Постоянное и переменное напряжение

Постоянный ток, его происхождение и применение

С источниками постоянного тока мы сталкиваемся ежесекундно. Когда вы читаете эту статью с экрана своего монитора, в том, что вы различаете буквы, есть заслуга постоянного тока. Именно от источников постоянного тока запитан компьютер и все его микросхемы. Именно перепадами между уровнями сигнала, соответствующим нулю и единице, мы обязаны существованию цифровой вселенной. Постоянный ток протекает в фонарике и мобильном телефоне, в автомобиле и множестве других устройств бытового и специального назначения, где есть хоть один транзистор или диод.

Вместе с тем, способы получения и применение постоянного тока были известны еще во времена Древнего Мира. Археологами, производящими раскопки в долине Евфрата, были найдены странные керамические сосуды в жилище некоторых ювелиров. Сосуды имели устройство, схожее с гальванической батареей и соединялись между собой медной проволокой. Каково же было удивление археологов, когда они ради эксперимента заполнили один из сосудов кислотой и получили на его полюсах потенциал, равный полутора вольтам! Оказалось, что блоки батарей древние ювелиры применяли для гальванического покрытия ювелирных изделий различными металлами, что и подтвердили готовые образцы изделий, которые часто попадались ученым ранее.

Есть гипотезы, говорящие в пользу того, что при строительстве пирамид в Египте использовали электричество для освещения залов и коридоров в тех местах, где наносили росписи барельефы. Ученые спорят до сих пор по этому поводу, так как есть предположение о том, что свет подавали при помощи системы зеркал с поверхности. Как бы то ни было, но следов копоти на стенах древних залов с росписями не обнаружено и это факт, который остается необъяснимым до сих пор. Ясно одно, что шумеры умели пользоваться электричеством, а жили они раньше египетской цивилизации.

В современном понимании постоянный ток возникает в замкнутой цепи, состоящей из источника постоянного тока, например, аккумуляторной или химической батареи, проводников и нагрузки. В качестве нагрузки может выступать материал с электрическим сопротивлением, гораздо большим, нежели сопротивление проводников, замыкающих электрическую цепь. Это может быть лампочка с вольфрамовой спиралью или реостат из нихромовой проволоки или любая другая нагрузка, сопротивление которой имеет значение, отличное от нуля.

Получают постоянный ток различными способами. Самый древний из них – химический, основанный на возникновении разницы потенциалов между проводниками из разных материалов, помещенных в кислотную или щелочную среду. Химические батареи и аккумуляторы используются людьми не одно тысячелетие и сегодня они в ходу, только в очень усовершенствованном виде по сравнению со своими древними предками. Более современные источники постоянного тока – фотоэлементы, позволяющие получать разницу потенциалов при облучении их Солнцем и генераторы постоянного тока, которые приводят в действие при помощи механической энергии, прилагаемой снаружи. Сегодня генераторы постоянного тока наиболее распространены в ветроустановках с преобразователем напряжения.

Постоянный ток движет поезда на железной дороге. Электрифицированные участки сегодня составляют значительную величину по протяженности в нашей стране. Постоянный ток применяют и для передачи на большие расстояния значительных мощностей электрической энергии при сверхвысоких потенциалах.

При всей широте применения постоянного тока имеются значительные ограничения, которые препятствуют использованию его в повседневной деятельности для питания бытовых приборов и промышленных установок. Связано это с большими потерями на омическое сопротивление в проводниках, что сказывается самым негативным образом на работе осветительного и прочего оборудования. Для того чтобы снизить потери, необходимо применять проводники большего сечения, причем, альтернативы меди здесь практически нет. А медные провода весьма дороги.

Это препятствие заставило ученых искать иные способы получения и передачи электроэнергии на любые расстояния практически без потерь. Ныне в этой области человеческой деятельности главную роль играет переменный ток.

Примеры использования переменного и постоянного тока

Приблизительно постоянным считается ток разряда автомобильного аккумулятора. Напряжение здесь постепенно падает, а потому даже при одинаковой нагрузке эффект разнится хронометрически. В целом, происходит это плавно. Ток течёт в одном направлении и проявляет приблизительно постоянную плотность. Аналогично работают:

  1. Аккумулятор сотового телефона.
  2. Батарейка любого типа.
  3. Аккумулятор питания ноутбуков.

