Из чего состоит заземление
- Внешний контур заземления. Располагается за пределами помещений, непосредственно в грунте. Представляет собой пространственную конструкцию из электродов (заземлителей), соединенных между собой неразделимым проводником.
- Внутренний контур заземления. Токопроводящая шина, размещенная внутри здания. Охватывает периметр каждого помещения. К этому устройству подсоединяются все электроустановки. Вместо внутреннего контура может быть установлен щиток заземления.
- Заземляющие проводники. Соединительные линии, предназначенные для подключения электроустановок непосредственно к заземлителю, или внутреннему контуру заземления.
Рассмотри эти компоненты подробнее.
Внешний, или наружный контур
Монтаж контура заземления зависит от внешних условий. Прежде чем начать расчет, и выполнить проектный чертеж, необходимо знать параметры грунта, в котором будут установлены заземлители. Если вы сами строили дом, эти характеристики известны. В противном случае лучше вызвать геодезистов, для получения заключения по грунту.
Какие бывают грунты, и как они влияют на качество заземления? Примерное удельное сопротивление каждого типа грунта. Чем оно ниже, тем лучше проводимость.
- Глина пластичная, торф = 20–30 Ωм·м
- Суглинок пластичный, зольные грунты, пепел, классическая садовая земля = 30–40 Ом·м
- Чернозем, глинистые сланцы, полутвердая глина = 50–60 Ом·м
Это лучшая среда для того, чтобы установить наружный контур заземления. Сопротивление растекания тока будет достаточно низким даже при малом содержании влаги. А в этих грунтах естественная влажность обычно выше среднего.
Полутвердый суглинок, смесь глины и песка, влажная супесь — 100–150 Ом·м
Сопротивление немного выше, но при нормальной влажности параметры заземления не выйдут за нормативы. Если в регионе установки установится продолжительная сухая погода, необходимо принимать меры к принудительному увлажнению мест установки заземлителей.
Глинистый гравий, супесок, влажный (постоянно) песок = 300–500 Ом·м
Гравий, скала, сухой песок – даже при высокой общей влажности, заземление в такой почве будет неэффективным. Для соблюдения нормативов, придется устанавливать глубинные заземлители.
Многие владельцы объектов, экономя «на спичках», просто не понимают, для чего нужен контур заземления. Его задача при соединении фазы с землей обеспечить максимальную величину тока короткого замыкания. Только в этом случае быстро сработают устройства защитного отключения. Этого невозможно достичь, если сопротивление растекания тока будет высоким.
Определившись с грунтом, вы сможете выбрать тип, и самое главное — размер заземлителей. Предварительный расчет параметров можно выполнить по формуле:
Расчет приведен для вертикально установленных заземлителей.
Расшифровка величин формулы:
- R0 — полученное после вычисления сопротивление одного заземлителя (электрода) в омах.
- Рэкв — удельное сопротивление грунта, см. информацию выше.
- L — общая длина каждого электрода в контуре.
- d — диаметр электрода (если сечение круглое).
- Т — вычисленное расстояние от центра электрода до поверхности земли.
Задавая известные данные, а также меняя соотношение величин, вы должны добиться значения для одного электрода порядка 30 Ом.
Если установка вертикальных заземлителей невозможна (по причине качества грунта), можно рассчитать величину сопротивления горизонтальных заземлителей.
Поэтому лучше потратить больше времени на забивание вертикальных стержней, чем следить за барометром и влажностью воздуха.
И все же приводим формулу расчета горизонтальных заземлителей.
Соответственно, расшифровка дополнительных величин:
- Rв — полученное после вычисления сопротивление одного заземлителя (электрода) в омах.
- b — ширина электрода — заземлителя.
