osgi-rt-multinuclide-ru-en.png
Описание
Источник представляет собой плоское алюминиевое кольцо с диаметром 25 мм (29 мм по специальному заказу) и толщиной 3 мм. Активная часть в источнике термически загерметизирована между двумя полиимидными плёнками с общей толщиной 100 ± 10 мкм. Диаметр активной части не более 3 мм. Активное пятно источника содержит 4 нуклида: 88Y – 370 кБк, 133Ba – 37 кБк, 152Eu – 37 кБк, 241Am – 37 кБк.
Преимущества
- все данные калибровки собираются за один проход, что снижает систематические ошибки.
- все компоненты измеряются одновременно.
- экономия времени по сравнению с калибровкой одиночными радионуклидными источниками.
Особенности
Количество регистрируемых энергий, предназначенных для калибровки по эффективности и энергии широкодиапазонных спетрометров должно быть не менее 20. Активность каждого радионуклида подобрана так, чтобы надёжно обеспечить возможность работы с источником в течение 1–2 лет, что соответствует обязательному поверочному интервалу 1–2 года.
Преимущества для градуировки ППД
- Вся необходимая информация для проведения градуировки получается в одном измерении, что снижает систематическую ошибку, поскольку все компоненты регистрируются одновременно и за одну экспозицию.
- Значительно уменьшается время градуировки спектрометра, в сравнении с тем, как если бы мы проводили эту процедуру с однонуклидными источниками.
Способы защиты от гамма-излучения внутри зданий
Для защиты от внутреннего облучения проводятся мероприятия по уменьшению накопления опасной радиоактивной пыли — это специализированная облицовка стен, пола, потолка, проведение регулярной влажной уборки помещений, обустройство эффективной вытяжной вентиляции.
Дополнительно требуется тщательная личная гигиена персонала, применение индивидуальных средств защиты от альфа излучения (это комбинезоны, шапочки, очки, резиновые перчатки, сапоги, респираторы либо шланговые противогазы). При надевании и снятии СИЗ, чтобы не загрязнить одежду и кожные покровы, окружающие предметы необходимо четко следовать инструкции, проводить контроль мощности дозы рентгеновского и прочего излучения.
Рентгеновское излучение
- излучаются: энергия в виде фотонов
- проникающая способность:высокая
- облучение от источника: до сотен метров
- скорость излучения: 300 000 км/с
- ионизация: от 3 до 5 пар ионов на 1 см пробега
- биологическое действие радиации: низкое
Рентгеновское излучение — это энергетическое электромагнитное излучение в виде фотонов, возникающие при переходе электрона внутри атома с одной орбиты на другую.
Рентгеновское излучение сходно по действию с гамма излучением, но обладает меньшей проникающей способностью, потому что имеет большую длину волны.
Рассмотрев различные виды радиоактивного излучения, видно, что понятие радиация включает в себя совершенно различные виды излучения, которые оказывают разное воздействие на вещество и живые ткани, от прямой бомбардировки элементарными частицами (альфа, бета и нейтронное излучение) до энергетического воздействия в виде гамма и рентгеновского излечения.
Каждое из рассмотренных излучений опасно!
Кто открыл гамма излучение — что такое гамма излучение и чем оно опасна ? — 22 ответа
В разделе Естественные науки на вопрос что такое гамма излучение и чем оно опасна ? заданный автором Наброситься лучший ответ это Га́мма-излуче́ние (гамма-лучи, γ-лучи) — вид электромагнитного излучения с чрезвычайно малой длиной волны — менее 2·10−10 м — и, вследствие этого, ярко выраженными корпускулярными и слабо выраженными волновыми свойствами.Гамма-квантами являются фотоны с высокой энергией. Считается, что энергии квантов гамма-излучения превышают 105 эВ, хотя резкая граница между гамма- и рентгеновским излучением не определена. На шкале электромагнитных волн гамма-излучение граничит с рентгеновским излучением, занимая диапазон более высоких частот и энергий. В области 1—100 кэВ гамма-излучение и рентгеновское излучение различаются только по источнику: если квант излучается в ядерном переходе, то его принято относить к гамма-излучению; если при взаимодействиях электронов или при переходах в атомной электронной оболочке — к рентгеновскому излучению. С точки зрения физики, кванты электромагнитного излучения с одинаковой энергией не отличаются, поэтому такое разделение условно.Гамма-излучение испускается при переходах между возбуждёнными состояниями атомных ядер (см. Изомерный переход, энергии таких гамма-квантов лежат в диапазоне от ~1 кэВ до десятков МэВ), при ядерных реакциях (например, при аннигиляции электрона и позитрона, распаде нейтрального пиона и т. д.), а также при отклонении энергичных заряженных частиц в магнитных и электрических полях (см. Синхротронное излучение). Энергия гамма-квантов, возникающих при переходах между возбуждёнными состояниями ядер, не превышает нескольких десятков МэВ. Энергии гамма-квантов, наблюдающихся в космических лучах, могут превосходить сотни ГэВ.