В природе источников постоянного тока (генераторов), за исключением матушки-Земли, нет. Человеку гораздо удобнее создавать роторы, которые, вращаясь с конкретной частотой, создают условия для образования в катушках статора переменного электрического тока. Потом промышленная частота 50 Гц проходит по проводам и через подстанцию подаётся на потребителя.

Это касается и переменного, и постоянного тока. Теперь пришла пора сказать, что в промышленности преобразование постоянного тока в переменный и обратно не практикуется. Из соображений экономии двигатели работают от трёх фаз. Каждая считается переменным током частоты 50 Гц. Говорили выше, что у любой гармоники присутствует фаза. В рассматриваемом случае фаза равна 120 градусов. А круг образуется за счёт 360 градусов. Получается, что три фазы равно отстоят друг от друга. При подобном раскладе генераторам ГЭС легче производить энергию, поступающую в дома в неизменном виде. Но в квартиру заходит единственная фаза переменного тока.

Поэтому бытовые приборы по внутреннему устройству сильно отличаются от промышленных. Важными признаются параметры переменного тока. В любом государстве они стандартизированы и чётко выдерживаются. К параметрам переменного тока относят:

  1. Действующее значение напряжения – вызывающее в обычном проводнике постоянное идентичного номинала. Действующее значение ниже амплитуды в корень из двух раз либо близко к указанному. Требования для РФ составляют 220-230 В плюс-минус 10% от номинала.
  2. К частоте переменного тока предъявляются повышенные строгие требования. Предел отклонений от 50 Гц измеряется десятыми долями процента. Потому стабилизации движения вала на ГЭС уделяется столько внимания. От скорости его вращения зависит параметр.
  3. Нелинейные искажения считаются отдельной темой. Требований множество, определиться непросто. Особенно строго нормируются гармоники основной частоты, к примеру: 100, 150, 200, 250 Гц.

Подобные требования предъявляются и к параметрам постоянного тока. Допустим, известные автомобильные аккумуляторы в действительности включают в арсенал не 12, а 14 В. По мере разряда вольтаж падает. Если на аккумуляторе зарегистрировано напряжение 11,9 В, банка считается вышедшей из строя. Предлагаем внимательно читать инструкции. Дополним: в отдельных ноутбуках присутствует заряд бережного расхода энергии аккумулятора. В этом случае уровень поддерживается в рамках двух третей от полного. Считается, что тогда батарея прослужит дольше.

Итак, требования направлены на поддержание долгого и правильного функционирования оборудования. Параметры постоянного и переменного тока считаются фактором, определяющим надёжность и работоспособность системы.

Параметры постоянного тока

Как и всякая физическая величина, постоянный электрический ток характеризуется целым рядом параметров, имеющих непосредственное к нему отношение и отношение к взаимосвязанным с ним величинам.

Величина постоянного тока (сила тока)

Прежде чем говорить о силе тока, определимся с таким понятием, как электрический заряд, выражающий способность тел участвовать в электромагнитных явлениях типа создания электромагнитного поля и электромагнитного взаимодействия.

Впервые это понятие было введено в конце XVIII века французским учёным Шарлем Кулоном, сформулировавшим тогда же свой знаменитый закон о силе взаимодействия между точечными зарядами в зависимости от разделяющего их расстояния. В честь него единица измерения электрического заряда (количества электричества) стала называться «Кулон» (Кл).

Только опираясь на понятие электрического заряда, можно говорить о величине (силе) тока, формула расчёта которого (для равномерного движения зарядов) выглядит следующим образом:

I = Q/t

Что можно выразить следующими словами: сила тока прямо пропорциональна количеству зарядов, проходящих через поперечное сечение проводника за единицу времени. Здесь:

  • I – ток, измеряемый в амперах (Андре Мари-Ампер – ещё один французский физик, внёсший значительный вклад в теорию электромагнетизма).
  • Q – электрический заряд, измеряемый в кулонах или ампер-часах (А·ч). 1 А·ч = 3600 Кл.
  • t – единица времени.

Для измерения силы тока используются амперметры, включаемые последовательно с источником электрического тока.

Плотность тока

Ещё одно важное понятие, необходимое в целях правильного выбора токопроводящего сечения линий электропередачи. Плотность тока это:. j = I/S

j = I/S

Где: I – сила тока в амперах. S – площадь поперечного сечения в м2. J – плотность тока в А/м2 или А/мм2.

Электродвижущая сила (ЭДС)

Электродвижущая сила (ЭДС) – это величина, характеризующая работу первичного источника электрической энергии по созданию постоянного электрического тока.

