Напряженность и потенциал электростатического поля

Потенциал электрического поля. Разность потенциалов

Потенциал – скалярная физическая величина, равная отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда.

Обозначение – ​\( \varphi \)​, единица измерения в СИ – вольт (В).

Потенциал \( \varphi \) является энергетической характеристикой электростатического поля.

Разность потенциалов численно равна работе, которую совершает электрическая сила при перемещении единичного положительного заряда между двумя точками поля:

Обозначение – ​\( \Delta\varphi \)​, единица измерения в СИ – вольт (В).

Иногда разность потенциалов обозначают буквой ​\( U \)​ и называют напряжением.

Важно!
Разность потенциалов \( \Delta\varphi=\varphi_1-\varphi_2 \), а не изменение потенциала \( \Delta\varphi=\varphi_2-\varphi_1 \). Тогда работа электростатического поля равна:

Важно!
Эта формула позволяет вычислить работу электростатических сил в любом поле. В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки

В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность

В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки. В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.

Потенциал поля точечного заряда ​\( q \)​ в точке, удаленной от него на расстояние ​\( r \)​, вычисляется по формуле:

Для наглядного представления электрического поля используют эквипотенциальные поверхности.

Важно!
Внутри проводящего шара потенциал всех точек внутри шара равен потенциалу поверхности шара и вычисляется по формуле потенциала точечного заряда (​\( r =R \)​, где ​\( R \)​ – радиус шара). Напряженность поля внутри шара равна нулю

Эквипотенциальной поверхностью, или поверхностью равного потенциала, называется поверхность, во всех точках которой потенциал имеет одинаковое значение.

Свойства эквипотенциальных поверхностей

  • Вектор напряженности перпендикулярен эквипотенциальным поверхностям и направлен в сторону убывания потенциала.
  • Работа по перемещению заряда по эквипотенциальной поверхности равна нулю.

В случае однородного поля эквипотенциальные поверхности представляют собой систему параллельных плоскостей. Для точечного заряда эквипотенциальные поверхности представляют собой концентрические окружности.

Разность потенциалов и напряженность связаны формулой:

Из принципа суперпозиции полей следует принцип суперпозиции потенциалов:

Потенциал результирующего поля равен сумме потенциалов полей отдельных зарядов.

Важно!
Потенциалы складываются алгебраически, а напряженности – по правилу сложения векторов. Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил

Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил.

Алгоритм решения таких задач:

  • установить характер и особенности электростатических взаимодействий объектов системы;
  • ввести характеристики (силовые и энергетические) этих взаимодействий, сделать рисунок;
  • записать законы сохранения и движения для объектов;
  • выразить энергию электростатического взаимодействия через заряды, потенциалы, напряженности;
  • составить систему уравнений и решить ее относительно искомой величины;
  • проверить решение.

Воздействие поля на заряды

При воздействии полей предполагается, что в полную силу входят магнитные и электрические составляющие. Она выражается в так называемой формуле по силе Лоренца:

F = qE + qv x B

Своим значением наделён каждый элемент в этом определении напряжённости электрического поля, формула без них не будет точной:

  1. Q – обозначение заряда.
  2. V – скорость.
  3. B – вектор относительно магнитной индукции. Это основная характеристика, присущая магнитному пространству. Без неё измерять нельзя.

Косой крест применяют для обозначения векторного произведения. Единицы измерения для формулы – СИ. Заряды тоже становятся частью общей системы.

Специальный прибор

Новые значения – более общие по сравнению с формулой, чьё описание приведено ранее. Причина – в том, что частица под воздействием сил.

Обратите внимание. Предполагается, что частица в этом случае – точечная. Но благодаря этой формуле просто определить воздействие на тела вне зависимости от текущей формы

При этом распределение зарядов и токов внутри не имеет значения. Главное – уметь рассчитывать E и B, чтобы применять формулу правильно. Тогда проще проводить и определение напряжённости поля, формулы с другими цифрами

Но благодаря этой формуле просто определить воздействие на тела вне зависимости от текущей формы. При этом распределение зарядов и токов внутри не имеет значения. Главное – уметь рассчитывать E и B, чтобы применять формулу правильно. Тогда проще проводить и определение напряжённости поля, формулы с другими цифрами.

