Трёхфазные выпрямители
Приборы используются для подключения к трехфазной сети и выпрямления сигнала. Устройства дают возможность получить значительно меньший коэффициент пульсаций на выходе, чем двухполупериодный выпрямитель со средней точкой или однофазный однополупериодный выпрямитель. Поэтому используются для электрических сетей высокой мощности. Из-за большего сглаживания сигнала требования к фильтру снижаются.
Схема приборов для преобразования тока
На рисунке изображены распространенные схемы выпрямителей для трехфазных сетей. В левой используются три диода и нагрузка. В правой – 6 диодов без нагрузки, что требуется для дополнительного выравнивания.
Схемы для преобразований переменного тока в постоянный требуются для питания аккумуляторов и используются в зарядных устройствах. Характеристики прибора отслеживают на временной диаграмме, за счет подключения к осциллографу. При этом за краткий момент времени можно оценить уровень сглаживания. Строятся выпрямители, как на управляемых тиристорах, так и на основе обычных диодов.
Схемы выпрямления
Любая система выпрямления может быть осуществлена по нескольким схемам, среди которых наиболее распространены мостовая (рисунки 1, б и г) и схема с нулевым выводом (рисунки 1, в и д) – ее часто называют нулевой схемой. Сравнивая рисунки 1, б и д, а также рисунки 1, в и г, легко видеть, что количество вентилей в мостовых и нулевых схемах неодинаково, но это не то различие, которое нас в данном случае интересует. Интересующее нас принципиальное различие между мостовыми и нулевыми схемами состоит в том, что у первых по первичным и по вторичным обмоткам трансформатора проходит чисто переменный ток, что хорошо 1. В схемах с нулевым выводом по вторичным обмоткам трансформатора проходят однонаправленные токи, создающие однонаправленный поток вынужденного намагничивания. Это плохо, так как поток вынужденного намагничивания сильно повышает индукцию в магнитопроводе трансформатора, вплоть до его насыщения, что увеличивает намагничивающий ток, нарушает магнитное равновесие в трансформаторе, вызывает высшие гармоники (смотрите статью «Понятие о магнитном равновесии трансформатора»).
Умножитель (удвоитель) напряжения
В тех случаях, когда нецелесообразно повышать напряжение при помощи трансформатора, применяют удвоители и умножители напряжения. В схеме параллельного удвоения в течении каждого полупериода заряжается один из конденсаторов до амплитудного значения. Так как конденсаторы соединены последовательно, то снимаемое с них постоянное напряжение будет равно двойному амплитудному значению:
В последовательной схеме удвоения в течение одного полупериода заряжается конденсатор С1 через диод VD2 до амплитудного значения. В течение следующего полупериода напряжение обмотки, складываясь с напряжением конденсатора С1, через диод VD1 заряжает конденсатор С2 до двойного амплитудного значения:
Увеличивая количество звеньев в такой схеме, можно получить умножение напряжения любой кратности.
Последовательное-удвоение.
Четырёхзвенный умножитель.
Каждый диод и конденсатор образуют «звено» и эти звенья можно соединять последовательно до получения напряжения в несколько десятков киловольт. Конечно, для этого входное напряжение тоже должно быть достаточно большим.
На рисунке изображён четырёхзвенный умножитель и на выходе мы получаем напряжение в четыре раза превышающее входное (U). Эти выпрямители получили большое распространение там, где нужно получить высокое напряжение при достаточно малом токе. Например, по такой схеме были выполнены источники высокого напряжения в старых телевизорах и осциллографах для питания анода электронно-лучевой трубки.
Сейчас такие источники питания используются в научных лабораториях, в детекторах элементарных частиц, в медицинской аппаратуре (люстра Чижевского) и в оружии самообороны (электрошокер). При повторении подобных конструкций и подборе деталей, следует учитывать рабочее напряжение, как диодов, так и конденсаторов исходя из напряжения, которое вы хотите получить. Весь умножитель, как правило, заливается специальным компаундом или эпоксидной смолой во избежание высоковольтных пробоев между элементами схемы.
Для нормальной работы некоторых устройств как, например, люстры Чижевского необходимы достаточно высокие напряжения. Как считают специалисты, излучатель отрицательных аэроионов, эффективен только при напряжении не менее 60 киловольт.
Схема соединений трансформатора и поток вынужденного намагничивания
Характер и величина потока вынужденного намагничивания определяются схемой соединения обмоток трансформатора и для трехфазных схем состоят в следующем: а) при соединении первичной обмотки в треугольник, а вторичной в звезду в сердечнике трансформатора возникает неизменный по времени однонаправленный поток вынужденного намагничивания; б) при соединении первичной и вторичной обмоток в звезду поток вынужденного намагничивания однонаправлен, но пульсирует, если создающий его ток меняется во времени; в) если вторичная или первичная обмотка соединена в зигзаг, то поток вынужденного намагничивания отсутствует (смотрите пояснения к рисункам 1 и 2, в статье «Схема соединения «Зигзаг»).
При соединении первичной обмотки в звезду, а вторичной в шестифазную звезду поток вынужденного намагничивания каждую шестую часть периода меняет направление. Он проходит по всем стержням вверх (а по воздуху вниз, так как однонаправленные потоки не могут замкнуться в ярме), а через 1/6 периода меняет направление, проходя по всем стержням вниз, а по воздуху вверх. Поток вынужденного намагничивания имеет тройную частоту по сравнению с частотой питающей сети и называется однофазным потоком вынужденного намагничивания.
15.5.2 Конверторы
Конвертором называют преобразователь постоянного тока одного напряжения в постоянный ток, имеющий другое значение напряжения.
В основном применяют два типа конверторов:
1) преобразователи постоянного напряжения с самовозбуждением;
2) импульсные преобразователи постоянного напряжения.
Преобразователь постоянного напряжения с самовозбуждением бывают малой и средней мощности. Структурная схема такого преобразователя изображена ниже.
Рисунок 15.27-Структурнаясхема преобразователя постоянного напряжения с самовозбуждением.
Преобразователь с самовозбуждением ПС превращает постоянное напряжение в переменное напряжение прямоугольной формы, которое с помощью трансформатора изменяется до нужного значения. После выпрямления в выпрямителе В оно подаётся на сглаживающий фильтр СФ, к выходу которого подключена нагрузка ZН.
В конверторах с самовозбуждением в качестве ключей применяют транзисторы с общим эмиттером, включаемым по двухтактной схеме.
Рисунок 15.28 — Релаксационный генератор импульсов прямоугольной формы
с трансформаторной положительной обратной связью
Для обеспечения прямоугольной формы генерируемых колебаний материал магнитопровода трансформатора должен иметь петлю гистерезиса прямоугольной формы. Частота переменного тока на выходе релаксационного генератора может достигать значений близких к 50 кГц. Поэтому силовые диоды для выпрямителя необходимо выбирать с учётом частоты переменного тока. В противном случае при выпрямлении напряжений с крутыми фронтами диоды теряют свои выпрямительные свойства и возможна потеря работоспособности конвертора.
Импульсные преобразователи постоянного напряжения (ИППН) регулируют выходное напряжение путём изменения параметров входных импульсов. Чаще всего применяют широтно-импульсную (ШИМ) и частотно-импульсную (ЧИМ) модуляцию при регулировании. ШИМ – это изменение длительности импульсов, а ЧИМ – изменение частоты импульсов.
Рисунок 15.29 — Схема (а) и динамические диаграммы тока нагрузки (б) импульсного однотактного преобразователя постоянного напряжения.
В качестве ключа используется тиристор. Между нагрузкой ZН и тиристором включён сглаживающий LC-фильтр. Диод необходим для пропускания тока нагрузки при выключенном тиристоре. Принцип действия данного ИППН таков: когда тиристор открыт, всё напряжение U поступает на сглаживающий фильтр и далее на нагрузку ZН; при этом диод VD не пропускает ток; когда тиристор закрыт, ток через нагрузку проходит за счёт энергии накопленной в конденсаторе СФ и в катушке LФ.
Однотактные ИППН работают при мощности не более 100 кВт. Если требуется мощность больше, то используют многотактные ИППН, которые содержат несколько параллельно включённых однотактных ИППН. Для уменьшения пульсаций тока в нагрузке тиристоры включают со взаимным сдвигом по фазе на угол 2π/n (n – количество однотактных ИППН). Поэтому тиристоры работают поочерёдно или с некоторым перекрытием.
В качестве примера ИППН ниже приведена схема импульсного источника питания, реализованная на микросхеме VIPerX7.
Рисунок 15.30-Принципиальная электрическая схема ИППН с обратной связью на основе VIPerX7
Основные соотношения при расчете выпрямителя
Для расчета 2-хполупериодного выпрямителя, выбранного в качестве примера, потребуется знать следующие исходные данные:
- входное напряжение, действующее во вторичной обмотке трансформатора;
- ток в диодах, протекающий в цепи с учетом нагрузки;
- емкость электролитического конденсатора, выбираемая, исходя из заданного коэффициента сглаживания пульсаций;
- максимальное напряжение на нем.
Важно учитывать падение напряжения на твердотельных диодах, находящихся в открытом состоянии. Расчетные соотношения для этого случая представляются в следующем виде
Расчетные соотношения для этого случая представляются в следующем виде.
- Ток в обмотке трансформатора по величине равен максимальному его значению в нагрузке (Iобм= Iнагр).
- Напряжение во вторичной обмотке в режиме холостого хода составляет U2≈ 0,75Uнагр.
- Выпрямительные диоды рекомендуется брать со следующими параметрами: Uобр > 3,14Uнагр, а Iмакс > 1,57Iнагр.
Схема включения выпрямительного диода
Простейший выпрямитель работает по следующей схеме. На вход подается переменное напряжение сети с положительными и отрицательными полупериодами, окрашенными соответственно в красный и синий цвета. На выходе подключается обычная нагрузка RH, а выпрямляющим элементом будет диод VD.
Когда на анод поступают положительные полупериоды напряжения, происходит открытие диода. В этот период через диод и нагрузку, запитанную от выпрямителя, будет протекать прямой ток диода Iпр. На графике, расположенном справа, эта волна обозначена красным цветом.
При поступлении на анод отрицательных полупериодов напряжения, наступает закрытие диода, и во всей цепи начинается течение незначительного обратного тока. В данном случае отрицательная полуволна переменного тока отсекается диодом. Эту отсеченную полуволну обозначает синяя прерывистая линия. На схеме условное обозначение выпрямительного диода такое же, как обычно, только поверх значка проставляются символы VD.
В результате, через нагрузку, подключенную через диод к сети, будет протекать уже не переменный, а пульсирующий ток одного направления. Фактически, это и есть выпрямленный переменный ток. Однако такое напряжение подходит лишь для нагрузок малой мощности, запитанных от сети переменного тока. Это могут быть лампы накаливания, которым не требуются особые условия питания. В этом случае напряжение будет проходить через лампу лишь во время импульсов – положительных волн. Наблюдается слабое мерцание лампы с частотой 50 Гц.
При подключении питания с таким же напряжением к приемнику или усилителю мощности, в громкоговорителе или колонках, будет слышен гул с низкой тональностью, частотой 50 Гц, известный как фон переменного тока. В этих случаях аппаратура начинает «фонить». Причиной такого состояния считается пульсирующий ток, проходящий через нагрузку и создающий в ней пульсирующее напряжение. Именно оно и создает фон.
Данный недостаток частично устраняется путем параллельного подключения к нагрузке фильтрующего электролитического конденсатора Сф с большой емкостью. В течение положительных полупериодов он заряжается импульсными токами, а во время отрицательных – разряжается с помощью нагрузки RH. Большая емкость конденсатора позволяет поддерживать на нагрузке непрерывный ток в течение всех полупериодов – положительных и отрицательных. На графике такой ток представляет собой сплошную волнистую линию красного цвета.
Тем не менее, данный сглаженный ток все равно не обеспечивает нормальную работу, поскольку половина входного напряжения теряется при выпрямлении, когда задействуется только один полупериод. Этот недостаток компенсируют мощные выпрямительные диоды, собранные вместе в так называемый диодный мост. Данная схема состоит из четырех элементов, что позволяет пропускать ток в течение всех полупериодов. За счет этого преобразование переменного тока в постоянный происходит значительно эффективнее.
Маркировка диодов и схема обозначений
Устройство диода
Параллельное соединение диодов
Схемы выпрямления переменного тока
Диод Шоттки: принцип работы
Схема двухполупериодного выпрямителя
Умножитель (удвоитель) напряжения
В тех случаях, когда нецелесообразно повышать напряжение при помощи трансформатора, применяют удвоители и умножители напряжения. В схеме параллельного удвоения в течении каждого полупериода заряжается один из конденсаторов до амплитудного значения. Так как конденсаторы соединены последовательно, то снимаемое с них постоянное напряжение будет равно двойному амплитудному значению:
В последовательной схеме удвоения в течение одного полупериода заряжается конденсатор С1 через диод VD2 до амплитудного значения. В течение следующего полупериода напряжение обмотки, складываясь с напряжением конденсатора С1, через диод VD1 заряжает конденсатор С2 до двойного амплитудного значения:
Увеличивая количество звеньев в такой схеме, можно получить умножение напряжения любой кратности.
Последовательное-удвоение.
Четырёхзвенный умножитель.
Каждый диод и конденсатор образуют «звено» и эти звенья можно соединять последовательно до получения напряжения в несколько десятков киловольт. Конечно, для этого входное напряжение тоже должно быть достаточно большим.
На рисунке изображён четырёхзвенный умножитель и на выходе мы получаем напряжение в четыре раза превышающее входное (U). Эти выпрямители получили большое распространение там, где нужно получить высокое напряжение при достаточно малом токе. Например, по такой схеме были выполнены источники высокого напряжения в старых телевизорах и осциллографах для питания анода электронно-лучевой трубки.
Сейчас такие источники питания используются в научных лабораториях, в детекторах элементарных частиц, в медицинской аппаратуре (люстра Чижевского) и в оружии самообороны (электрошокер). При повторении подобных конструкций и подборе деталей, следует учитывать рабочее напряжение, как диодов, так и конденсаторов исходя из напряжения, которое вы хотите получить. Весь умножитель, как правило, заливается специальным компаундом или эпоксидной смолой во избежание высоковольтных пробоев между элементами схемы.
Для нормальной работы некоторых устройств как, например, люстры Чижевского необходимы достаточно высокие напряжения. Как считают специалисты, излучатель отрицательных аэроионов, эффективен только при напряжении не менее 60 киловольт.
Механическое выпрямление напряжения
Определение выпрямления означает получение однонаправленного электрического тока. Его величина при этом будет зависеть от формы переменного напряжения в каждом полупериоде. Но однонаправленный электрический ток при этом получается, как при положительном полупериоде напряжения, так и при его отрицательном значении. При этом нагрузка при переходе напряжения через ноль должна отключаться от ненужной полуволны напряжения. Первые выпрямители выполняли эту задачу механическими контактами.
Они либо приводились в движение синхронным двигателем, либо перемещались достаточно быстродействующим соленоидом. В обеих схемах контакты, переключающие напряжение, перемещаются синхронно с напряжением. В схеме с двигателем они вращаются, замыкаясь в нужный момент времени. Узел, предназначенный для выпрямления напряжения, при вращении аналогичен коллектору двигателя постоянного тока. Количество ламелей – контактов определяется числом оборотов синхронного двигателя.
Схема получения повышенного напряжения.
При переходе синусоиды выпрямляемого напряжения через ноль обе щетки контактируют либо с началом, либо с концом ламели. Начало ламели совпадает с острием стрелки, указывающей направление вращения двигателя. Время контакта щеток с ламелью совпадает с длительностью половины периода выпрямляемого напряжения.
Синхронный двигатель вращается точно и кратно частоте питающего напряжения, которое он выпрямляет присоединенным к нему коллектором. Но его инерционность не позволит выпрямить скачкообразное изменение частоты питающего напряжения. Поэтому он эффективен только как выпрямитель напряжения электросети.
Таблица параметров популярных моделей выпрямителей напряжения с фото.
Выпрямитель на соленоиде замыкает контакт либо на время, когда сердечник втягивается, либо наоборот. Он может сработать только при некотором минимальном напряжении, которое достаточно для перемещения контактов. Поэтому часть полуволны вблизи перехода напряжения через ноль не будет обработана как следует.
Но зато такой выпрямитель может быть изготовлен довольно-таки небольшим. Поэтому он был широко распространен в свое время. Очевидно то, что без коммутации электрической цепи выпрямления напряжения не может быть. А возможности механического контакта ограничены мощностью искры, которая возникает в момент разрыва электрической цепи. Она постепенно уничтожает этот контакт тем быстрее, чем больше электрическая мощность при его размыкании.
Мостовой тип устройства
Трехфазная мостовая схема выпрямления использует шесть диодов (или тиристоров, если требуется управление). Выходное напряжение характеризуется тремя значениями: минимальным U, средним U и пиковым напряжением. Полноволновой трехфазный выпрямитель похож на мост Гейца.
Обычный трехфазный выпрямитель не использует нейтраль. Для сети 230 В / 400 В между двумя входами выпрямителя. Действительно, между 2 входами всегда есть составное напряжение U (= 400 В). Неконтролируемое устройство означает, что нельзя отрегулировать среднее выходное U для этого входного U. Неконтролируемое выпрямление использует диоды.
Управляемый выпрямитель позволяет регулировать среднее выходное напряжение, воздействуя на задержки срабатывания тиристора (используется вместо диодов). Эта команда требует сложной электронной схемы. Диод ведёт себя как тиристор, загружаемый без задержки.
Выходное U трехфазного выходного напряжения. Всего 7 кривых: 6 синусоид и красная кривая, соединяющая верхнюю часть синусоид («синусоидальные шапки»). 6 синусоидов представляют собой 3 напряжения, составляющие U между фазами и 3 одинаковыми напряжениями, но с противоположным знаком:
U31 = -U13U23 = -U32U21 = -U12.
Красная кривая представляет U на выходе выпрямителя, то есть на клеммах резистивной нагрузки. Это U не относится к нейтрали. Она плавает. Это U колеблется между 1,5 В max и 1,732 Вmax (корень из 3). Umax — пиковое значение одного напряжения и составляет 230×1,414 = 325 В. Популярные модели мостовых выпрямителей представлены в таблице ниже:
Таблица характеристик популярных моделей мостовых выпрямителей.
Схема работы устройства
Мостовой выпрямитель состоит из четырёх диодов, соединённых в форме «моста», причём вторичная обмотка трансформатора соединяется через противоположные углы «моста», а сопротивление нагрузки соединяется через другие два угла. Выходное напряжение мостового выпрямителя в два раза больше, чем у двухполупериодного выпрямителя, поскольку через «мост» протекает воздействие всего напряжения вторичной обмотки.
В течение первой половины цикла переменного тока, ток протекает от отрицательной стороны вторичной обмотки через диод D1, через сопротивление нагрузки RL, через диод D3, к положительной стороне вторичной обмотки. Этот ток через RL представляет собой положительную полуволну.
В течение второй половины цикла переменного тока, ток протекает от отрицательной стороны вторичной обмотки через диод D4, через сопротивление нагрузки RL, через диод D2, к положительной стороне вторичной обмотки. Этот ток через RL представляет собой положительную полуволну.
Свойства трехфазного напряжения
Кривая, действующая только на резистивной нагрузке, неконтролируемое выпрямление (с диодами), не возвращается на ноль, в отличие от моночастотного устройства (мост Грейца). Таким образом, пульсация значительно ниже и размеры индуктора и / или сглаживающего конденсатора менее ограничительны, чем для моста Гейца.
Для получения ненулевого выходного U требуется по меньшей мере две фазы. Минимальное, максимальное и среднее значение напряжения. Численно, для сети 230 В / 400 В выпрямленное напряжение колеблется между минимальным напряжением: 1,5 В мин = 1,5 х (1,414×230) = 488 В, и максимальным: 1,732 Вмакс = 1,732 х (1,414×230) = 563 В.
Будет интересно Что такое коэффициент полезного действия (КПД) и как рассчитать его по формуле
Выходное напряжение трехфазного выходного выпрямителя (зум). 3-фазный полноволновый выпрямитель MDS 130A 400V. 5 терминалов: 3 фазы, + и -. Этот выпрямитель содержит 6 диодов.
Таким образом, можно суммировать следующие моменты:
- 6 диодов, 2 диода на фазу — слабая пульсация по сравнению с одноволновым выпрямителем (мост Гейца);
- среднее значение выпрямленного напряжения: 538 В для сети 230 В / 400 В;
- нейтраль не используется трехфазным выпрямителем.
Области применения диодов
Современные производители предлагают широкий ассортимент диодов, адаптированных для конкретных областей применения.
Выпрямительные диоды
Эти устройства служат для выпрямления синусоиды переменного тока. Их принцип действия основывается на свойстве устройства переходить в закрытое состояние при обратном смещении. В результате работы диодного прибора происходит срезание отрицательных полуволн синусоиды тока. По мощности рассеивания, которая зависит от наибольшего разрешенного прямого тока, выпрямительные диоды делят на три типа – маломощные, средней мощности, мощные.
- Слаботочные диоды могут использоваться в цепях, в которых величина тока не превышает 0,3 А. Изделия отличаются малой массой и компактными габаритами, поскольку их корпус изготавливается из полимерных материалов.
- Диоды средней мощности могут работать в диапазоне токов 0,3-10,0 А. В большинстве случаев они имеют металлический корпус и жесткие выводы. Производят их в основном из очищенного кремния. Со стороны катода изготавливается резьба для фиксации на теплоотводящем радиаторе.
- Мощные (силовые) диоды работают в цепях с током более 10 А. Их корпусы изготавливают из металлокерамики и металлостекла. Конструктивное исполнение – штыревое или таблеточное. Производители предлагают модели, рассчитанные на токи до 100 000 А и напряжение до 6 кВ. Изготавливаются в основном из кремния.
Диодные детекторы
Такие устройства получают комбинацией в схеме диодов с конденсаторами. Они предназначены для выделения низких частот из модулированных сигналов. Присутствуют в большинстве аппаратов бытового применения – радиоприемниках и телевизорах. В качестве детекторов излучения используются фотодиоды, преобразующие свет, попадающий на светочувствительную область, в электрический сигнал.
Ограничительные устройства
Защиту от перегруза обеспечивает цепочка из нескольких диодов, которые подключают к питающим шинам в обратном направлении. При соблюдении стандартного рабочего режима все диоды закрыты. Однако при выходе напряжения сверх допустимого назначения срабатывает один из защитных элементов.
Диодные переключатели
Переключатели, представляющие собой комбинацию диодов, которые применяются для мгновенного изменения высокочастотных сигналов. Такая система управляется постоянным электрическим током. Высокочастотный и управляющие сигналы разделяют с помощью конденсаторов и индуктивностей.
Диодная искрозащита
Эффективную искрозащиту создают с помощью комбинирования шунт-диодного барьера, ограничивающего напряжение, с токоограничительными резисторами.
Параметрические диоды
Используются в параметрических усилителях, которые являются подвидом резонансных регенеративных усилителей. Принцип работы основан на физическом эффекте, который заключается в том, что при поступлении на нелинейную емкость разночастотных сигналов часть мощности одного сигнала можно направить на рост мощности другого сигнала. Элементом, предназначенным для содержания нелинейной емкости, и является параметрический диод.
Смесительные диоды
Смесительные устройства используются для трансформации сверхвысокочастотных сигналов в сигналы промежуточной частоты. Трансформация сигналов осуществляется, благодаря нелинейности параметров смесительного диода. В качестве смесительных СВЧ-диодов используются приборы с барьером Шоттки, варикапы, обращенные диоды, диоды Мотта.
Умножительные диоды
Эти СВЧ устройства используются в умножителях частоты. Они могут работать в дециметровом, сантиметровом, миллиметровом диапазонах длин волн. Как правило, в качестве умножительных приборов используются кремниевые и арсенид-галлиевые устройства, часто – с эффектом Шоттки.
Настроечные диоды
Принцип работы настроечных диодов основан на зависимости барьерной емкости p-n перехода от величины обратного напряжения. В качестве настроечных используются приборы кремниевые и арсенид-галлиевые. Эти детали применяют в устройствах перестройки частоты в сверхчастотном диапазоне.
Генераторные диоды
Для генерации сигналов в сверхвысокочастотном диапазоне востребованы устройства двух основных типов – лавинно-пролетные и диоды Ганна. Некоторые генераторные диоды при условии включения в определенном режиме могут выполнять функции умножительных устройств.
Мостовые устройства
Еще больше повысить эффективность преобразования переменного напряжения в постоянное позволяет «трехфазная мостовая схема выпрямления». Этот способ включения удобнее представить в виде совокупности двух однополупериодных схем с нулевой точкой, в которых нечетные диоды образуют катодную группу, а четные – их анодное объединение. В трехфазной мостовой схеме две ветки обработки полуволн различной полярности фактически объединены в единую систему.
Принцип действия трехфазного мостового выпрямителя проще всего представить так:
- при действии на его входе переменного потенциала для каждой полуволны открытыми оказываются два диода из четырех, включенных как бы зеркально;
- в первом случае выпрямляется положительная полуволна входного напряжения, а во втором – отрицательная;
- в результате на выходе такой перекрестной схемы на одном полюсе моста всегда действует плюс, а на другом – минус.
Как в трехфазных выпрямительных мостах, так и в двухполупериодных схемах на диодных переходах теряется часть входного напряжения (на каждом диоде – не более 0,6 Вольта).
Общая потеря за один такт (положительный и отрицательный) в трехфазном мосте составит таким образом 1,2 Вольта. Разработчики выпрямительного оборудования всегда учитывают эти потери и для получения требуемой мощности на выходе заранее закладывают чуть завышенные входные параметры.
Графические изображения
Благодаря применению графического метода, можно получить наглядное представление динамических изменений различных величин. Ниже приведен график изменения напряжения с течением времени для гальванического элемента 3336Л (4,5 В).
Горизонтальная ось отображает время, вертикальная – напряжение
Как видим, график представляет собой прямую линию, то есть напряжение источника остается неизменным.
Теперь приведем график динамики изменения напряжения в течение одного цикла (полного оборота рамки) работы генератора,.
Горизонтальная ось отображает угол поворота в градусах, вертикальная — величину ЭДС (напряжение)
Для наглядности покажем начальное положение рамки в генераторе, соответствующее начальной точке отчета на графике (0°)
Начальное положение рамки
Обозначения:
- 1 – полюса магнита S и N;
- 2 – рамка;
- 3 – направление вращения рамки;
- 4 – магнитное поле.
Теперь посмотрим, как будет изменяться ЭДС в процессе одного цикла вращения рамки. В начальном положении ЭДС будет нулевым. В процессе вращения эта величина начнет плавно возрастать, достигнув максимума в момент, когда рамка будет под углом 90°. Дальнейшее вращение рамки приведет к снижению ЭДС, достигнув минимума в момент поворота на 180°.
Продолжая процесс, можно увидеть, как электродвижущая сила меняет направление. Характер изменений поменявшей направление ЭДС будет таким же. То есть она начнет плавно возрастать, достигнув пика в точке, соответствующей повороту на 270°, после чего будет снижаться, пока рамка не завершит полный цикл вращения (360°).
Если график продолжить на несколько циклов вращения, мы увидим характерную для переменного электротока синусоиду. Ее период будет соответствовать одному обороту рамки, а амплитуда – максимальной величине ЭДС (прямой и обратной).
Теперь перейдем к еще одной важной характеристике переменного электротока – частоте. Для ее обозначения принята латинская буква «f», а единица ее измерения – герц (Гц)
Этот параметр отображает количество полных циклов (периодов) изменения ЭДС в течение одной секунды.
Определяется частота по формуле: . Параметр «Т» отображает время одного полного цикла (периода), измеряется в секундах. Соответственно, зная частоту, несложно определить время периода. Например, в быту используется электроток с частотой 50 Гц, следовательно, время его периода будет две сотых секунды (1/50=0,02).
Принцип действия
Принцип работы трехфазного выпрямителя Принцип работы любого преобразователя синусоидального напряжения основан на выпрямительных свойствах особого полупроводникового элемента – германиевого или кремниевого диода. При протекании через него переменного тока положительная полуволна свободно «проходит» через рабочий электронный переход, смещенный в прямом направлении. При воздействии отрицательной полуволны электроны встречают препятствие в виде потенциального барьера, так что ток через переход течь не может.
В простейших схемах включения используется неполный цикл обработки переменных уровней, так как вторая полуволна безвозвратно теряется. Это заметно снижает преобразуемую мощность. Для сохранения полезной составляющей были разработаны 2-хполупериодные схемы выпрямления, в которых количество диодов увеличено до двух.