E = A/Q

E – электродвижущая сила (ЭДС), измеряемая в вольтах (Алессандро Вольта – известнейший итальянский физик). A – работа, измеряемая в джоулях (Джеймс Прескотт Джоуль – английский физик, внёсший значительный вклад в развитие термодинамики).

Электрическое напряжение

Электрическое напряжение – это величина, показывающая работу эффективного электрического поля, затраченную на перенос единичного пробного заряда из точки A в точку B.

UAB = φA – φB + EAB

φA – φB – разница потенциалов между точками A и B. EAB – электродвижущая сила, возникающая на искомом участке цепи постоянного тока. Здесь все величины измеряются в вольтах. Для определения величины напряжения применяются вольтметры, подключаемые параллельно участку измерения напряжения.

Взаимосвязь параметров электрического тока

Элементарная электроцепь постоянного тока включает в себя источник электроэнергии, отрицательный и положительный контакты которого связаны шунтом или проводником. Движение заряда по проводнику осуществляется под воздействием электрического поля. Однако, этот перенос электронов не приводит к уравниванию потенциалов, т.к. в любой отрезок времени, к первому концу цепи поступает абсолютно такое же количество заряженных частиц какое из него переместилось к противоположному контакту. Таким образом разность потенциалов, которую принято называть напряжением, остается неизменяемой величиной.

Перемещению электрических зарядов в цепи, препятствует внутреннее сопротивление материала проводника. Взаимосвязь параметров электротока была выведена опытным путем Г. Омом. В математическом виде закон Ома можно представить так: I=U/R, где собственно I – сила тока, U – напряжение (разность потенциалов) и R – сопротивление на соответствующем участке цепи.

Собственно, из уравнения видно, что напряжение имеет прямую зависимость от силы тока и сопротивления (U=I х R), а величина силы тока обратно пропорциональна сопротивлению.

Последовательное соединение элементов электрической сети постоянного тока

Параметры электроцепи постоянного тока, в случае последовательного соединения устройств, имеют некоторые особенности. Так, например, сила тока (I) остается постоянной на всех элементах электрической схемы, а вот напряжение (U) является суммой напряжений на каждом участке схемы. Рассмотрим пример электрической цепи с последовательно включенными тремя проводниками с сопротивлением R1, R2 и R3. Согласно закону Ома, напряжение U1 = IxR1, U2 = IxR2, U3 = IxR3. Следовательно, U общ = U1+U2+U3= IxR1+ IxR2= IxR3 = I (R1+R2+R3).

Из уравнения видно, что такой параметр электрической цепи как общее сопротивление (R общ), при последовательном соединении, будет равен сопротивлению каждого отдельно взятого проводника. Последовательное подключение электрических устройств позволяет снизить нагрузку на отдельный элемент, что продлевает срок службы, но при этом теряется мощность.

Параметры электрической цепи. Параллельное соединение элементов

Параллельная цепь характеризуются общими контактами в местах ввода и вывода основного провода. В данной ситуации напряжение на всех элементах цепи остается одинаковым, т.е. U1=U2=U3. А вот для силы тока, будет характерна обратная зависимость от сопротивления каждого участка, т.е. I х=U/Rx. Параллельное соединение электроприборов является наиболее распространенным способом в бытовых условиях.

Параметры цепи при смешанном соединении в электрической цепи

Смешанное подключение проводников представляет собой электрическую цепь, в которой элементы включены комбинировано, т.е. как последовательно, так и параллельно друг другу. Для определения конкретных параметров, в этом случае, вся схема разбивается на самостоятельные участки в соответствии со способом подключения. Индивидуальные параметры рассчитываются для каждого участка отдельно. Необходимо отметить, что параллельно включенные участки, могут состоять из ряда последовательно соединенных элементов.

Законы Кирхгофа

Некоторые их называют правилами, так как они не представляют собой фундаментальных законов физики. Однако в электротехнике они могут рассматриваться как основные. Первое правило Кирхгофа является следствием закона сохранения заряда и заключается в том, что в любой точке электрической цепи алгебраическая сумма токов равна нулю.

Если рассматривать точку, лежащую внутри ветви цепи, тогда справедливым становится утверждение о равенстве входящего и выходящего токов. Там, где сходится три или большее количество ветвей, закон Кирхгофа позволяет строить уравнения, с помощью которых определяются различные характеристики электрических цепей. Этот закон является одним из проявлений закона сохранения энергии. Нужно всегда учитывать, что ток не может в какой-нибудь точке изменяться скачком. Ситуация, когда он возникает ниоткуда или пропадает в никуда, исключается первым законом Кирхгофа.