Гамма-излучение было открыто французским физиком Полем Вилларом в 1900 году при исследовании излучения радия.
Есть ещё одно подлое воздействие: вспышка может быть настолько слабой, что разрушит не всю клетку, а отдельные молекулы. И всё бы ничего — для клетки это вообще стандартный режим, может и не заметить — но это может быть молекула ДНК, т. к. ни оболочка клетки, ни оболочка ядра клетки не являются препятствием для гамма-лучей: вспыхнуть может в любом месте. Если ДНК повреждена, но так, что клетка не умерла, она может сохранить даже способность к делению, но перестаёт выполнять функции, которые ей положены в организме. При этом остаётся своей клеткой и системами защиты организма не выводится. Это пресловутый рак, который, увы, может быть создан в том числе и гамма-лучами. Вероятность, конечно, мала, зато результат неприятен. Но если человек оптимист, то в результате модификации ДНК может получиться позитивная, удачная и полезная мутация. Халк, кто же ещё.
Опасность гамма-лучей
В силу своих свойств радиация гамма-спектра обладает очень высокой проникающей способностью. Чтобы её задержать, нужна свинцовая стена толщиной не менее пяти сантиметров.
Кожные покровы и прочие защитные механизмы живого существа не являются препятствием гамма-излучению. Оно проникает прямо в клетки, оказывая разрушительное воздействие на все структуры. Облучённые молекулы и атомы вещества сами становятся источником излучения и провоцируют ионизацию других частиц.
В результате этого процесса из одних веществ получаются другие. Из них составляются новые клетки с другим геномом. Ненужные при строительстве новых клеток остатки старых структур становятся токсинами для организма.
Наибольшая опасность радиационных лучей для живых организмов, получивших дозу радиации, в том, что они не способны ощущать наличие в пространстве этой смертельной волны. А также в том, что у живых клеток нет никакой специфической защиты от разрушительной энергии, которую несёт гамма ионизирующее излучение. Наибольшее влияние этот вид радиации оказывает на состояние половых клеток, несущих молекулы ДНК.
Разные клетки организма по-разному ведут себя в гамма-лучах, и обладают разной степенью устойчивости к воздействию этого вида энергии. Однако ещё одним свойством гамма-излучения является кумулятивная способность.
Однократное облучение небольшой дозой не наносит непоправимого разрушительного воздействия на живую клетку. Именно поэтому радиационным излучениям нашлось применение в науке, медицине, промышленности и других областях человеческой деятельности.
Гамма-излучение — это… Что такое Гамма-излучение?
Га́мма-излуче́ние (гамма-лучи, γ-лучи) — вид электромагнитного излучения с чрезвычайно малой длиной волны —
Гамма-квантами являются фотоны с высокой энергией. Считается, что энергии квантов гамма-излучения превышают 105 эВ, хотя резкая граница между гамма- и рентгеновским излучением не определена. На шкале электромагнитных волн гамма-излучение граничит с рентгеновским излучением, занимая диапазон более высоких частот и энергий. В области 1-100 кэВ гамма-излучение и рентгеновское излучение различаются только по источнику: если квант излучается в ядерном переходе, то его принято относить к гамма-излучению; если при взаимодействиях электронов или при переходах в атомной электронной оболочке — к рентгеновскому излучению. С точки зрения физики, кванты электромагнитного излучения с одинаковой энергией не отличаются, поэтому такое разделение условно.