Задачи на теорему Гаусса с решением

Если вам нужно сначала освежить теоретические знания, читайте подробную теорию по теореме Гаусса в нашем справочнике. Ну а перед решением задач не забудьте повторить памятку и на всякий случай держите под рукой полезные формулы.

Кстати, при решении задач на теорему Гаусса придется довольно часто брать интегралы. Хотите научиться делать это по-быстрому? У нас уже есть отдельная статья и видео на эту тему.

Задача на теорему Гаусса №1: напряженность поля плоскости

Условие

Определите напряженность поля бесконечной заряженной плоскости. Поверхностная плотность заряда сигма.

Решение

Линии напряженности перпендикулярны рассматриваемой плоскости и направлены в обе стороны от неё. Выберем в качестве гауссовой поверхности цилиндр с основанием, параллельным плоскости:

По теореме Гаусса:

Поток сквозь цилиндр равен сумме потоков сквозь боковую поверхность цилиндра и потокам сквозь оба его основания. Поток сквозь боковую поверхность равен нулю, так как линии напряженности параллельны ей:

Согласно теореме Гаусса:

Отсюда:

Ответ: см. выше.

Задача на теорему Гаусса №2: напряженность поля двух пластин

Условие

Электрическое поле создано двумя параллельными заряженными тонкими пластинами с поверхностными плотностями заряда + сигма  и -2 сигма. Площадь каждой пластины S, расстояние между пластинами d можно считать значительно меньшим их продольных размеров. Какова напряженность электрического поля, созданного этими пластинами?

Решение

Для электрического поля действует принцип суперпозиции: результирующее поле равно векторной сумме отдельных полей каждой пластины. Из предыдущей задачи мы знаем формулу, по которой вычисляется напряженность поля тонкой заряженной пластины, запишем для каждой из них:

Векторы напряженности между пластинами совпадают по направлению, результирующая напряженность равна:

Справа и слева от пластин, во внешней области, векторы направлены в разные стороны:

Для наглядности приведем рисунок:

Ответ: см. выше.

Задача на теорему Гаусса №3: напряженность электрического поля бесконечной нити

Условие

Определить напряженность электрического поля, создаваемую бесконечной тонкой нитью, равномерно заряженной с линейной плотностью заряда лямбда.

Решение

Напряженность будем искать при помощи теоремы Гаусса. Наша задача – определить зависимость напряженности от расстояния от нити. В качестве поверхности выберем цилиндр с боковыми стенками, параллельными нити. Будем учитывать только поток вектора напряженности через боковую поверхность, так как поток через основания цилиндра равен нулю:

Заряд нити внутри рассматриваемой поверхности равен заряду отрезка нити длиной l:

По теореме Гаусса:

Отсюда:

Ответ: см. выше.

Задача с применением теоремы Гаусса №4

Условие

Электрическое поле создано бесконечной заряженной прямой линией с равномерно распределённым зарядом (τ = 10 нКл/м). Определить кинетическую энергию Т2 электрона в точке 2, если в точке 1 его кинетическая энергия Т1 = 200 эВ. Расстояние точки 2 от линии равно а = 0,5 см, точки 1 – b=1,5 см.

Решение

Ранее рассмотренные задачи были примерами вычисления полей с помощью теоремы Гаусса. Теперь рассмотрим задачу, которая решается сиспользованием этой информации. Из предыдущей задачи возьмем выражение для напряженности поля заряженной нити:

Разность потенциалов поля в двух точках будет равна:

При прохождении этой разницы потенциалов электрон приобретёт кинетическую энергию:

Конечная энергия частицы будет равна:

Получим:

Ответ: 397.6 эВ.

Задача на теорему Гаусса №5: поток электрического поля

Условие

Два точечных заряда q и –q расположены на расстоянии 2l друг от друга. Найти поток вектора напряженности через круг радиуса R. Плоскость круга проходит через его середину и перпендикулярна отрезку прямой, соединяющей заряды.