Простая электрическая цепь состоит из источника тока, его потребителя, например, электрической лампочки, и проводов, соединяющих их. Реальные цепи являются значительно более сложными, но при этом любая из них подчиняется законам электротехники. В частности, в цепи могут присутствовать многочисленные разветвления и замкнутые внутренние контуры. Второй закон Кирхгофа гласит, что сумма падений напряжений при обходе контура равна сумме имеющихся в нём ЭДС источников тока.

Базовые понятия о электричестве

ПодробностиКатегория: Введение

Прежде чем приступить к работам, связанным с электричеством, необходимо немного «подковаться» теоретически в этом вопросе.Если говорить просто, то обычно под электричеством подразумевается это движение электронов под действием электромагнитного поля.

Главное — понять, что электричество — энергия мельчайших заряженных частиц, которые движутся внутри проводников в определенном направлении(рис. 1.1).

Движение электронов в проводнике

Постоянный ток практически не меняет своего направления и величины во времени. Допустим, в обычной батарейке постоянный ток. Тогда заряд будет перетекать от минуса к плюсу, не меняясь, пока не иссякнет.

Переменный ток — это ток, который с определенной периодичностью меняет направление движения и величину. Представьте ток как поток воды, текущий по трубе. Через какой-то промежуток времени (например, 5 с) вода будет устремляться то в одну сторону, то в другую.

На вопрос, почему так происходит и зачем нужен такой ток, можно ответить, что получение и передача переменного тока намного проще, чем постоянного.

Получение и передача переменного тока тесно связаны с таким устройством, как трансформатор (рис. 1.2).

Трансформатор на подстанции понижает напряжение от высоковольтной линии для передачи в бытовую сеть

Генератор, который вырабатывает переменный ток, по устройству гораздо проще, чем генератор постоянного тока. Кроме того, для передачи энергии на дальнее расстояние переменный ток подходит лучше всего. С его помощью при этом теряется меньше энергии.

Важно

При помощи трансформатора (специального устройства в виде катушек) переменный ток преобразуется с низкого напряжения на высокое и наоборот, как это представлено на иллюстрации (рис. 1.3).

Электрическое напряжение

Это давление на дно и есть то самое напряжение (по аналогии с гидравликой). В данном случае, дно башни – это ноль, начальный уровень отсчёта. За начальный уровень отсчёта в электронике берут вывод батарейки или аккумулятора со знаком «минус». Можно даже сказать, что уровень «воды в башне» у 12-вольтового автомобильного аккумулятора выше, чем уровень воды 1,5 Вольтовой пальчиковой батарейки.

Так вот, по аналогии с электроникой, это давление называется напряжением. Например, вы, наверное, не раз слышали такое выражение, типа «блок питания может выдать от 0 и до 30 Вольт». Или говоря детским языком, создать «электрическое давление» на своих клеммах (отметил на фото) от 0 и до 30 Вольт. Нулевой уровень, откуда идет отсчет электрического давления, обозначается минусом.

источник питания постоянного тока

Электрическое напряжение  — это еще не значит, что в электрической цепи течет электрический ток. Для того, чтобы появился электрический ток, электроны должны двигаться в одном направлении, а они в данный момент тупо стоят на месте. А раз нет движения электронов, то и нет электрического тока.

С точки зрения электроники, на одном щупе блока питания есть давление, а на другом его нет. То есть это земля, на которой стоит башня, если провести аналогию с гидравликой. Поэтому, положительный  щуп блока питания да и вообще всех приборов стараются сделать красным, мол типа берегитесь, здесь высокое давление! А отрицательный щуп  — черным или синим.

В электронике, чтобы указать, на каком выводе больше » электрическое давление», а на каком меньше проставляют два знака: плюс и минус, соответственно положительный и отрицательный. На плюсе избыточное «давление», а на минусе — ноль.

Поэтому, если замкнуть эти два вывода между собой, электрический ток устремится от плюса к минусу, но напрямую этого делать крайне не рекомендуется, так как это уже будет называться коротким замыканием.

