Виды трансформаторов
В зависимости от своего применения и характеристик трансформаторы бывают нескольких видов. К примеру, в электрических сетях населенных пунктов, промышленных предприятий применяют трансформаторы силовые, основной задачей которых является понижение напряжения в сети до общепринятого – 220 В. Если трансформатор предназначен для регулировки тока, он называется трансформатор тока, а если устройство регулирует напряжение – то это трансформатор напряжения. В обычных сетях применяются однофазные трансформаторы, в сетях на три провода (фаза, ноль, заземление) нужен трехфазный трансформатор. Бытовой трансформатор, 220В предназначается для защиты бытовой техники от перепадов напряжения.
Сварочный трансформатор предназначен для разделения сварочной и силовой сети, для понижения напряжения в сети до нужной для сварки величины. Масляный трансформатор предназначается для использования в сетях с напряжением выше 6 000 Вольт. Конструкция трансформатора включает в себя: магнитопровод, обмотки, бак, а также крышки с вводами. Магнитопровод состоит из 2 листов электротехнической стали, которые изолированы друг от друга, обмотки, как правило, делают из алюминиевого или медного провода. Регулировка напряжения производится с помощью ответвления, которое соединяется с переключателем. Существует два вида переключения ответвлений: переключение под нагрузкой — РПН (регулирование под нагрузкой), а также без нагрузки, после того, как трансформатор отключен от внешней сети (ПБВ, или переключение без возбуждения). Большее распространение получил второй способ регулировки напряжения.
Говоря о видах трансформаторов, нельзя не рассказать об электронном трансформаторе. Электронный трансформатор представляет собой специализированный источник питания, который служит для преобразования напряжения 220В в 12 (24)В, при большой мощности. Электронный трансформатор намного меньше обычного, при тех же самых параметрах нагрузки.
Двуполярный инвертор напряжения
Для питания радиоэлектронных схем, содержащих операционные усилители, часто требуются двухполярные источники питания. Решить эту проблему можно, использовав инвертор напряжения, схема которого показана на рис. 16.
Устройство содержит генератор прямоугольных импульсов, нагруженный на дроссель L1. Напряжение с дросселя выпрямляется диодом VD2 и поступает на выход устройства (конденсаторы фильтра С3 и С4 и сопротивление нагрузки). Стабилитрон VD1 обеспечивает постоянство выходного напряжения — регулирует длительность импульса положительной полярности на дросселе.
Рис. 16. Схема инвертора напряжения +15/-15 В.
Рабочая частота генерации — около 200 кГц под нагрузкой и до 500 кГц без нагрузки. Максимальный ток нагрузки — до 50 мА, КПД устройства — 80%. Недостатком конструкции является относительно высокий уровень электромагнитных помех, впрочем, характерный и для других подобных схем. В качестве L1 использован дроссель ДМ-0,2-200.
Частотные преобразователи со звеном постоянного тока
Это устройства, выполненные по транзисторной или тиристорной схеме. Однако их основная отличительная особенность состоит в том, что корректная и безопасная работа частотника требует наличия звена постоянного напряжения. Поэтому для подключения их к промышленной сети требуется выпрямитель. Обычно, применяются комплектное оборудование, состоящее из частотного преобразователя и выпрямителя, регулируемые от одной системы управления.
В ПЧ этой группы применяется двухступенчатое преобразование электроэнергии: синусоидальное U вх с f = const выправляется в выпрямителе (В), отфильтровывается фильтром (Ф), разглаживается, и далее заново преобразуется инвертором (И) в U ̴. Ввиду двухступенчатого преобразования электроэнергии снижается КПД и несколько ухудшаются массогабаритные показателив сравнении с преобразователями частоты с непосредственной связью.
Для создания синусоидального U ̴ самоуправляющиеся преобразователи частоты. В качестве ключевой базы в них используются усовершенствованная тиристорная и транзисторная основа.
Основным преимуществом тиристорной преобразовательной аппаратуры считается возможность оперироватьс большими параметрами сети, с выдерживанием при этом продолжительной нагрузки и импульсных воздействий. Аппараты обладают более высоким КПД.
Частотные преобразователи на тиристорах на сегодня превосходят остальные высоковольтные приводы, мощность которых исчисляется десятками МВТ с U вых от 3до 10 кВ и более. Однако и цена на них соответственно наибольшая.
Преимущества:
- наибольший КПД;
- возможность использования в мощных приводах;
- приемлемая стоимость, невзирая на внедрение добавочных элементов.
Преобразователь с новейшими деталями
Самодельный инвертор может работать в стабильном режиме, если на выходах транзистор работает от усиленного источника с основным генератором. Для этого допускается использование элементов серий КТ819ГМ, установленных на габаритных радиаторах.
При создании преобразователей применяется упрощенная схема. По ходу процесса следует позаботиться о приобретении необходимых материалов:
- микросхемы КР121ЕУ1;
- транзистороов IRL2505;
- паяльника;
- олова.
Микросхемы КР12116У1 обладают примечательным свойством: они содержат пару каналов для регулирования ключа и позволяют достаточно просто сделать несложный преобразователь напряжения. Микросхемы в температурном диапазоне от +25 до +30°С выдают предельную величину напряжения в пределах 3 и 9 В.
Частоту задающих генераторов определяют параметром элемента в цепях. Транзистор IRL2505 устанавливается при использовании на выходах. На него должно осуществляться поступление сигнала с должным уровнем, благодаря которому происходит регулировка выходного транзистора.
Сформировавшиеся низкие уровни не позволяют транзистору переходить из закрытых видов в какие-либо другие состояния. В итоге в полной мере происходит исключение возникновения мгновенных поступлений тока при одновременном открытии ключей. Если наблюдается попадание высоких уровней к первому выводу, то это способствует отключению импульсных генераций. Схема определяет присоединение общего провода до вывода 1.
Чтобы выполнить монтаж двухтактных каскадов применяются трансформаторы Т1 и транзисторы, в количестве двух штук: VT1 и VT2. В открытых каналах можно увидеть величину сопротивления от 0,008 Ом. Оно является незначительным, в связи с этим значение мощности транзистора небольшое, даже в том случае если проходит большой ток. Выходные трансформаторы, обладающие мощностью в 100 Вт, позволяют применять ток IRL2505 к 104 А, а импульсные составляют 360 А.
К основным особенностям инверторов можно отнести, возможность использования любого трансформатора, имеющего на выходах две обмотки на 12 В.
Если выходная мощность составляет около 200 Вт, то в таких случаях установку транзистора на радиатор не производят
Важно учитывать, что значение электротока с мощностью 400 Вт достигает около 40 А
Обзор производителей
Различные торговые точки могут предложить довольно широкий ассортимент инверторов-преобразователей напряжения 12-220 В. Инверторы выпускаются в различных странах — большинство из них производится в Китае, но это совсем не значит что они плохого качества. Ведь многие известные бренды из-за высокой конкуренции стремятся снизить себестоимость своей продукции, поэтому и переносят свои производственные мощности на территорию Китая.
Изучая предлагаемые рынком модели можно обратить внимание, что некоторые изделия имеют одинаковые характеристики, но при этом значительно различаются в цене. Связанно это с использованием той или иной радиоэлементной базы
Устройства, соответствующие заявленным характеристикам, собранные на качественной элементной базе и оборудованные необходимой защитой, надёжны в эксплуатации, поэтому стоят дороже.
Наиболее популярными брендами являются:
- Wenchi. Тайваньский производитель радиоэлектронного оборудования. Присутствует на рынке уже более 23 лет. Его продукция сертифицирована во многих странах мира, включая Россию. Компания имеет свою лабораторию, в которой проводится испытание приборов и внедрение в их работу новых технологий. Спросом пользуются модели INS-1000W-12 и INS-200W-12.
- Mean Well. Ведущий разработчик импульсных блоков питания. Фирма постоянно модернизирует и расширяет ассортимент своей продукции. Хорошие технические характеристики и демократичная цена позволяют каждому покупателю выбрать оптимальное оборудование этой марки. Популярными моделями являются: A301−2K5-F3 PBF, A301−150-F3, TN-1500−212B.
- Gembird. Основанная в Голландии в 1997 году компания стала лидером в производстве компьютерной периферии источников питания. Хотя цех по производству инверторов находится в Китае, продукция проходит тщательный контроль и соответствует международным стандартам. Сервисные центры фирмы расположены во многих странах, что позволяет довольно быстро получить качественную помощь. Потребители часто выбирают инверторы серии Gembird I.
- Robiton. Российская компания, специализирующая на производстве элементов питания. Её продукция соответствует требованиям безопасности Европейского союза. На все свои изделия фирма предоставляет три года гарантии. Повышенным спросом пользуются модели R300 и R500.
Критерии выбора
Критерии которым должен отвечать качественный импульсный преобразователь и стабилизатор:
- Продолжительный режим работы в экстремальных моментах когда ток в нагрузке максимален;
- Полная автоматизация регулирования напряжения на выходе. Только тогда можно не бояться ни перегрузок, ни даже короткого замыкания;
- Высокая надёжность устройства, обусловленная высоким показателем КПД и как следствие низким выделением тепла;
- Минимальные габариты и вес;
- Наличие гальванической развязки, которая исключает даже теоретически саму возможность попадания опасного напряжения входа, на выходные контакты, а значит на незащищенный потребитель.
Человек не знакомый с электроникой должен помнить при выборе нужного бытового стабилизатора напряжения что он должен соответствовать главным образом мощности тех приборов, к которым он будет подключен. А также падения и всплескам напряжения, которые могут возникнуть в сети. Лучше выбирать стабилизатор или импульсный понижающий преобразователь напряжения немного с запасом по мощности, так как количество используемых потребителей в квартирах и частных домах постоянно растёт.
Повышающе-понижающая ступень DC/DC-преобразования
Повышающе-понижающие DC/DC-преобразователи должны обеспечивать одноступенчатое преобразование для входных напряжений от шины аккумуляторной батареи в широком диапазоне (рис. 3) и гарантировать при этом стабильное напряжение на выходе. Для такого преобразования используется несколько топологий . Пример на рис. 4в показывает использование микросхемы контроллера повышающе-понижающего DC/DC-преобразователя LM5175 с четырьмя ключами. Это вызвано тем, что, благодаря своей архитектуре, он отличается более высокой эффективностью (КПД) и широкими возможностями по управлению питанием.
DC/DC-преобразователь, выполненный на базе контроллера LM5175, отличается широким диапазоном входного напряжения VIN и, благодаря возможности работы с четырьмя ключами, может как повышать, так и понижать входное напряжение. При этом он способен обеспечивать стабилизированное выходное напряжение даже в том случае, если его входное напряжение равно выходному. Упрощенная схема и временные диаграммы переключения ключей во всех режимах работы преобразователя показаны на рис. 5.
Рис. 5. Четырехключевой повышающе-понижающий DC/DC-преобразователь с широким диапазоном входного напряжения VIN
Когда входное напряжение выше заданного уровня выходного напряжения, рассматриваемый преобразователь работает в режиме понижения напряжения с выходным каскадом в проходном режиме. Когда входное напряжение ниже заданного уровня выходного напряжения, он работает в режиме повышения, в этом случае его входной каскад находится в режиме прямой проводимости. Когда же напряжение VIN находится близко к выходному VOUT, то для поддержания плавной или, как ее называют, бесшовной работы он чередует циклы повышения и понижения. Поскольку в режиме повышения или понижения напряжения используется только одно плечо в цикле, это позволяет избежать высоких потерь, характерных для чистого двухступенчатого преобразования.
В отличие от повышающего предварительного преобразователя, задача которого заключается только лишь в повышении уровня выходного напряжения, которое, в случае его понижения, не сможет уменьшить выходное напряжение ниже уровня VIN, повышающе-понижающий преобразователь обеспечивает устойчивость как к просадкам, так и к резким броскам входного напряжения. Для автомобильных применений с выходным напряжением выше номинального диапазона (≥16 В) повышающий напряжение преобразователь обеспечивает низкий уровень пульсаций на входе и обеспечивает, кроме того, защиту от перегрузки и короткого замыкания, а также выполняет и ограничение пускового тока. Повышающий каскад преобразователя также избавляет от необходимости использования громоздких пассивных фильтров низких частот, необходимых для подавления наложенного переменного напряжения, которое может наводиться на шине 12-В аккумуляторной батареи как следствие выпрямления выходного напряжения переменного тока автомобильного генератора. Для стабилизированных выходных напряжений, лежащих ниже номинального напряжения аккумуляторной батареи (5 и 3,3 В), топология повышающе-понижающего преобразования обеспечивает одноступенчатое решение с более высокой эффективностью, чем архитектура из двух раздельных преобразователей — предварительного повышающего и основного понижающего. Тем не менее преимущество в размерах с использованием одноступенчатых повышающе-понижающих преобразователей нивелируется по причине того, что здесь, как правило, требуется больший по габаритам фильтр подавления электромагнитных помех.
Тем не менее для автомобильных систем именно повышающе-понижающий напряжение преобразователь, показанный на рис. 5, является оптимальным решением в качестве предварительного стабилизатора напряжения. Этот преобразователь сочетает преимущества первой ступени, где он может работать в качестве повышающего преобразователя, например для борьбы с просадками напряжения (для диапазона выходного напряжения 16–24 В, рис. 4в), и обеспечивать защиту в условиях холодного пуска двигателя. Этот преобразователь также включает в себя защиту от сброса нагрузки и защиту от перегрузки по току с одновременной защитой от короткого замыкания, обычно ассоциируемую с особенностями функционирования понижающих преобразователей. Кроме того, он обеспечивает полное отключение входа/выхода в режиме выключения без потребления остаточных токов.
Особенности установки
- В основе устройства используется генератор марки ГСО-500, назначение которого – вырабатывать постоянный электрический ток.
- Два рабочих режима: до 300 А и 500 А.
- Ротор электромотора, якорь генератора оборудованы на одном валу. Между ними размещена крыльчатка вентилятора, обеспечивающая эффективное охлаждение механизма.
- Пакетник, выполняющий функцию запуска устройства, и реостат, регулирующий рабочий процесс, размещены в едином блоке, закрепленном на корпусе установки.
- Для регулировки сварочного тока используется реостат, который подключен к цепи обмотки возбуждения.
Классификация преобразователей напряжения
Проведём первичную классификацию преобразователей напряжения:
-
В первую очередь, блоки питания аппаратуры. Уверены, читателям близкими покажутся системные блоки персональных компьютеров. Заглянем внутрь. Импульсный блок питания персонального компьютера содержит трансформатор с множеством обмоток, каждая работает на один номинал. Из переменного напряжения 230 (или 110) вольт получается ряд постоянных: +5, -5, +12, -12. Но! Последующим выпрямлением переменного тока диодами Шоттки.
- Во вторую очередь, адаптеры для локализации оборудования. В большей части бытовой техники опция считается встроенной в блок питания (см. фото). Достаточно переключить тумблер на задней стенке системного блока, изменяя условия работы. Будьте бдительны, избегайте неправильных настроек напряжения, дабы не вывести оборудование из строя.
- Адаптеры сотовых телефонов, гаджетов нельзя в полной мере назвать преобразователями напряжениями. Скорее модули, включающие предмет сегодняшней темы в свой состав.
Используя обычные трансформаторы или автотрансформаторы для преобразования амплитуды напряжения, помним о частоте. Многие двигатели, сконструированные для работы на 60 Гц, будут перегреваться сетями 50 Гц, пусть амплитуда напряжения соответствует заданной. Что касается встроенных опций блоков питания, далеко не всегда присутствует возможность переключить настройки. Изделие способно маркироваться наклейкой (помимо заводского шильдика), доступно поясняющей условия работы прибора, согласно предназначению. Что касается расхождений между Европой и Россией (230 – 220 = 10 вольт), указанное несоответствие не сильно влияет на работу (есть негативные моменты). Отмечали в предыдущих топиках влияние параметра на срок службы лампочек накала, электронных ламп.
Маркировка наклейкой
В соответствии с конструкцией в электронике преобразователи напряжения делят так:
- Бестрансформаторные конденсаторные.
- С коммутируемыми конденсаторами.
- Мультиплексорные.
- Импульсные преобразователи.
- Импульсные источники питания.
- Трансформаторные с импульсным возбуждением.
- Автогенераторные.
- На пьезоэлектрических трансформаторах.
Режимы управления частотными преобразователями
В большинстве моделей современных частотных преобразователей реализована возможность управления в нескольких режимах:
1) Ручное управление.
Пуск и остановка электродвигателя осуществляются с панели или пульта управления частотника. При этом преобразователь осуществляет регулировку частоты вращения и остановку при возникновении аварийных ситуаций автоматически.
2) Внешнее управление.
ЧП с поддержкой интерфейсов передачи данных можно подключать к удаленному ПК для контроля текущих параметров и задания режимов работы привода.
3) Управление по дискретным входам или “сухим контактам”.
4) Управление по событиям.
Некоторые модели ЧП позволяют запрограммировать время пуска или остановки, работу двигателя в другом режиме. Преобразователи такого типа применяют для полностью или частично автоматизированного технологического оборудования.
Преимущества частотных преобразователей.
Основные преимущества использования частотных преобразователей:
1) Экономия электроэнергии.
Применение ЧП позволяет снизить пусковые токи и регулировать потребляемую мощность двигателя в зависимости от фактической нагрузки.
2) Увеличение срока службы промышленного оборудования.
Плавный пуск и регулировка скорости вращения момента на валу позволяют увеличить межремонтный интервал и продлить срок эксплуатации электродвигателей.
Возможность отказаться от редукторов, дросселирующих задвижек, электромагнитных тормозов и другой регулирующей аппаратуры. снижающей надежность и увеличивающей энергопотребление оборудования.
3) Отсутствие необходимости проводить техническое обслуживание.
4) Возможность удаленного управления и контроля параметров оборудования с электроприводом.
5) Широкий диапазон мощности двигателей.
Частотные преобразователи устанавливают как на однофазные конденсаторные двигатели мощностью менее 1 кВт, так и на синхронные электромашины мощностью в десятки МВт.
6) Защита электродвигателя от аварий и аномальных режимов работы.
ЧП комплектуют защитой от перегрузок, коротких замыканий, пропадания фаз. Преобразователи также обеспечивают перезапуск при возобновлении подачи электроэнергии после ее отключения.
Возможность бесступенчатой точной регулировки частоты вращения без потерь мощности, что невозможно при использовании редукторов.
7) Снижение уровня шума работающего двигателя.
Возможность замены двигателей постоянного тока асинхронными электрическими машинами с частотными регуляторами. Для оборудования, требующего регулировки момента и скорости вращения, часто используются двигатели постоянного тока, скорость вращения которых пропорциональна поданному напряжению. Такие электрические машины стоят дороже асинхронных и требуют дорогостоящих промышленных выпрямителей. Замена двигателей постоянного тока на асинхронные электромашины с частотным управлением дает хороший экономический эффект.
Сферы применения
Частотно-регулируемые приводы применяют:
- Для кранов и грузоподъемных машин. Крановые двигатели работают в режиме частых пусков, остановок, изменяющейся нагрузки. ЧП обеспечивают отсутствие рывков и раскачивания груза при пусках и остановках, остановку крана точно в требуемом месте, снижают нагрев электродвигателей и максимальный пусковой момент.
- Для привода нагнетательных вентиляторов в котельных и дымососов. Общее управление с плавной регулировкой дутьевых и вытяжных вентиляторов позволяет автоматизировать процесс горения и обеспечить максимальный к.п.д . котельных агрегатов.
- Для транспортеров, прокатных станов, конвейеров, лифтов. ЧП регулирует скорость перемещения транспортного оборудования без рывков и ударов, что увеличивает срок службы механических узлов.Для насосных агрегатов. ЧП позволяют обойтись без задвижек и вентилей, регулирующих давление и производительность, и существенно увеличить общий к.п.д системы водоподачи.
- Для электродвигателей станков. Использование преобразователя частоты вместо коробки передач позволяет плавно увеличивать или уменьшать частоту вращения рабочего органа станка, осуществлять реверс. ЧП широко используются для станков с ЧПУ и высокоточного промышленного оборудования.
Внедрение частотно-регулируемых приводов дает значительный экономический эффект. Снижение затрат достигается за счет сокращения потребления электроэнергии, расходов на ремонт и ТО двигателей и оборудования, возможности использования более дешевых асинхронных электродвигателей с короткозамкнутым ротором, а также сокращения других производственных издержек. Средний срок окупаемости частотных преобразователей составляет от 3-х месяцев до трех лет.
Рейтинг преобразователей напряжения 12в 220в
Согласно исследованиям и отзывам людей, которые уже испробовали данной аппарат можно отметить некоторые из них:
- «Порто Е 150» многие из покупателей уже оценили качество этого преобразователя. Главным преимуществом его является ценовая категория, которая значительно ниже других марок. Правда, небольшая мощность его не даст подключить к нему мощных потребителей. Хочется отметить также компактные размеры модели, и качественный штекер, позволяющий подключить его прямо от прикуривателя автомобиля. Однако в комплекте прилагаются и специальные зажимы к аккумулятору.
- «Тесла ПН 2200» Хорошая производительность этой модели основывается на качественной двух вентиляторной системе охлаждения. Имеет защиту от перегрузок в выходной цепи. В комплект входят различные разъёмы для подключения внешних потребителей электроэнергии. Корпус изготовлен из качественного алюминия, который служит дополнительным отводящим тепло материалом.
Какие бывают преобразователи
В современно мире существует множество видов преобразователей тока, как небольших для минимальных потребностей, так и крупных способных обеспечить энергией несколько электроприборов.
Для самых простых нужд можно использовать преобразователи работающие от прикуривателя в автомобиле. Работу холодильника они конечно обеспечить не смогут, но вот радио или зарядку телефона, планшета, ноутбука вполне осилят.
Благодаря ШИМ контролерам преобразователи заметно шагнули вперёд. Вырос коэффициент полезного действия, а форма тока приблизилась к привычным для приборов форме чистого синуса. А максимальная мощность выросла до нескольких кило ватт.
Конечно всё это касается лишь дорогих и массивных преобразователей. Но и более простые, тоже не стояли на месте и улучшали свои характеристики.
Время работы будет ограниченно мощностью и ёмкостью аккумулятора. И если вы на долго отправляетесь в путешествие, то не следует слишком сильно нагружать аккумулятор и ограничивать себя в потреблении электроэнергии.
Для отдыха не природе лучше всего подойдёт компактный маломощный преобразователь. Его вполне хватит для бытовых нужд в походе.
Не каждый бытовой прибор сможет работать с такой формой тока и может вовсе прийти в негодность. Поэтому следует внимательно подходить к выбору приборов для поездок на природу.
Существует три вида преобразователей напряжения с 12 на 220 В:
- Автомобильный;
- Компактный;
- Стационарный тип.
Также нельзя забывать, что чем выше нагрузка на преобразователь, тем ниже его КПД. И если в этом нет необходимости, нагружать его следует минимально, чтобы не расходовать драгоценную энергию впустую.
Принцип построения инверторов [ править | править код ]
Преобразование постоянного напряжения первичного источника в переменное достигается с помощью группы ключей, периодически коммутируемых таким образом, чтобы получить знакопеременное напряжение на зажимах нагрузки и обеспечить контролируемый режим циркуляции в цепи реактивной энергии. В таких режимах гарантируется пропорциональность выходного напряжения. В зависимости от конструктивного исполнения модуля переключения (модуля силовых ключей инвертора) и алгоритма формирования управляющих воздействий, таким фактором могут быть относительная длительность импульсов управления ключами или фазовый сдвиг сигналов управления противофазных групп ключей. В случае неконтролируемых режимов циркуляции реактивной энергии реакция потребителя с реактивными составляющими нагрузки влияет на форму напряжения и его выходную величину .
Инверторы напряжения со ступенчатой формой кривой выходного напряжения
Принцип построения такого инвертора заключается в том, что при помощи предварительного высокочастотного преобразования формируются однополярные ступенчатые кривые напряжения, приближающиеся по форме к однополярной синусоидальной кривой с периодом, равным половине периода изменения выходного напряжения инвертора. Затем с помощью, как правило, мостового инвертора однополярные ступенчатые кривые напряжения преобразуются в разнополярную кривую выходного напряжения инвертора.
Инверторы с синусоидальной формой выходного напряжения
Принцип построения такого инвертора заключается в том, что при помощи предварительного высокочастотного преобразования получают напряжение постоянного тока, значение которого близко к амплитудному значению синусоидального выходного напряжения инвертора. Затем это напряжение постоянного тока с помощью, как правило, мостового инвертора преобразуется в переменное напряжение по форме, близкое к синусоидальному, за счет применении соответствующих принципов управления транзисторами этого мостового инвертора (принципы так называемой «многократной широтно-импульсной модуляции»). Идея этой «многократной» ШИМ заключается в том, что на интервале каждого полупериода выходного напряжения инвертора соответствующая пара транзисторов мостового инвертора коммутируется на высокой частоте (многократно) при широтно-импульсном управлении. Причём длительность этих высокочастотных импульсов коммутации изменяется по синусоидальному закону . Затем с помощью высокочастотного фильтра нижних частот выделяется синусоидальная составляющая выходного напряжения инвертора. . При использовании однополярного источника постоянного напряжения (доступны уровни 0 и Ud, где Ud — напряжение постоянного тока, питающего инвертор) эффективное значение первой гармоники фазного напряжения U e f f ( 1 ) = 0.45 U d <displaystyle U_<
m >^<(1)>=0.45U_<
m >>При использовании двуполярного источника постоянного напряжения (доступны уровни 0, -Ud/2 и Ud/2) амплитудное значение первой гармоники фазного напряжения U m ( 1 ) = 0.5 U d <displaystyle U_<
m >^<(1)>=0.5U_>соответственно, эффективное значение U e f f ( 1 ) = 0.35 U d <displaystyle U_<
m>^<(1)>=0.35U_<
m >>
Инверторы напряжения с самовозбуждением
Инверторы с самовозбуждением (автогенераторы) относятся к числу простейших устройств преобразования энергии постоянного тока. Относительная простота технических решений при достаточно высокой энергетической эффективности привело к их широкому применению в маломощных источниках питания в системах промышленной автоматики и генерировании сигналов прямоугольной формы, особенно в тех приложениях, где отсутствует необходимость в управлении процессом передачи энергии. В этих инверторах используется положительная обратная связь, обеспечивающая их работу в режиме устойчивых автоколебаний, а переключение транзисторов осуществляется за счет насыщения материала магнитопровода трансформатора. В связи со способом переключения транзисторов, с помощью насыщения материала магнитопровода трансформатора, выделяют недостаток схем инверторов, а именно низкий КПД, что объясняется большими потерями в транзисторах. Поэтому такие инверторы применяются при частотах f <displaystyle f>не более 10 кГц и выходной мощности до 10 Вт. При существенных перегрузках и коротких замыканиях в нагрузке в любом из инверторов с самовозбуждением происходит срыв автоколебаний (все транзисторы переходят в закрытое состояние).