- ψ — коэффициент, зависящий от погодного сезона. Данные можно взять в таблице:
ɳГ — так называемый коэффициент спроса горизонтально расположенных электродов. Не вдаваясь в подробности, получаем цифры из таблицы на иллюстрации:
Предварительный расчет сопротивления необходим не только для правильного планирования закупок материала: хотя будет обидно, если вам не хватит для завершения работ, пары метров электрода, а до магазина несколько десятков километров. Более-менее аккуратно оформленный план, расчеты и чертежи, пригодятся для решения бюрократических вопросов: при подписании документов о приемке объекта, или составлении ТУ с компанией энергосбыта.
Разумеется, никакой инженер не подпишет бумаги только на основании пусть и красиво исполненных чертежей. Будут произведены замеры сопротивления растекания.
Далее расскажем о том, как добиться правильных характеристик внешнего контура заземления.
В сетях выше 1000 В
В настоящее время изолированная нейтраль чаще всего используется в сетях со средним классом напряжения (1-35 кВ). Для сети 110 кВ и выше – глухозаземленная. В связи с тем, что при КЗ на землю напряжение, как было сказано, возрастает до линейного, так в ЛЭП 110 кВ фазное напряжение (между землёй и фазным проводом) – 63,5 кВ
При КЗ на землю это особенно важно, и позволяет снизить расходы на изоляционные материалы
Кстати в КТП с высшим напряжением до 35 кВ первичные обмотки трансформаторов соединяются в треугольник, где нейтрали нет как таковой.
Низкие токи КЗ и возможность работать при однофазных КЗ на ВЛ – в распределительных сетях особенно важны и позволяют организовать бесперебойное электроснабжение. При этом угол сдвига между оставшимися в работе фазами остаётся неизменным — в 120˚.
При напряжениях в тысячи вольт емкостной проводимостью фаз пренебречь нельзя. Поэтому касание проводов ВЛЭП опасно для жизни человека. В нормальном режиме токи в фазах источника определяются суммой нагрузок и емкостных токов относительно земли, при этом сумма емкостных токов равна нулю и ток в земле не проходит.
Если опустить некоторые подробности, чтобы изложить языком, понятным для начинающих, то при КЗ на землю напряжение относительно земли поврежденной фазы приближается к нулю. Так как напряжения двух других фаз увеличиваются до линейных значений их емкостные токи увеличиваются в √3 (1,73) раз. В результате емкостный ток однофазного КЗ оказывается в 3 раза большим нормального. Например, для ВЛЭП 10 кВ длиной 10 км емкостный ток равен примерно 0,3 А. При замыкании фазы на землю через дугу в результате различных явлений возникают опасные перенапряжения до 2-4Uф, что приводит к пробою изоляции и междуфазному КЗ.
Для исключения возможности возникновения дуг и устранения возможных последствий нейтраль соединяют с землёй через дугогасящих реактор. Его индуктивность при этом подбирают согласно ёмкости в месте КЗ на землю, а также чтобы он обеспечивал работу релейной защиты.
Таким образом благодаря реактору:
- Намного уменьшается Iкз.
- Дуга становится неустойчивой и быстро гаснет.
- Замедляется нарастание напряжения после гашения дуги, в результате уменьшается вероятность повторного возникновение дуги и коммутационного тока.
- Токи обратной последовательности малы, следовательно, их действие на вращающейся ротор генератора не оказывает существенного влияния.
Перечислим плюсы и минусы высоковольтных сетей с изолированной нейтралью.
Преимущества:
- Какое-то время может работать в аварийном режиме (при КЗ на землю)
- В местах неисправности появляется незначительный ток, при условии малой емкости тока.
Недостатки:
- Усложнено обнаружение неисправностей.
- Необходимость изоляции установок на линейное напряжение.
- Если замыкание продолжается длительное время, то возможно поражение человека электрическим током, если он попадёт под шаговое напряжение.
- При 1-фазных КЗ не обеспечивается нормальное функционирование релейной защиты. Величина тока замыкания напрямую зависит от разветвленности цепи.
- Из-за накапливания дефектов изоляции от воздействия на нее дуговых перенапряжений снижается срок её службы.
- Повреждения могут возникнуть в нескольких местах из-за пробоя изоляции, как в кабелях, так и в электродвигателях и других частях электроустановки.
Системы с изолированной от земли нейтралью
Режим работы сетей с изолированной нейтралью достаточно распространён в большинстве регионов России. При этом способе подключения нейтральная точка питающего генератора (трансформатора) с расположением обмоток по схеме «треугольник» остаётся незаземлённой.
Причиной востребованности рассматриваемого варианта является то, что при этой схеме включения нейтрали любое замыкание фазы на землю не может считаться коротким (из-за отсутствия связи через грунт). Причём в таком аварийном режиме высоковольтная сеть может работать без особого ущерба в течение нескольких часов.
К другим достоинствам этой схемы следует отнести малые токи в месте замыкания одной фазы на землю (ОЗЗ) по причине незначительной ёмкости сети относительно грунта.
Важно! Токи ОЗЗ при данном варианте включения значительно меньше, чем в случае межфазных замыканий, что является ещё одним достоинством этих сетей. В связи с этим такие системы не нуждаются в специальных быстродействующих средствах защиты от ОЗЗ, что значительно сокращает затраты на их эксплуатацию
В связи с этим такие системы не нуждаются в специальных быстродействующих средствах защиты от ОЗЗ, что значительно сокращает затраты на их эксплуатацию.
К числу существенных недостатков такого подключения следует отнести:
- возможность образования перенапряжений с дуговыми эффектами и относительно небольшими токами (до десятков ампер) в точке ОЗЗ;
- связанная с этим возможность повреждения кабельного или ВВ оборудования по причине разрушения изоляции вследствие дуговых перенапряжений;
- требование учёта повышенного (линейного 380 Вольт) напряжения при необходимости надёжно изолировать линейное электрооборудование;
- трудность выявления точного места повреждения.
Таким образом, перед выбором этого способа подключения нейтрали должны быть учтены все «за» и «против», а также просчитаны возможные последствия аварийных режимов.
Трехфазные сети с эффективно-заземленными нейтралями
В сетях 110 кВ и выше определяющим в выборе способа заземления нейтралей является фактор стоимости изоляции. Здесь применяется эффективное заземление нейтралей, при котором во время однофазных замыканий напряжение на неповрежденных фазах относительно земли равно примерно 0,8 междуфазного напряжения в нормальном режиме работы. Это основное достоинство такого способа заземления нейтрали.
Рис.6. Трехфазная сеть с эффективно-заземленной нейтралью
Однако рассматриваемый режим нейтрали имеет и ряд недостатков. Так, при замыкании одной фазы на землю образуется короткозамкнутый контур через землю и нейтраль источника с малым сопротивлением, к которому приложена ЭДС фазы (рис.6). Возникает режим КЗ, сопровождающийся протеканием больших токов. Во избежание повреждения оборудования длительное протекание больших токов недопустимо, поэтому КЗ быстро отключаются релейной защитой. Правда, значительная часть однофазных повреждений в электрических сетях напряжением 110 кВ и выше относится к самоустраняющимся, т.е. исчезающим после снятия напряжения. В таких случаях эффективны устройства автоматического повторного включения (АПВ), которые, действуя после работы устройств релейной защиты, восстанавливают питание потребителей за минимальное время.
Второй недостаток — значительное удорожание выполняемого в распределительных устройствах контура заземления, который должен отвести на землю большие токи КЗ и поэтому представляет собой в данном случае сложное инженерное сооружение.
Третий недостаток — значительный ток однофазного КЗ, который при большом количестве заземленных нейтралей трансформаторов, а также в сетях с автотрансформаторами может превышать токи трехфазного КЗ. Для уменьшения токов однофазного КЗ применяют, если это возможно и эффективно, частичное разземление нейтралей (в основном в сетях 110-220 кВ). Возможно применение для тех же целей токоограничивающих сопротивлений, включаемых в нейтрали трансформаторов.
Сеть с глухозаземленной нейтралью
Рядовые потребители электрической энергии редко понимают, что источником тока в розетке являются силовые трансформаторы. При соединении трёхфазных обмоток трансформатора в «звезду» появляется совместная точка. Нейтраль – так она называется. При соединении нейтрали с контуром заземления непосредственно у источника появляется глухозаземленная нейтраль.
Наибольшая область применения систем с глухозаземленной нейтралью – напряжение до 1000 Вольт (так называемое низкое напряжение). Электрические сети городов и посёлков, дачные домики и элитные коттеджи – все они запитываются от силовых трансформаторов с заземлѐнной нейтралью.
Особенности конструктива
Конструктивной особенностью глухозаземленной нейтрали является наличие фазного и линейного напряжения. Источники электрической энергии, используемые в рассматриваемых электроустановках, обладают тремя силовыми: фазными концами и одним нейтральным – нулевым. Разность потенциалов, появляющаяся между фазными проводами, называется линейным напряжением, а между одним из фазных и нулевым – фазным.
По величине показателя линейного напряжения говорят о напряжении всей электросети. В нашей стране оно зафиксировано на значениях, равных 220В, 380В и 660В.
√3 раз – такова разница между фазным и линейным напряжением. Соответственно, фазное напряжение будет принимать вид 127 В, 220 В и 380 В. Самое распространённая величина номинального напряжения – 380 В. При линейном напряжении 380 В фазное равно 220 В.
Электрическую сеть с нейтралью, заземлённой непосредственно рядом с источником, можно использовать для электроснабжения трехфазных нагрузок на напряжение 380 В и однофазных на напряжение 220 В. Для последних подключение производится между «фазой» и «нулём». Распределение однофазных потребителей производят равномерно по фазам А, В и С во избежание перекоса.
Контур заземления ТП
Любая трансформаторная подстанция с действующим трансформатором обязана быть окружена контуром заземления. Контур заземления трансформаторной подстанции – это таким образом соединённые между собой металлические заземлители, заглублённые в грунт, чтобы сопротивление их не превышало 4-х Ом при номинальном напряжении 380 В. Это значение закреплено в главном нормативном документе электротехники – ПУЭ.
От контура заземления подстанции делаются выводы для присоединения в распределительном устройстве к специальной металлической полосе – нулевой шине. К ней же подключается нулевой вывод трансформатора. У отходящих кабельных линий соответствующие жилы так же заводятся на эту шину. Фазные жилы «сажаются» на коммутационные аппараты.
Кабели, выходящие из кабельного полуэтажа подстанции, должны быть четырёхжильными. В давно введённых в эксплуатацию электроустановках встречаются кабели с тремя жилами и оболочкой из алюминия. В этом случае она используется как нулевой проводник.
Для принятия напряжения от сетевой организации каждый потребитель обязан организовать у себя на объекте вводное распределительное устройство 0,4 кВ (ВРУ). В нем необходимо предусмотреть нулевую шину соответствующего сечения. К ней присоединяются все нулевые жилы подходящих и отходящих кабелей. Повторное заземление ВРУ тоже заводится на нулевую шину.
Эффективно-заземлённая нейтраль | Электротехнический журнал
Эффективно-заземлённая нейтраль (трех-фазной электроустановки) — нейтраль трёхфазной электрической сети выше 1000В (1 кВ и выше), коэффициент замыкания на землю в которой не более Кзам = 1,4.
Термин «глухозаземлённая нейтраль» в сетях выше 1000В в данный момент не применяется. Электроустановки, в которых нейтраль соединяется с заземляющим устройством непосредственно, также относятся к электроустановкам с эффективно-заземлённой нейтралью.
Коэффициент замыкания на землю в трехфазной электрической сети — это отношение разности потенциалов между неповреждённой фазой и землёй в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землёй в этой точке до замыкания.
Иначе говоря при замыкании фазы в сети с изолированной нейтралью напряжение между землёй и неповреждёнными фазами возрастает до линейного — примерно в 1,73 раза; в сети с эффективно заземлённой нейтралью напряжение на неповреждённых фазах относительно земли возрастёт не более чем в 1,4 раза
Это особенно важно для сетей высокого напряжения, что уменьшает количество изоляции при изготовлении сетей и аппаратов, удешевляя их производство. Согласно рекомендации МЭК к сетям с эффективно-заземлённой нейтралью относят сети высокого и сверхвысокого напряжения, нейтрали которых соединены с землёй непосредственно или через небольшое активное сопротивление. В СССР и России сети с эффективно-заземлённой нейтралью — это сети напряжением 110 кВ и выше
В СССР и России сети с эффективно-заземлённой нейтралью — это сети напряжением 110 кВ и выше.
Недостатки
- Возникновение больших токов короткого замыкания (ТКЗ) через заземлённые нейтрали трансформаторов при замыкании одной фазы на землю, что должно быть быстро устранено отключением от устройств релейной защиты. Большинство коротких замыканий на землю в сетях 110 кВ и выше относятся к самоустранимым и электроснабжение обычно восстанавливается АПВ.
- Удорожание сооружения контура заземления, способного отводить большие токи к.з.
- Значительный ток однофазного к.з., при большом количестве заземлённых нейтралей трансформаторов может превышать значение трёхфазного тока к.з. Для устранения этого вводят режим частично разземлённых нейтралей трансформаторов (часть трансформаторов 110-220 кВ работают с изолированной нейтралью: нулевые выводы трансформаторов присоединяются через разъединители, которые находятся в отключённом состоянии). Ещё одним из способов ограничения тока к.з. на землю-это заземление нейтралей трансформаторов через активные токоограничивающие сопротивления.
Особенности выполнения эффективно заземлённой нейтрали
Согласно ПТЭЭП максимально допустимая величина сопротивления заземляющего устройства для сетей с эффективно заземлённой нейтралью (для электроустановок выше 1000 В и с большим током замыкания на землю — свыше 500 А — каждого объекта) составляет 0,5 Ом с учётом естественного заземления (при сопротивлении искусственного заземляющего устройства — не более 1 Ом). Это вызвано необходимостью пропускания значительных токов при к.з. на землю, высоким и сверхвысоким напряжением сети, требованием ограничения напряжения между землёй и неповреждёнными фазами, а также возможностью появления при авариях высоких напряжений прикосновения, шаговых напряжений и опасных «выносов потенциалов» за территорию подстанции. Необходимость равномерности распределения потенциалов внутри подстанции и исключения появления шаговых напряжений на значительном удалении от подстанции исключается т.н. устройством выравнивания потенциалов, которое является составной частью заземляющего устройства для эффективно заземлённых нейтралей. Особые требования для заземляющих устройств с эффективно заземлёнными нейтралями создаёт значительные трудности для их расчёта и сооружения, делает их материалоёмкими, особенно для грунтов с высоким удельным сопротивлением (каменистые, скальные, песчаные грунты) и стеснёнными условиями сооружения.
Примечания
- ПУЭ — правила устройства электроустановок, издание 6-е и 7-е.
- ПТЭЭП — правила технической эксплуатации электроустановок потребителей.
Просмотров всего: 135, Просмотров за день: 1
www.el-info.ru
- Эффективно заземленная нейтраль и глухозаземленная отличия
- Испытания кабеля из сшитого полиэтилена 10 кв
- Испытания кабеля из сшитого полиэтилена 10 кв
- Плюсы и минусы тэц
- Плюсы и минусы тэц
- Разъединитель шинный 10 кв
- Разъединитель шинный 10 кв
- Разъединитель рндз
- Разъединитель рндз
- Протокол испытания кабеля сшитого полиэтилена
- Протокол испытания кабеля сшитого полиэтилена
Принцип действия сетей с глухозаземленной нейтралью
Теперь рассмотрим подробно, с какой целью заземляется нейтраль и как подобная реализация обеспечивает должный уровень электробезопасности, для этого перечислим обстоятельства, которые могут привести к поражению электротоком:
- Непосредственное прикосновение к токоведущим элементам. В данном случае никакое заземление не поможет. Необходимо ограничивать доступ к таким участкам и быть внимательным при приближении к ним.
- Образование зон с шаговым напряжением в результате аварий на ВЛ или других видах электрохозяйства.
- Повреждения внутренней изоляции может привести к «пробою» на корпус электроустановки, то есть, на нем появляется опасное для жизни напряжение.
- В результате нарушения электроизоляции токоведущих линий под напряжением могут оказаться кабельные каналы, короба и другие металлические конструкции, используемые при трассировке.
В идеале между нейтралью и землей разность потенциалов должна стремиться к нулю. Подключение к заземляющему контуру на вводе потребителя существенно способствует выполнению этого условия, в тех случаях, когда ТП находится на значительном удалении. При правильной организации заземления такая особенность может спасти человеческую жизнь, как минимум, в двух последних случаях из указанного выше списка.
Чтобы избежать пагубного воздействия электротока необходимо заземлять корпуса электроприборов, а также и других металлических частей электроустановок зданий. Это приведет к тому, что при «пробое» возникнет замыкание фазы на землю. В результате произойдет автоматическое отключение снабжения питанием электроприемников, вызванное срабатыванием устройства защиты от токов КЗ.
Даже если защита не сработает, а кто-либо прикоснется к металлическому элементу, все равно ток будет течь по заземляющему проводнику, поскольку в этой цепи будет меньшее сопротивление.
Движение тока при КЗ на корпус
Говоря о принципе работы защиты заземленной нейтрали нельзя не отметить быстрый выход в аварийный режим, когда один из фазных проводов замыкается на шину PEN. По сути, это КЗ на нейтраль, следствием которого является резкое возрастание тока, приводящее к защитному отключению энергоустановки или проблемного участка цепи.
При определенных условиях можно даже организовать защиту от образования опасных зон с шаговым напряжением. Для этого на пол в потенциально опасном помещении стелют (если необходимо, то замуровывают в бетон) металлическую сеть, подключенную к общему заземляющему контуру.
Системы TN и её подсистемы
Начнем с аббревиатуры. Первые две буквы характеризуют вариант исполнения заземления для нейтрали и ОПЧ соответственно. Варианты для первой литеры:
- T (от англ. terra — земля) — обозначает глухозаземленную нейтраль.
- I (от англ. isolate — изолировать) – указывает, что соединение с «землей» отсутствует.
Варианты вторых литер говорят об исполнении заземления ОПЧ: N или Т, используется глухозаземленная нейтраль или независимый контур, соответственно.
Сейчас практикуется три схемы нейтрали:
- Эффективное заземление обозначается, как ТТ. Особенность такой схемы заключается в том, что глухозаземленный вывод (N)считается рабочим проводом, а для защиты используется собственный заземляющий проводник (РЕ). Схема заземления ТТ
- Изолированная нейтраль (принятое обозначение IT), схема системы была представлена выше на рис. 6.
- Вариант TN (глухозаземленное исполнение).
У последнего варианта исполнения есть три подвида:
- Совмещенный вариант, принятое обозначение TN-С. У данного подвида защитный нуль соединен с нейтральным проводом, что не обеспечивает должного уровня электробезопасности. При обрыве РЕ+N защитное зануление становится бесполезным. Это основная причина, по которой от системы TN-C постепенно отказываются. Схема заземления TN-С
- Вариант TN-S, нулевой и защитный проводники проложены раздельно. Такая схема наиболее безопасна, но для нее требуется использовать не 4-х, а 5-ти жильный кабель, что повышает стоимость реализации. Схема заземления TN-S
- Подсистема, совмещающая в себе два предыдущих варианта – TN-C-S. От подстанции до ввода потребителя идет один провод, в РУ он подключается к шинам PE, N и заземляющему контуру. Такая подсистема заземленной нейтрали сейчас наиболее распространена. Схема заземления TN-C-S
Глухозаземленная нейтраль
Глухозаземленная нейтраль — нейтраль трансформатора или генератора, присоединенная к заземляющему устройству непосредственно или через малое сопротивление.
Глухозаземленная нейтраль — нейтраль генератора или трансформатора, присоединенная к заземляющему устройству непосредственно.
Глухозаземленная нейтраль получается тогда, когда она соединяется с землей системой проводников и электродов, находящихся в земле около места установки генератора или трансформатора. От нейтрали идет провод, называемый нулевым, который соединяется с корпусом каждого приемника энергии. Системы с глухозаземленной нейтралью применяются для питания большинства производственных и бытовых электроприемников.
Глухозаземленная нейтраль — нейтральная точка обмотки трансформатора или генератора, присоединенная к заземляющему устройству непосредственно.
Глухозаземленной нейтралью называется нейтраль рансформатора или генератора, присоединенная к за-емляющему устройству непосредственно или через ма-юе сопротивление.
Глухозаземленной нейтралью называется нейтраль трансформатора или генератора, присоединенная к заземляющему устройству непосредственно.
Поскольку глухозаземленная нейтраль — частный случай эффективно заземленной нейтрали, ей в той или иной степени присущи преимущества и недостатки эффективно заземленной нейтрали.
При глухозаземленной нейтрали ( глухое заземление нейтрали является обязательным в четы-рехпроводных сетях переменного тока) заземление осуществляется путем соединения металлоконструкций крана и подкрановых путей с заземленной нейтралью через нулевой провод линии, питающей кран.
При глухозаземленной нейтрали ток замыкания на землю и ток, проходящий через человека, не зависят от величины сопротивления изоляции.
При глухозаземленной нейтрали заземление осуществляется путем соединения металлоконструкций и рельсовых путей крана с заземленной нейтралью через нулевой провод линии, питающей кран.
При глухозаземленной нейтрали задача защитного заземления состоит в обеспечении через нулевой провод ( зануление) быстрого автоматического отключения поврежденного участка с помощью предохранителя или автоматического выключателя.
При глухозаземленной нейтрали заземление осуществляется путем соединения металлоконструкций и рельсовых путей крана с заземленной нейтралью через нулевой провод линии, питающей кран.
При глухозаземленной нейтрали сети напряжением до 1 кВ проводники сети защитного зануления должны иметь проводимость, достаточную для отключения защитного аппарата при однофазном КЗ. Для обеспечения необходимой прочности и долговечности сечение заземляющих проводников нормируется ПУЭ.
В с глухозаземленной нейтралью, в которых нейтральная точка связана с землей чедез небольшое активное сопротивление.
Электроустановки с глухозаземленной нейтралью широко применяются на промышленных предприятиях. Объясняется это в значительной мере преимуществами глухого заземления нейтрали с точки зрения безопасности, которые проявляются при замыкании одной из фаз электроустановки на землю и при переходе высшего напряжения на сторону низшего в питающем трансформаторе.
1.7.68
Ограждения и оболочки в электроустановках напряжением до 1 кВ должны иметь степень защиты не менее IP 2X, за исключением случаев, когда большие зазоры необходимы для нормальной работы электрооборудования.
Ограждения и оболочки должны быть надежно закреплены и иметь достаточную механическую прочность.
Вход за ограждение или вскрытие оболочки должны быть возможны только при помощи специального ключа или инструмента либо после снятия напряжения с токоведущих частей. При невозможности соблюдения этих условий должны быть установлены промежуточные ограждения со степенью защиты не менее IP 2X, удаление которых также должно быть возможно только при помощи специального ключа или инструмента.
Что такое PE и PEN проводники?
PEN-проводник — это проводник, совмещающий в себе функции нулевого защитного и нулевого рабочего проводника. Он идет от подстанции и разделяется на PE и N проводники, непосредственно у потребителя.
PE-проводник — это защитное заземление, которое мы используем, например, в квартире в розетке с заземлением. PE-проводник используется для заземления устройств, установок и приборов, где уровень напряжения не превышает 1 кВ.
Данный тип заземления используется только для гарантии безопасности. Такое заземление обеспечивает непрерывное соединение всех открытых и внешних деталей. Механизм обеспечивает стекание тока на землю, которое появилось вследствии попадания электрического тока на корпус какого-либо устройства.
PEN-проводник (объединение нулевого защитного и нулевого рабочего проводника) применяется при использовании системы заземления типа TN-C.
Классификация систем заземления по ПУЭ
Электроустановки (в частности трансформаторы) напряжением до 1000В по наличию систем заземления делятся на две категории, каждая из которых имеет свои сферы применения:
С глухозаземлённой нейтралью. Самый распространённый тип электротрансформаторов. Вторичные обмотки соединены в «звезду», средняя точка которых имеет постоянное подключение к контуру заземления. Жилые дома питаются только от трансформаторов с таким способом заземления нейтрали.
С изолированной нейтралью. Вторичные обмотки трансформаторов не заземляются
Являются разделительными и используются только в промышленности в специальных установках, таких, как нагревательные печи и некоторые другие, в которых важно отсутствие электрического соединения токоведущих частей и контура заземления.
Глухозаземлённая нейтраль в электротрансформаторах обозначается «TN». Самое распространённое защитное применение такой нейтрали — соединение с ней токопроводящих корпусов электроприборов отдельными проводами, однако они могут соединяться и другими способами.
При проектировании систем электроснабжения проектная организация выбирает тип заземления согласно полученному техническому заданию и описанию систем заземления. Этот выбор определяется ПУЭ и другими нормативными документами и от него зависит безопасность людей и приёмка здания в эксплуатацию.
Важно! Неправильный выбор вида системы заземления или некачественный монтаж приведут к требованию контролирующей организации исправить допущенные ошибки
Зачем нужен ноль в электричестве
Нуль замыкает электрическую цепь. Без этого провода в цепи не может быть электрического тока, который и дает мощность для питания бытовых приборов. По сути, нулевой провод — это земля.
Откуда берется ноль в электросети
Начало свое нуль берет от комплектной трансформаторной подстанции 6(10)/0,4 кВ, где трансформатор своей нулевой шиной соединен с контуром заземления. Изначально именно земля является проводником с нулевым потенциалом, и именно поэтому многие путают нуль с землей. ВЛ (воздушная линия электропередачи), выходя из КТП, имеет 4 провода — 3 фазы и нуль, который в начале линии соединен с нулем трансформатора. На протяжении воздушной линии через одну опору производится повторное заземление, которое дополнительно связывает нуль линии с землей, что дает более полноценную связь цепи «фаза — нуль» для того, чтобы у конечного потребителя в розетке было не менее 220В.
Фаза, ноль и земля в проводе
Зачем нужен нуль
Основное назначение нулевого провода — замыкание цепи для создания электрического тока для работы любого электроприбора. Ведь для того, чтобы ток появился, необходима разность потенциалов между двумя проводами. Нуль потому так и называется, что потенциал на нем равен нулю. Отсюда и уровень напряжения 220В — 230В.
Технические особенности
В данной системе, где используется общая средняя точка, помимо межфазного присутствует и фазное напряжение. Последнее образуется между рабочим нулем и линейными проводами. Наглядно отличие первого от второго продемонстрировано ниже.
Разница между фазным и линейным напряжением
Разность потенциалов UF1, UF2 и UF3 принято называть фазными, а величины UL1, UL2 и UL3 – линейными или межфазными. Характерно, что UL превышает UF примерно в 1,72 раза.
В идеально сбалансированной сети трехфазного электрического тока должны выполняться поддерживаться следующие соотношения:
UF1= UF2=UF3;
UL1=UL2=UL3.
На практике добиться такого результата невозможно по ряду причин, например из-за неравномерной нагрузки, токов утечки, плохой изоляции фазных проводников и т.д. Когда нейтраль заземлена, дисбаланс линейных и фазных характеристик энергосистемы существенно снижается, то есть, рабочий ноль позволяет выравнивать потенциалы.