Измерительные приборы и электрооборудование

Источник тока

Как обозначается ток на приборах, позволяющих измерять электрические характеристики? Обозначения те же самые, как и на приборах, его потребляющих. При измерении тока или напряжения прежде, чем прикасаться щупами к токоведущим частям электроустановок или открытых участков тоководов, необходимо выставить пределы измерения на приборе и род тока, которые соответствуют параметрам измеряемого участка.

Осторожно. Неправильная подготовка прибора к измерениям может вывести его из строя, привести к короткому замыканию измеряемого участка линии и поражению оператора электрическим током

На корпуса электрооборудования, на защитные щиты и кожухи электродвигателей и генераторов наносятся опознавательные символы, информирующие о полярности, частоте, величине напряжения и других характеристиках.

Что такое электричество

Появление электричества – это определенная совокупность явлений, которые обусловлены существованием электрических зарядов со знаком «+» и «-», их взаимодействием между собой и возможностью движения. За счет того, что совокупность зарядов может перемещаться по проводнику, обладать притягивающими и отталкивающими свойствами, было открыто явление магнетизма и электричества. Одним из первых это описал Фалес, а позже в 1600 году английский физик Уильям Гилберт. С течением времени знания об этом явлении только увеличивались и прогрессировали.

Виды тока и их графики относительно времени

С точки зрения физики, электричество – это упорядоченное движение положительно и отрицательно заряженных частиц по материалу проводникового типа под действием электрического поля. В качестве частиц выступают ионы, протоны, нейтроны и электроны.

Направленное движение частиц

Параметры тока

Амперметр

Очень важной количественной характеристикой тока является сила тока

(величина тока ), или простоток , — скалярная физическая величина, равная величине заряда, который проходит через поперечное сечение проводника за единицу времени.

Но термин «сила тока» не следует воспринимать, как проявление силы

в буквальном смысле. В проводниках нет силы. Там есть только движение электрических зарядов.

Если за время t

через проводник сечениемS протекаетQ зарядов, то величина тока выражается формулой

I= Q/t Единица измерения величины тока в системе СИ — ампер (А). Ток в проводнике равен 1 амперу, если за 1 секунду через проводник протекает заряд величиной в 1 кулон. Измеряют силу тока прибором, который называется амперметром. Он включается последовательно в электрическую цепь.

Для постоянного тока в единицу времени через любое поперечное сечение протекает одинаковое количество электрических зарядов.

Величина, равная отношению силы тока I

к площади поперечного сечения проводникаS , называетсяплотностью тока . В системе СИ плотность тока измеряется в А/м2. Конечно, практически невозможно найти проводник с диаметром сечения, равным квадратному метру. По этой причине силу тока принято измерять в А/мм2.

j= I/S Любой проводник противодействует протеканию по нему электрических зарядов

Поэтому величина тока в проводнике зависит от другой важной величины, называемой сопротивлением. Это физическая величина, характеризующая способность проводника препятствовать прохождению электрического тока

Она обозначается буквойR и определяется по формуле:

. Это физическая величина, характеризующая способность проводника препятствовать прохождению электрического тока. Она обозначается буквойR и определяется по формуле:

R=UI ,

где U

– напряжение, или разность электрических потенциалов, на концах проводника;

I

– сила тока, протекающего между концами проводника.

В систем СИ единицей измерения сопротивления является ом

Разные материалы по-разному сопротивляются движению тока. Поэтому сопротивление проводника зависит от вещества, из которого он сделан, его длины и сечения.

R = ρ ˑ l /S

где ρ

– удельное электрическое сопротивление проводника, его способность препятствовать прохождению электрического тока;

l – длина проводника;

S

— площадь поперечного сечения проводника.

Каждый источник постоянного электрического тока создаёт стороннее электрическое поле

, совершающее работу по разделению положительно и отрицательно заряженных частиц и перемещению их в электрической цепи. Эту работу производят любые силы не электрического происхождения, которые действуют внутри источника. Они называютсясторонними силами . Возникают эти силы по разным причинам. Например, в гальваническом элементе они появляются в результате химических реакций, а в генераторах постоянного тока – при движении проводника в магнитном поле.

Величина, численно равная работе, которую выполняют сторонние силы, перенося единицу положительного заряда по всей замкнутой цепи, называется электродвижущей силой

(ЭДС).

где Е

– ЭДС;А – работа, совершаемая источником по переносу заряда величинойQ .

Единицей измерения ЭДС в системе СИ является вольт

(v,V ). ЭДС источника тока равна 1 вольту, если при перемещении заряда, равного 1 кулону, совершается работа в 1 джоуль.

Перенося электрический заряд, источник тока совершает работу А0 по внутреннему участку (внутри себя самого) и работу А1 по внешнему участку электрической цепи. Поэтому полная работа А = А0 + А1

. Разделив обе части уравнения наQ, получим Величина AQ

называетсяпадением напряжения на внутреннем участке цепи (U ), аA1Q — падением напряжения на внешнем участке цепи (U1 ).

A=U+U1 , аU1= А –U. Величина, равная произведению тока на напряжение, называется мощностью

. Единица измерения мощности –ватт .

P=IU=I2R=U2R Если в электрической цепи есть источник ЭДС, то P=Iˑε , гдеε – ЭДС.

Один Ампер – много это, или мало

1 Ампер это 1 Кулон деленный на 1 секунду. Для большинства бытовых электроприборов это достаточно большая сила тока.

Например, через энергосберегающие лампы протекают токи 0,04 — 0,08 Ампера.

Большой плоский телевизор от электроосветительной сети потребляет ток 0,2 Ампера.

Лампа накаливания –примерно 0,5 Ампера.

Как видно, большинство электроприборов токи менее одного Ампера.

Поэтому, для тока часто применяют дольные единицы измерения:

миллиамперы, микроамперы, и наноамперы:

1мА (миллиампер)= 10⁻³ А

1мкА (микроампер) = 10⁻⁶ А

1нА (наноампер) = 10⁻9 А

Ток зарядки аккумулятора мобильного телефона может достигать 2 Ампер.

А через электрический обогреватель, или электрочайник, протекает ток силой до 10 Ампер.

Примечание: Ток силой всего 0,05 А может привести к летальному исходу. Будьте осторожны с электричеством!

В то же время, используют и токи, превышающие сотни Ампер. Например, на промышленных электростанциях.

Для таких токов применяют кратные единицы: килоампер, мегаампер.

1КА (килоампер)= 10³ А

1МА (мегаампер) = 10⁶ А

Напряжение в цепях переменного тока

Электрическое поле — что это такое, понятие в физике

В таких бытовых и производственных цепях значение разности потенциалов на их концах непостоянно и изменяется во времени. При этом в определенный момент на одном конце цепи наблюдается максимальное значение данной характеристики, а на другом – минимальное. Графически такое изменение имеет вид синусоиды с двумя вершинами, соответствующими максимальным и минимальным значениями.

На заметку. Синусоидальную сущность разности потенциалов в данном случае можно наблюдать при помощи такого измерительного прибора, как осциллограф.

Взаимосвязь параметров электрического тока

Элементарная электроцепь постоянного тока включает в себя источник электроэнергии, отрицательный и положительный контакты которого связаны шунтом или проводником. Движение заряда по проводнику осуществляется под воздействием электрического поля. Однако, этот перенос электронов не приводит к уравниванию потенциалов, т.к. в любой отрезок времени, к первому концу цепи поступает абсолютно такое же количество заряженных частиц какое из него переместилось к противоположному контакту. Таким образом разность потенциалов, которую принято называть напряжением, остается неизменяемой величиной.

Перемещению электрических зарядов в цепи, препятствует внутреннее сопротивление материала проводника. Взаимосвязь параметров электротока была выведена опытным путем Г. Омом. В математическом виде закон Ома можно представить так: I=U/R, где собственно I – сила тока, U – напряжение (разность потенциалов) и R – сопротивление на соответствующем участке цепи.

Собственно, из уравнения видно, что напряжение имеет прямую зависимость от силы тока и сопротивления (U=I х R), а величина силы тока обратно пропорциональна сопротивлению.

Последовательное соединение элементов электрической сети постоянного тока

Параметры электроцепи постоянного тока, в случае последовательного соединения устройств, имеют некоторые особенности. Так, например, сила тока (I) остается постоянной на всех элементах электрической схемы, а вот напряжение (U) является суммой напряжений на каждом участке схемы. Рассмотрим пример электрической цепи с последовательно включенными тремя проводниками с сопротивлением R1, R2 и R3. Согласно закону Ома, напряжение U1 = IxR1, U2 = IxR2, U3 = IxR3. Следовательно, U общ = U1+U2+U3= IxR1+ IxR2= IxR3 = I (R1+R2+R3).

Из уравнения видно, что такой параметр электрической цепи как общее сопротивление (R общ), при последовательном соединении, будет равен сопротивлению каждого отдельно взятого проводника. Последовательное подключение электрических устройств позволяет снизить нагрузку на отдельный элемент, что продлевает срок службы, но при этом теряется мощность.

Параметры электрической цепи. Параллельное соединение элементов

Параллельная цепь характеризуются общими контактами в местах ввода и вывода основного провода. В данной ситуации напряжение на всех элементах цепи остается одинаковым, т.е. U1=U2=U3. А вот для силы тока, будет характерна обратная зависимость от сопротивления каждого участка, т.е. I х=U/Rx. Параллельное соединение электроприборов является наиболее распространенным способом в бытовых условиях.

Параметры цепи при смешанном соединении в электрической цепи

Смешанное подключение проводников представляет собой электрическую цепь, в которой элементы включены комбинировано, т.е. как последовательно, так и параллельно друг другу. Для определения конкретных параметров, в этом случае, вся схема разбивается на самостоятельные участки в соответствии со способом подключения. Индивидуальные параметры рассчитываются для каждого участка отдельно. Необходимо отметить, что параллельно включенные участки, могут состоять из ряда последовательно соединенных элементов.

Что такое переменный ток?

Переменный ток периодически меняет не только силу, но и направление движения носителей заряда. График изменения силы тока может быть ступенчатым или остроконечным, но в основном приходится иметь дело с током синусоидальным, то есть график изменения его силы имеет вид синусоиды. Именно такой ток вырабатывают генераторы электростанций.

Причина синусоидальности состоит в том, что генерация электричества обеспечивается вращением источника магнитного поля (ротора) внутри обмотки (статора) и величина наведенной ЭДС, в соответствии с законом электромагнитной индукции, определяется формулой: Е = dФ * sin (wt), где dФ — изменение магнитного потока, w — угловая скорость вращения ротора, t — время. Произведение wt составляет угол поворота линии между полюсами относительно катушки обмотки статора, ЭДС которой рассматривается.

Силу переменного тока в данный момент времени называют мгновенным значением. Оно крайне неудобно для расчетов, поскольку постоянно меняется. Вместо мгновенного оперируют действующим значением — постоянным током, вызывающим в проводнике такое же выделение тепла, как и данный переменный.

Так же поступают с переменным напряжением. Говорят, к примеру, что в однофазной сети напряжение 220 В, тогда как на деле оно постоянно меняется от -311 В до +311 В. 220 В — это действующее значение. То есть сетевое переменное напряжение вызывает в проводнике выделение тепла той же мощности, какое вызывало бы постоянное напряжение в 220 В.

Источники постоянного тока.

Первыми источниками постоянного электрического тока были химическими гальваническими элементами. Немного позже появились аккумуляторы. В них нет пульсаций, а полярность сама по себе поменяться не может.

В больших масштабах постоянный электрический ток (ПТ) получают при помощи генераторов ПТ и солнечных батарей. Также, на стадии разработок находятся магнитогидродинамические электрогенераторы.

Это интересно – «Невероятное наследство».

Для питания от сети переменного тока электронной техники существуют блоки питания, которые понижают, выпрямляют и стабилизируют переменный электрический ток.

Принято считать, что постоянный электрический ток движется от точки с большим потенциалом (положительным «+») к точке с меньшим потенциалом (отрицательным «-»). Для маркировки на приборах, питающихся постоянным током используются символы «-», «=» или «DC»

Выводы

Попробуем обобщить изложенную информацию. На сегодняшний день невозможно представить пользование (как в быту, так и на производствах) каким-то одним из видов электричества — практически везде присутствует и постоянный, и переменный ток. Ведь где-то необходим постоянный, но его передача на дальние расстояния невозможна, а где-то переменный.

Конечно, доказано, что АС намного безопаснее, но как быть с приборами, помогающими экономить электроэнергию во много раз, в то время как они могут работать только на DC?

Именно по этим причинам сейчас токи «мирно сосуществуют» в нашей жизни, закончив «войну», которая продлилась более 100 лет

Единственное, что не стоит забывать — насколько бы одно ни было безопаснее другого (постоянное, переменное напряжение — не важно), оно может нанести огромный вред организму, вплоть до летального исхода

И именно поэтому при работе с напряжением необходимо тщательно соблюдать все нормы и правила безопасности и не забывать про внимательность и аккуратность. Ведь, как говорил Никола Тесла, электричества не стоит бояться, его стоит уважать.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: