоком. Отдельно стоит отметить гидрогенераторы — использующие преобразование энергии падающей воды. |
Тепловые | Электрический ток генерируется из-за возникновения разности температур при контакте металлов или полупроводников. Природные свойства заставляют носители зарядов переходить с нагретого вещества. Значение тока пропорционально разности температур. Такие устройства не могут обеспечить большую мощность, поэтому используются в качестве токовых датчиков (термопары). Хотя при этом существуют альтернативные источники, использующие распад изотопов. |
Световые | Разработки такого вида источников начались в конце ХХ века — солнечные батареи. В их работе используется свойство полупроводников генерировать электричество при бомбардировке их квантами света. |
Химические | Это большая группа генераторов тока, в основе которых применяется способность веществ при взаимодействии через электролит испускать энергию. По-другому их называют гальваническими. Например, к ним можно отнести аккумуляторы и простые батарейки. |
Вне зависимости от типа устройства они все предназначены служить генераторами тока. Поэтому в схемах и технической литературе их обозначают одинаково. Условный знак сходен конденсатору только правая обкладка рисуется длиннее и обозначает положительный вывод.