Гамма-излучение испускается при переходах между возбуждёнными состояниями атомных ядер (см. Изомерный переход, энергии таких гамма-квантов лежат в диапазоне от ~1 кэВ до десятков МэВ), при ядерных реакциях (например, при аннигиляции электрона и позитрона, распаде нейтрального пиона и т. д.), а также при отклонении энергичных заряженных частиц в магнитных и электрических полях (см. Синхротронное излучение).
Гамма-излучение было открыто французским физиком Полем Виллардом в 1900 году при исследовании излучения радия.
Физические свойства
Гамма-лучи, в отличие от α-лучей и β-лучей, не отклоняются электрическими и магнитными полями, характеризуются большей проникающей способностью при равных энергиях и прочих равных условиях. Гамма-кванты вызывают ионизацию атомов вещества. Основные процессы, возникающие при прохождении гамма-излучения через вещество:
- Фотоэффект — энергия гамма-кванта поглощается электроном оболочки атома, и электрон, совершая работу выхода, покидает атом (который становится ионизированным).
- Комптон-эффект — гамма-квант рассеивается при взаимодействии с электроном, при этом образуется новый гамма-квант, меньшей энергии, что также сопровождается высвобождением электрона и ионизацией атома.
- Эффект образования пар — гамма-квант в поле ядра превращается в электрон и позитрон.
- Ядерный фотоэффект — при энергиях выше нескольких десятков МэВ гамма-квант способен выбивать нуклоны из ядра.
Использование
Области применения гамма-излучения:
- Гамма-дефектоскопия, контроль изделий просвечиванием γ-лучами.
- Консервирование пищевых продуктов.
- Стерилизация медицинских материалов и оборудования.
- Лучевая терапия.
- Уровнемеры.
- Гамма-каротаж в геологии.
- Гамма-высотомер, измерение расстояния до поверхности при приземлении спускаемых космических аппаратов.
- Гамма-стерилизация специй, зерна, рыбы, мяса и других продуктов для увеличения срока хранения.
Детектирование
Зарегистрировать гамма-кванты можно с помощью ряда ядерно-физических детекторов ионизирующего излучения (сцинтилляционных, газовых, полупроводниковых и т. д.).
Биологические эффекты
Облучение гамма-квантами в зависимости от дозы и продолжительности может вызвать хроническую и острую лучевые болезни. Стохастические эффекты облучения включают различные виды онкологических заболеваний. В то же время гамма-облучение подавляет рост раковых и других быстро делящихся клеток. Гамма-излучение является мутагенным и тератогенным фактором.
Защита
Защитой от гамма-излучения может служить слой вещества. Эффективность защиты (то есть вероятность поглощения гамма-кванта при прохождении через неё) увеличивается при увеличении толщины слоя, плотности вещества и содержания в нём тяжёлых ядер (свинца, вольфрама, обеднённого урана и пр.).
Спектроскопия
Спектр излучения
Возбужденные атомы или молекулы (например, при ударе) выходят из возбуждения за счет излучения электромагнитной волны . Это можно разбить на суперпозицию синусоидальных волн (монохроматических), характеризуемых их длинами волн. Спектр состоит из всех присутствующих длин волн. Его можно материализовать с помощью призмы для разделения света на набор линий, спектральных линий , которые соответствуют разным длинам излучаемых волн . Для большей точности мы также можем представить этот спектр в виде графика зависимости интенсивности света от длины волны.
Спектр излучения водорода наблюдается с помощью трубки Гейсслера с двумя электродами и водородом низкого давления . Электроды подвергают воздействию разности потенциалов 1000 V . Сильное электрическое поле ускоряет присутствующие ионы, которые при ударе возбуждают атомы водорода . Когда они выведены из возбуждения, они излучают свет, который анализируется спектроскопом . Во всех случаях мы наблюдаем (в видимом диапазоне) один и тот же спектр, состоящий из четырех линий (линейчатые спектры) на длинах волн: 410 нм , 434 нм , 486 нм , 656 нм .
Затем Нильс Бор интерпретирует излучение света излучением фотона, когда атом переходит с одного энергетического уровня на другой. Спектр излучения любого элемента может быть получен путем нагревания этого элемента и последующего анализа излучения, испускаемого материалом. Этот спектр характерен для элемента.
Спектр поглощения
Принцип точно такой же, как и у спектра излучения: данный уровень энергии соответствует длине волны. Но вместо того, чтобы возбуждать материю (например, нагревать ее) для излучения света, мы освещаем ее белым светом (следовательно, содержащим все длины волн), чтобы увидеть, какие длины волн поглощаются. Поскольку уровни энергии характерны для каждого элемента, спектр поглощения элемента является в точности дополнением к спектру излучения. Он используется, в частности, в астрофизике: например, для определения состава газовых облаков, их спектр поглощения изучается с использованием звезд на заднем плане в качестве источника света. Обычно это цель абсорбционной спектрографии: идентифицировать неизвестные элементы (или смеси) по их спектру.
Атмосферное поглощение
Поглощение и рассеяние атмосферой Земли (или непрозрачность ) различных длин волн электромагнитного излучения (приблизительный график).
Большая часть ультрафиолетового излучения и рентгеновских лучей поглощается верхними слоями атмосферы.
Для видимой части электромагнитного излучения атмосфера относительно хорошо прозрачна.
В инфракрасном диапазоне электромагнитное излучение сильно поглощается атмосферой, в частности, в соответствии с различными режимами возбуждения водяного пара.
Затем, в области радиочастот, когда энергия фотонов уменьшается, атмосфера снова становится прозрачной, за исключением самых низких частот ( длинных волн ), которые останавливаются ионосферой.
Что такое радиоактивность в физике
Любой атом имеет ядро и вращающиеся вокруг него отрицательные заряженные частицы — электроны.
Атомное ядро состоит из протонов и нейтронов. Причем число протонов всегда одинаково и соответствует порядковому номеру химического элемента в периодической системе Менделеева. Ядра, в которых количество нейтронов отличается, называются изотопами.
Некоторые атомные ядра могут превращаться в разные изотопы с выделением элементарных частиц или легких ядер. Собственно этот процесс и называется радиоактивностью.
Можно дать такое определение этому явлению: способность атомного ядра бесконтрольно распадаться с испусканием проникающих частиц.
Распад ядер возможен в том случае, если он сопровождается выделением энергии. Сегодня известно около 3 тыс. атомных ядер. Из них не являются радиоактивными всего лишь 264.
В физике существуют такие виды радиоактивного распада:
-
α-распад с выделением α-частицы;
-
β-распад с испусканием электрона и антинейтрино, позитрона и нейтрино, а также поглощение ядром электрона с выделением нейтрино;
-
γ-распад — излучение атомным ядром кванта ионизирующих лучей;
-
бесконтрольное деление ядра на осколки.
Природа радиоактивного распада
Чтобы детальнее понять свойства гамма-распада, необходимо рассмотреть природу ионизирующего излучения. Это определение означает, что энергия такого типа излучения очень высока — когда оно попадает в другой атом, называемый «атом-мишень», он выбивает движущийся по его орбите электрон. При этом атом-мишень становится положительно заряженным ионом (поэтому излучение и было названо ионизирующим). От ультрафиолетового или инфракрасного это излучение отличается высокой энергией.
В целом альфа-, бета- и гамма-распады имеют общие свойства. Можно представить себе атом в виде маленького зернышка мака. Тогда орбита электронов будет мыльным пузырем вокруг него. При альфа-, бета- и гамма-распаде из этого зернышка вылетает крошечная частица. При этом заряд ядра меняется, а это означает, что был образован новый химический элемент. Пылинка несется с гигантской скоростью и врезается в электронную оболочку атома-мишени. Потеряв электрон, атом-мишень становится положительно заряженным ионом. Однако при этом химический элемент остается тем же, ведь ядро атома-мишени осталось прежним. Ионизация является процессом химической природы, практически тот же процесс происходит при взаимодействии некоторых металлов, которые растворяются в кислотах.
Использование[ | ]
В этом разделе не хватает ссылок на источники информации.
Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 29 октября 2020 года |
Области применения гамма-излучения:
- Гамма-дефектоскопия — контроль изделий просвечиванием γ-лучами.
- Пищевая промышленность: консервирование пищевых продуктов (гамма-стерилизация для увеличения срока хранения).
- Медицина: стерилизация медицинских материалов и оборудования; лучевая терапия; радиохирургия.
- Гамма-каротаж в геофизике.
- Приборы для измерения расстояний: уровнемеры, гамма-высотомеры на космических аппаратах.
- Гамма-астрономия.
Способы защиты
Те лучи, которые, обладая огромными скоростями, проникают в защищённое пространство земли, не причиняют большого вреда живым существам. Наибольшую опасность представляют источники и гамма-радиация, полученная в земных условиях.
Самым главным источником опасности радиационного заражения остаются предприятия, где под контролем человека осуществляется контролируемая ядерная реакция. Это атомные электростанции, где производится энергия для обеспечения населения и промышленности светом и теплом.
Для обеспечения работников этих объектов принимаются самые серьёзные меры. Трагедии, произошедшие в разных точках мира, из-за утраты человеком контроля за ядерной реакцией, научили людей быть осторожными с невидимым врагом.
Защита работников электростанций
На предприятиях ядерной энергетики и производствах, связанных с использованием гамма-излучения, строго ограничивается время контакта с источником радиационной опасности.
Все сотрудники, имеющие служебную необходимость контактировать или находиться вблизи источника гамма-излучения, используют специальные защитные костюмы и проходят несколько ступеней очистки перед тем, как вернуться в «чистую» зону.
Для эффективной защиты от гамма-лучей используются материалы, обладающие высокой прочностью. К ним относятся свинец, высокопрочный бетон, свинцовое стекло, определённые виды стали. Эти материалы применяются в сооружении защитных контуров электростанций.
Элементы из этих материалов используются при создании противорадиационных костюмов для сотрудников электростанций, имеющих допуск к источникам радиации.
В так называемой «горячей» зоне свинец нагрузки не выдерживает, так как его температура плавления недостаточно высока. В области, где протекает термоядерная реакция с выделением высоких температур, используются дорогие редкоземельные металлы, например вольфрам и тантал.
Ввиду отсутствия естественной чувствительности к радиации, человек может воспользоваться дозиметром, чтобы определить, какую дозу радиации он получил за определённый период.
Нормальной считается доза, не превышающая 18-20 микрорентген в час. Ничего особенно страшного не произойдёт при облучении дозой до 100 микрорентген. Если человек получил такую дозу, могут проявиться последствия через две недели.
Из всех видов радиации именно гамма-лучи несут наибольшую опасность для человека. К сожалению, вероятность радиационного заражения существует для каждого. Даже находясь вдали от промышленных предприятий, производящих энергию посредством расщепления атомного ядра, можно подвергнуться опасности облучения.
История знает примеры таких трагедий.
Как защититься от электромагнитного излучения
Опасность ЭМИ состоит в том, что человек никак не ощущает на себе его влияния, а оно существует и сильно вредит нашему здоровью. Если на рабочих местах имеется специальное защитное оборудование, то дома дела обстоят намного хуже.
Но защитить себя и своих близких от вредоносного влияния бытовых приборов всё же возможно, если следовать простым рекомендациям:
- приобрести дозиметр, определяющий интенсивность излучения и замерять фон от различных бытовых приборов;
- не включать сразу несколько электроприборов одновременно;
- держаться от них, по возможности, на расстоянии;
- располагать приборы так, чтобы они как можно дальше находились от мест длительного пребывания человека, например, обеденного стола или зоны отдыха;
- в детских комнатах должно находиться как можно меньше источников излучения;
- не нужно электроприборы группировать в одном месте;
- мобильный телефон не стоит подносить к уху ближе, чем на 2,5 см;
- телефонную базу держать подальше от спальни или рабочего стола:
- не располагаться близко от телевизора или монитора компьютера;
- выключать ненужные вам приборы. Если в данное время вы не пользуетесь компьютером или телевизором, не нужно держать их включёнными;
- стараться сокращать время пользования прибором, не находиться около него постоянно.
Современная техника прочно вошла в наш быт. Мы не мыслим жизни без мобильного телефона или компьютера, а также микроволновой печи, которая у многих имеется не только дома, но и на рабочем месте. Отказаться от них вряд ли кто захочет, а вот использовать их разумно — в наших силах.
Ионизирующее излучение
Небольшой скачок в спектре, но большой скачок в последствиях. Мы отказываемся от неионизирующего излучения и переходим к ионизирующему излучению, которое имеет высокую энергию, высокую частоту и низкую длину волны. Благодаря малой длине волны, Они способны более интенсивно взаимодействовать с веществом и вытягивать электроны из вещества, на которое они падают..
Из-за своего ионизирующего действия эти электромагнитные волны обладают способностью химически изменять наши молекулы (включая ДНК) и, следовательно, считаются действительно опасными и канцерогенными. Он включает ультрафиолет (он находится на границе неионизирующего и ионизирующего), рентгеновские лучи и гамма-лучи.
Ионизирующее излучение
Всё это- не фрагмент бреда сумасшедшего, взятый из истории его болезни и не краткий синопсис очередного голливудского боевика. Это окружающая нас реальность, которая называется радиоактивное или ионизирующее излучение, если коротко — радиация.
Явление радиоактивности в общих чертах было сформулировано французским физиком А. Беккерелем в 1896 году. Конкретизировал это явление и более подробно описал Э. Резерфорд в 1899 году. Именно он смог установить, что радиоактивное излучение неоднородно по своей природе и состоит, как минимум, из трёх видов лучей. Эти лучи по-разному отклонялись в магнитном поле и поэтому получили разное название. Проникающая способность альфа, бета и гамма-излучения различна.
Альфа-лучи
В магнитном поле они отклоняются так же, как и и положительно заряженные частицы. В дальнейшем было выяснено что это тяжёлые, положительно заряженные ядра атомов гелия. Возникают при распаде более сложных атомных ядер, например, урана, радия или тория. Обладают большой массой и относительно низкой скоростью излучения. Это обуславливает их невысокую проникающую способность. Они не могут проникнуть даже сквозь лист бумаги.
Но при этом альфа-частицы обладают очень большой ионизирующей энергией, что является причиной их способности наносить очень серьёзные повреждения на клеточном уровне. Из всех видов лучей именно альфа характеризуются самыми тяжёлыми последствиями в случае их воздействия на организм.
Это разрушающее влияние случается только в случае непосредственного контакта с предметами, излучающими альфа-лучи. На практике это происходит в результате попадания радиоактивных элементов внутрь организма через желудочно-кишечный тракт при приёме пищи или воды, а также при вдыхании воздуха, насыщенного радиоактивной пылью. Кроме того альфа-частицы могут легко проникнуть в организм через повреждения кожных покровов. Разносясь с током крови по всему организму, они обладают способностью накапливаться, оказывая сильнейшее разрушающее воздействие в течение многих лет.
Необходимо иметь в виду, что попадающие в организм радиоактивные вещества, не выводятся из него самостоятельно. Человеческий организм практически никак не защищён от подобного рода проникновений. Он не может нейтрализовать, переработать, усвоить или вывести самостоятельно радиоактивный изотоп, попавший внутрь.
Бета-лучи
Отклоняются в ту же сторону что и отрицательно заряженные частицы. Источником бета-излучения являются внутриядерные процессы, связанные с превращением протона в нейтрон и наоборот- нейтрона в протон. При этом происходит излучение электрона или позитрона. Скорость распространения довольно высокая и приближается к скорости света. Бета-излучение обладает гораздо большей проникающей способностью, чем альфа-излучение, но ионизирующее воздействие выражено гораздо слабее.
Бета-излучение легко проникает сквозь одежду, но тонкий лист металла или средней толщины деревянный брусок полностью останавливают его. В отличие от альфа-излучения, бета-лучи способны наносить дистанционное поражение на расстоянии нескольких десятков метров от источника радиации.
Гамма- лучи
Эти лучи оказались нейтрально заряженными и никак не отклонялись в магнитном поле. Гамма-излучение представляет собою электромагнитную энергию, излучаемую в виде фотонов. Эта энергия освобождается в момент изменения энергетического состояния ядра атома.
Данный вид излучения характеризуется высокой скоростью, равной скорости света и крайне высокой проникающей способностью. Чтобы остановить гамма-излучение необходимы толстые бетонные стены. Парадокс состоит в том, что данный вид лучей менее всего способен оказывать разрушающее действие на организм. Их ионизирующее воздействие в сотни раз слабее бета-излучения и в десятки тысяч раз слабее альфа-излучения. Но способность преодолевать значительные расстояния и высокие проникающие свойства делают эти лучи потенциально наиболее опасными для человека. Поэтому остановимся на этом виде излучения более подробно.
Виды электромагнитного излучения
ЭМИ разделено на виды по характеристикам длины и частоты.
Длина волн колеблется в таких диапазонах:
Диапазоны электромагнитного излучения
- Радиоволны (от 0,1 мм до 10 км и более) делятся на короткие, ультракороткие, средние, длинные и сверхдлинные. Ультракороткие радиоволны относятся к сверхвысокочастотным (СВЧ) волнам.
- Инфракрасные лучи (от 1 мм до 780 нм).
- Ультрафиолетовые лучи (от 380 мм до 10 нм).
- Видимый свет (от 780 мм до 380 нм).
- Рентген-излучение (от 10 нм до 5 пм).
- Гамма-лучи (до 5 пм).
Частота волн варьируется от 30 кГц (для радиоволн) до 6×10¹9 Гц и более (для гамма-лучей).
Волны разной длины образуются разными способами:
- рентгеновские появляются тогда, когда быстро движущиеся электроны переходят в состояние с меньшей энергией вследствие торможения;
- ультрафиолетовое излучается вследствие движения ускоренных электронов;
- инфракрасное излучение испускается раскаленными предметами;
- радиоволны образуются из высокочастотных токов, движущихся по антеннам;
- ионизирующее гамма-излучение испускается в процессе ядерных реакций.
Вышеперечисленные виды волн поглощаются веществами неодинаково: рентгеновские и гамма-волны проникают сквозь ткани организма и почти не поглощаются, инфракрасные лучи проходят сквозь ряд непрозрачных объектов, при поглощении происходит нагрев вещества.
Свойства электромагнитных волн
Важнейшим результатом, который вытекает из сформулированной Максвеллом теории электромагнитного поля, стало предсказание возможности существования электромагнитных волн. Электромагнитная волна — распространение электромагнитных полей в пространстве и во времени.
Источник электромагнитного поля — электрические заряды, движущиеся с ускорением.
Электромагнитные волны, в отличие от упругих (звуковых) волн, могут распространяться в вакууме или любом другом веществе.
Электромагнитные волны в вакууме распространяются со скоростью c=299 792 км/с, то есть со скоростью света.
В веществе скорость электромагнитной волны меньше, чем в вакууме. Соотношение между длиной волна, ее скоростью, периодом и частотой колебаний, полученные для механических волн выполняются и для электромагнитных волн:
Колебания вектора напряженности E и вектора магнитной индукции B происходят во взаимно перпендикулярных плоскостях и перпендикулярно направлению распространения волны (вектору скорости).
Электромагнитная волна переносит энергию.
Диапазон электромагнитных волн
Вокруг нас сложный мир электромагнитных волн различных частот: излучения мониторов компьютеров, сотовых телефонов, микроволновых печей, телевизоров и др. В настоящее время все электромагнитные волны разделены по длинам волн на шесть основных диапазонов.
Радиоволны — это электромагнитные волны (с длиной волны от 10000 м до 0,005 м), служащие для передачи сигналов (информации) на расстояние без проводов. В радиосвязи радиоволны создаются высокочастотными токами, текущими в антенне.
Электромагнитные излучения с длиной волны, от 0,005 м до 1 мкм, т.е. лежащие между диапазоном радиоволн и диапазоном видимого света, называются инфракрасным излучением. Инфракрасное излучение испускают любые нагретые тела. Источником инфракрасного излучения служат печи, батареи, электрические лампы накаливания. С помощью специальных приборов инфракрасное излучение можно преобразовать в видимый свет и получать изображения нагретых предметов в полной темноте.
К видимому свету относят излучения с длиной волны примерно 770 нм до 380 нм, от красного до фиолетового цвета. Значение этого участка спектра электромагнитных излучений в жизни человека исключительно велико, так как почти все сведения об окружающем мире человек получает с помощью зрения.
Невидимое глазом электромагнитное излучение с длиной волны меньше, чем у фиолетового цвета, называют ультрафиолетовым излучением. Оно способно убивать болезнетворные бактерии.
Рентгеновское излучение невидимо глазом. Оно проходит без существенного поглощения через значительные слои вещества, непрозрачного для видимого света, что используют для диагностики заболеваний внутренних органов.
Гамма-излучением называют электромагнитное излучение, испускаемое возбужденными ядрами и возникающее при взаимодействии элементарных частиц.