Решение

Рассмотрим элементарный поток результирующего электрического поля через бесконечно малую кольцевую зону круга: 

В записи потока учтено, что вектор напряженности перпендикулярен поверхности круга. Выразим напряженность электрического поля через «ро», используя подобие треугольников, показанных на рисунке:

Вычисление потока сводится к взятию интеграла:

Ответ: см. выше.

Примеры применения теоремы Гаусса можно найти не только в электростатике, но и в других областях физики.

Статическое и вихревое поле

Как упоминалось в начале статьи, электрическое поле может возникать вокруг переменного магнитного поля. Оно даже создает ток, что может быть достигнуто двумя путями:

  • изменением интенсивности магнитного поля, проходящего сквозь контур проводника в нем;
  • изменением положения самого проводника.

При этом проводнику вовсе не обязательно быть замкнутым — ток в нем все равно будет течь.

Для иллюстрации отличий статического и вихревого поля можно составить таблицу.

Параметр Электростатическое Вихревое
форма силовых линий разомкнутые замкнутые
чем создается неподвижным зарядом переменным магнитным потоком
источник напряженности заряд отсутствует
работа по перемещению в замкнутом контуре нулевая создает ЭДС индукции

Нельзя сказать, что первое и второе поле никак между собой не связаны. Это не так. В реальности работает такая закономерность: неподвижный заряд создает электростатическое поле, которое движет заряд в проводнике; движущийся заряд порождает постоянное магнитное поле. Если заряд движется с непостоянной скоростью и направлением, то магнитное поле становится переменным и создает вторичное электрическое. Таким образом, электрическое поле и его характеристики влияют на возможность возникновения магнитного и его параметры.

Постоянный электрический ток

Электрический ток – направленное движение свободных носителей энергии в веществе или внутри вакуума. Этот показатель появляется при соблюдении главных условий:

  • Есть источник энергии.
  • Замкнутость пути, который используется для перемещения.

I – буква, которую применяют для обозначения силы тока.

Пример задачи с напряжённостью

Важно. Единица измерения – Амперы. Величина тока зависит от количества электричества или разрядов, которые проходят через поперечное сечение у проводника в единицу времени

Величина тока зависит от количества электричества или разрядов, которые проходят через поперечное сечение у проводника в единицу времени.

Когда речь о постоянном токе – предполагается, что с течением времени не меняются его направление, основная величина.

Амперметр – устройство, применяемое для измерения силы тока. Его подключение к цепи – последовательное. Показатель важен, поскольку от него зависят и сила воздействия и другие подобные параметры. На практике часто встречаются ситуации, когда сила тока заменяется плотностью. В данном случае единица измерения – Ампер на метр квадратный. Площадь сечения проводов выражается в мм2. И плотность тока предполагает опору на эту характеристику.

Электрическое поле можно назвать реально существующим явлением, как и любые предметы. Поле и вещества относят к основным формам существования материи. Способность действовать с силой на заряды – главное свойство. Его используют, чтобы обнаруживать, измерять явления. Ещё одна характеристика – распространение со скоростью света

Это тоже важно для тех, кто занимается изучением подобных факторов

Измерение

Напряжённость относят к векторным величинам, оказывающим силовое воздействие на заряженные частицы.

Существуют не только теоретические, но и практические способы для измерения напряжённости.

Если речь о произвольных – сначала берут тело, содержащее заряд. Это правило распространяется на любые электронные устройства.

Размеры тела должны быть меньше размеров другого тела, генерирующего заряд. Достаточно небольшого металлического шарика, у которого есть свой заряд. Заряд шарика измеряют электрометром, потом приспособление помещают внутрь. Динамометр уравновешивает силу, воздействующую на предмет. После этого можно снять показания с единицей измерения – Ньютонами.


В бытовых условиях

Значение напряжённости получают, разделив значение силы на величину заряда.

Измерить расстояние – первый шаг, когда определяют напряжённость в конкретной точке, удалённой от тела на какую-либо величину.

Полученную величину разделяют на расстояние, возведённое в квадрат. К полученному результату применяют специальный коэффициент. Его выражение такое: 9*10^9.

Отдельного изучения заслуживает ситуация с конденсаторами.

В данном случае первый этап – измерение напряжения между пластинами. Предполагается использование вольтметра. Потом определяются с расстоянием между этими пластинами. Единица измерения – метры. Получают результат, который и будет напряжённостью. Направлять её можно по-разному.

Вам это будет интересно Применение электрического трансформатора, его понятие и виды

§ 18. Электростатическое поле

Заряженные тела и частицы, которые кратко называют зарядами, взаимодействуют друг с другом. Это подтверждают многочисленные опыты, а закон Кулона позволяет определить силы взаимодействия неподвижных точечных зарядов. Но что является причиной подобного взаимодействия, каков его механизм?

Первым, кто догадался, что «тела действуют друг на друга на расстоянии посредством обращения окружающей среды в состояние напряжения», был выдающийся английский учёный Майкл Фарадей (1791–1867). Обобщая результаты собственных исследований, проведённых с 1832 по 1852 г., Фарадей ввёл в физику новое понятие — поле. Он рассматривал поле как материальную среду, которая является посредником при любых взаимодействиях удалённых друг от друга тел.

По современным представлениям, электрический заряд наделяет окружающее пространство особыми физическими свойствами — создаёт электрическое поле. Этот заряд называют источником поля и часто обозначают символом Q. Основным свойством электрического поля является его действие некоторой силой на внесённый в него заряд. Иначе говоря, заряды не действуют друг на друга непосредственно. Взаимодействие электрических зарядов осуществляется посредством создаваемых ими полей.

Так, например, при взаимодействии неподвижных электрических зарядов электростатическое поле заряда q1 действует некоторой силой на заряд q2, а поле заряда q2 действует на заряд q1. Эти взаимодействия передаются не мгновенно, а с конечной скоростью, равной скорости света в вакууме . По мере удаления от заряда-источника поле ослабевает.

Электростатическое поле — поле, создаваемое неподвижными относительно используемой инерциальной системы отсчёта электрическими зарядами.

Электростатическое поле существует в пространстве, окружающем неподвижные заряды, неразрывно с ними связано и не изменяется со временем. Силу, которой поле действует на вносимый в него электрический заряд, называют электрической силой или кулоновской силой.

Чтобы исследовать электростатическое поле, создаваемое зарядом Q, в него помещают заряд q, называемый пробным. Под пробным зарядом понимают заряд, модуль которого достаточно мал () и собственное поле не меняет существенно распределения остальных зарядов, создающих исследуемое поле. Пробный заряд должен быть точечным, чтобы можно было исследовать поле в малых областях пространства. Пробный заряд может быть как положительным, так и отрицательным.

Отметим, что свойство электрического поля воздействовать некоторой силой проявляется не только в точке, в которой находится пробный заряд q. Это свойство присуще всем точкам поля, создаваемого зарядом Q.

Используя пробный заряд q, можно количественно охарактеризовать электростатическое поле, создаваемое любым заряженным телом, указав модуль и направление силы, действующей на заряд q в любой точке поля.

От теории к практике

Сравните гравитационное и электростатическое взаимодействия тел. Заполните таблицу в тетради.

Вопрос Взаимодействие
гравитационное электростатическое
Между какими телами возможно?
Каков характер?
Зависит ли от среды?
Что является источником?
Каков знак источника?
Как велика интенсивность?
Как можно определить модуль сил?
Для каких тел справедливы законы?

Из истории физики

По мнению А. Эйнштейна, идея поля была самым важным открытием со времён Ньютона. Он писал, что «надо иметь могучий дар научного предвидения, чтобы распознать, что в описании электрических явлений не заряды и не частицы описывают суть явлений, а скорее пространство между зарядами и частицами». Фарадей создал концепцию электромагнитного поля, основанную на конечной скорости распространения любых взаимодействий. Математическую завершённость идее Фарадея придал его гениальный соотечественник и преемник Джеймс клерк Максвелл (1831–1879).

1. Какие факты подтверждают существование электрического поля?

2. Какое поле называют электростатическим?

3. Каковы основные особенности электростатического поля?

Диэлектрики в электрическом поле

Диэлектриками называют вещества, не проводящие электрический ток. Диэлектриками являются стекло, фарфор, резина, дистиллированная вода, газы.

В диэлектриках нет свободных зарядов, все заряды связаны. В молекуле диэлектрика суммарный отрицательный заряд электронов равен положительному заряду ядра. Различают полярные и неполярные диэлектрики.

В молекулах полярных диэлектриков ядра и электроны расположены так, что центры масс положительных и отрицательных зарядов не совпадают и находятся на некотором расстоянии друг от друга. То есть молекулы представляют собой диполи независимо от наличия внешнего электрического поля. В отсутствие внешнего электрического поля из-за теплового движения молекул диполи расположены хаотично, поэтому суммарная напряженность поля всех диполей диэлектрика равна нулю.

Если в отсутствие внешнего электрического поля центры масс положительных и отрицательных зарядов в молекуле диэлектрика совпадают, то он называется неполярным. Пример такого диэлектрика – молекула водорода. Если такой диэлектрик поместить во внешнее электрическое поле, то направления векторов сил, действующих на положительные и отрицательные заряды, будут противоположными. В результате молекула деформируется и превращается в диполь. При внесении диэлектрика в электрическое поле происходит его поляризация.

Поляризация диэлектрика – процесс смещения в противоположные стороны разноименных связанных зарядов, входящих в состав атомов и молекул вещества в электрическом поле.

Если диэлектрик неполярный, то в его молекулах происходит смещение положительных и отрицательных зарядов. На поверхности диэлектрика появятся поверхностные связанные заряды. Связанными эти заряды называют потому, что они не могут свободно перемещаться отдельно друг от друга.

Внутри диэлектрика суммарный заряд равен нулю, а на поверхностях заряды не скомпенсированы и создают внутри диэлектрика поле, вектор напряженности которого направлен противоположно вектору напряженности внешнего поля. Это значит, что внутри диэлектрика поле имеет меньшую напряженность, чем в вакууме.

Физическая величина, равная отношению модуля напряженности электрического поля в вакууме к модулю напряженности электрического поля в однородном диэлектрике, называется диэлектрической проницаемостью вещества:

В полярном диэлектрике во внешнем электрическом поле происходит поворот диполей, и они выстраиваются вдоль линий напряженности.

Если внесенный в электрическое поле диэлектрик разрезать, то его части будут электрически нейтральны.

Условия возникновения и существования электрического тока.

1. наличие свободных носителей зарядов,

2. наличие разности потенциалов. это условия возникновения тока,

3. замкнутая цепь,

4. источник сторонних сил, который поддерживает разность потенциалов.

Сторонние силы.

Сторонние силы — силы неэлектрической природы, вызывающие перемещение электрических зарядов внутри источника постоянного тока. Сторонними считаются все силы отличные от кулоновских сил.

Э.д.с. Напряжение.

Электродвижущая сила (ЭДС) — физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока.

В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.

ЭДС можно выразить через напряжённость электрического поля сторонних сил

Напряжение ( U ) равно отношению работы электрического поля по перемещению заряда к величине перемещаемого заряда на участке цепи.

Единица измерения напряжения в системе СИ:

= 1 B

Сила тока.

Сила тока ( I )- скалярная величина, равная отношению заряда q , прошедшего через поперечное сечение проводника, к промежутку времени t , в течение которого шел ток. Сила тока показывает, какой заряд проходит через поперечное сечение проводника за единицу времени.

Плотность тока.

Плотность тока j

вектор, модуль которого равен отношению силы тока, протекающего через некоторую площадку, перпендикулярно направлению тока, к величине этой площадки.

В СИ единицей плотности тока является ампер на квадратный метр (А/м2).

Выражение плотности тока через характеристики переносчиков заряда.

Плотность тока j для отрицательных носителей направлена противоположно скорости u. Направление вектора плотности тока называют направлением электрического тока. Таким образом, для положительных зарядов направление тока совпадает с направлением движения носителей, для отрицательных – противоположно ему.

В том случае, когда существует разброс носителей тока по скоростям, под u следует понимать среднюю

скорость направленного движения носителей тока. Если в переносе заряда участвуют носители разных типов (электроны и дырки в полупроводнике, ионы разного типа в электролите), то плотность тока определяется формулой

, где суммирование ведется по разным типам носителей.

— концентрация частиц каждого типа,

— заряд частицы данного типа,

— вектор средней скорости частиц этого типа.

Электрическое сопротивление проводников.

Электрическое сопротивление -свойство материала проводника препятствовать прохождению через него электрического тока называется

Применение

Характеристики электрических полей подразумевают наличие двух основных свойств, которые и используются человеком. Так, они могут формировать ионы, а погруженные в жидкость электроды позволяют без особых усилий разделять ее, грубо говоря, по фракциям. Именно в основе этих свойств и лежит использование электрических полей.

  • Медицина. Тут применяется система воздействия на пораженное место направленными ионами. В результате они способствуют повышению скорости регенерации, очищают рану, убивают микробов и так далее. Кроме того, свойства и характеристики электрических полей позволяют им «вибрировать» с большой частотой. Эта особенность также используется. Благодаря ей можно повысить температуру некоторых отдельных частей тела, что будет способствовать улучшению кровотока и положительно скажется на здоровье.
  • Очистка. В этой сфере используется система разделения жидкостей. Так, именно подобная особенность применяется в очистных сооружениях. Вода, в которой растворено огромное количество всевозможного мусора, становится очень вредной. При этом с ней сложно что-то сделать, ведь далеко не все фильтры смогут справиться с проблемой. В такой ситуации и применяются электрические поля, которые разделяют воду, отделяя от нее часть загрязнений. В результате получается достаточно простой, быстрый и дешевый этап очистки.
  • Химия. Эта наука использует в промышленности то же самое свойство разделения жидкостей. Оно активно применяется в лабораторных условиях, но чаще всего его можно встретить в сфере добычи нефти. В некоторых случаях она получается достаточно загрязненной и требуется потратить много времени средств, чтобы в конечном итоге возник нужный продукт. Справиться с этим сильно помогает электрическое поле. Оно разделяет нефть, убирая большую часть загрязняющих элементов и тем самым значительно облегчая ее дальнейшую обработку.

Существует и множество других вариантов использования. Например, электромагнитное поле, в состав которого входит и рассматриваемое в этой статье явление, может служить беспроводной системой передачи электричества к разным приборам. К сожалению, в большинстве случаев все подобные разработки носят скорее теоретический и экспериментальный характер.

Напряженность электрического поля

Недостаточно утверждать, что электрическое поле существует. Надо ввести количественную характеристику поля. После этого электрические поля можно будет сравнивать друг с другом и продолжать изучать их свойства. Электрическое поле обнаруживается по силам, действующим на электрический заряд. Можно утверждать, что мы знаем о поле все, что нужно, если будем знать силу, действующую на любой заряд в любой точке поля. Поэтому надо ввести такую характеристику поля, знание которой позволит определить эту силу.

Для изучения электрического поля будем использовать пробный заряд.

Под пробным зарядом будем понимать положительный точечный заряд, не изменяющий изучаемое электрическое поле.

Пусть электрическое поле создается точечным зарядом q. Если в это поле внести пробный заряд q1, то на него будет действовать сила \(~\vec F\).

Обратите внимание, что в данной теме мы используем два заряда: источник электрического поля q0 и пробный заряд q1. Электрическое поле действует только на пробный заряд q1 и не может действовать на свой источник, т.е

на заряд q0.

Согласно закону Кулона эта сила пропорциональна заряду q1:

\(~ F = k \cdot \dfrac{q_0 \cdot q_1}{r^2}\) .

Поэтому отношение силы, действующей на помещаемый в данную точку поля заряд q1, к этому заряду в любой точке поля:

\( \dfrac{F}{q_1} = k \cdot \dfrac{q_0}{r^2}\) , —

не зависит от помещенного заряда q1 и может рассматриваться как характеристика поля. Эту силовую характеристику поля называют напряженностью электрического поля.

Подобно силе, напряженность поля – векторная величина, ее обозначают буквой \(~\vec E\) .

Напряженность поля равна отношению силы, с которой поле действует на точечный заряд, к этому заряду:

\(~\vec E = \dfrac{\vec F}{q}\) .

Сила, действующая на заряд q со стороны электрического поля, равна\ .

Если в точке А заряд q > 0, то векторы \(~\vec E_A\) и \(~\vec F_A\) направлены в одну и ту же сторону; при q < 0 эти векторы направлены в противоположные стороны.

От знака заряда q, на который действует поле, не зависит направление вектора \(~\vec E_A\), а зависит направление силы \(~\vec F_A\) (рис. 1, а, б).

Рис. 1

В СИ напряженность выражается в ньютонах на кулон (Н/Кл).

Значение напряженности электрического поля, созданного:

  • точечным зарядом q, на расстоянии r от заряда в точке C (рис. 2) равно
    \(~E = k \cdot \dfrac{|q|}{r^2}\) .
    Рис. 2
  • сферой радиуса R с зарядом q, на расстоянии l от центра сферы в точке C (рис. 3), равно
    \(~E = k \cdot \dfrac{|q|}{l^2}\) , если lR;
    \(~E = 0\) , если l < R.
    Рис. 3
  • заряженной бесконечной пластиной с поверхностной плотностью заряда σ, равно
    \(~E = \dfrac{|\sigma|}{2 \varepsilon_0}\) ,
    где \(~\sigma = \dfrac{q}{S}\) , q – заряд плоскости, S – площадь плоскости.

Принцип суперпозиции полей

А чему будет равна напряженность в некоторой точке электрического поля, созданного несколькими зарядами q1, q2, q3, …?

Поместим в данную точку пробный заряд q. Пусть F1 — это сила, с которой заряд q1 действует на заряд q; F2 — это сила, с которой заряд q2 действует на заряд q и т.д. Из динамики вы знаете, что если на тело действует несколько сил, то результирующая сила равна геометрической сумме сил, т.е.

\(~\vec F = \vec F_1 + \vec F_2 + \vec F_3 + \ldots\) .

Разделим левую и правую часть уравнения на q :

\(~\dfrac{\vec F}{q} = \dfrac{\vec F_1}{q} + \dfrac{\vec F_2}{q} + \dfrac{\vec F_3}{q} + \ldots\) .

Если учтем, что \(\dfrac{ \vec F}{q} = \vec E\), мы получим, так называемый, принцип суперпозиции полей

напряженность электрического поля, созданного несколькими зарядами q1, q2, q3, …, в некоторой точке пространства равна векторной сумме напряженностей \(\vec E_1 , \, \vec E_2 , \, \vec E_3\), … полей, создаваемых каждым из этих зарядов:

\(~\vec E = \vec E_1 + \vec E_2 + \vec E_3 + \ldots\) .

Благодаря принципу суперпозиции для нахождения напряженности поля системы точечных зарядов в любой точке достаточно знать выражение для напряженности поля точечного заряда. На рисунке 4, а, б показано, как геометрически определяется напряженность \(~\vec E\) поля, созданного двумя зарядами.

Рис. 4

Для определения напряженности поля, создаваемого заряженным телом конечных размеров (не точечных зарядов), нужно поступать следующим образом. Мысленно разделить тело на маленькие элементы, каждый из которых можно считать точечным. Определить заряды всех этих элементов и найти напряженности полей, созданных всеми ими в заданной точке. После этого сложить геометрически напряженности от всех элементов тела и найти результирующую напряженность поля. Для тел сложной формы это трудная, но в принципе разрешимая задача. Для ее решения нужно знать, как заряд распределен на теле.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: