Все виды преобразователей напряжения

Самостоятельное изготовление устройства

Если по каким-то причинам не получается приобрести преобразователь напряжения 12в на 220в, то инвертор своими руками несложно изготовить и в домашних условиях. В первую очередь это относится к аналоговым устройствам, радиодетали для которых можно взять из старой техники. Кроме того, при самостоятельной сборке получится разобраться в нюансах построения, что может пригодиться для осуществления ремонта приборов такого типа.

Простой и надёжный инвертор

Существует большое количество разнообразных схем преобразователей. Работа их основана на использовании задающего генератора, управляющего работой транзисторных ключей. А они, в свою очередь, передают импульсный сигнал на трансформатор, задача которого преобразовать сигнал до уровня 220 вольт. Использование в качестве ключей мощных полевых транзисторов (мосфетов) значительно упрощает схемотехнику устройств.

К выходам микросхемы, прямому и инверсному, подключаются мосфеты IRL2505. Сопротивление открытого канала IRL2505 составляет всего 0,008 Ом. Это даёт возможность не использовать радиаторы при требуемой мощности до 100 Вт.

Частота генерации микросхемы задаётся цепочкой R1-С1 и рассчитывается по формуле: f=70000/(R1*C1). Цепочка R2-C2 предназначена для плавного запуска генератора. В качестве линейного стабилизатора DA2 используется 78L08, с напряжением стабилизации +8 вольт. Резисторы используются мощностью 0,25 ватт. Конденсатор С1 ставится плёночного типа, а С6 любого вида, но рассчитанный на номинальное напряжение не менее 400 вольт. Трансформатор используется с обмотками, рассчитанными на 220 и 12 вольт.

Схема на транзисторах

В качестве основы для изготовления конструкции используется генератор, работающий на частоте 57 Гц. Задающий генератор управляет работой силовых ключей, выполненный на мощных полевых транзисторах. Эти транзисторы можно заменить на IRFZ40, IRF3205, IRF3808, а биполярные на КТ815/817/819/805.

Мощность инвертора зависит от количества комплементарных пар полевиков на выходе и характеристик трансформатора. Напряжение на выходе составляет 220–260 вольт. При использовании двух пар транзисторов мощность достигает 300 ватт. Такой преобразователь не требует наладки и при правильной сборке и исправных радиодеталях работает сразу. При работе без нагрузки ток потребления составляет до 300 мА. Для надёжной работы транзисторы устанавливаются на теплоотвод через изоляционные прокладки. Силовые дорожки, в случае развода на печатной плате, выполняются шириной не менее 5 мм или проводом сечением от 0,75 мм2.

Суть работы устройства заключается в преобразовании постоянного напряжения в переменное, после чего сигнал подаётся на повышающий трансформатор. Первичная обмотка повышающего трансформатора с 12 на 220 вольт имеет меньшее количество витков, чем вторичная. При протекании тока в первичной обмотке, под действием переменного магнитного поля, на вторичной обмотке возникает электродвижущая сила (ЭДС). При подключении нагрузки к вторичной обмотке по ней начинает протекать переменный ток. Для расчёта трансформатора можно воспользоваться справочниками или онлайн-калькуляторами, но проще взять готовый из ненужного источника бесперебойного питания.

Мощный повышающий прибор

Такие преобразователи изготавливаются по сложным схемам и сложны для повторения даже опытным радиолюбителям. Например, схема инвертора 12 в 220 на 3000Вт:

Своими руками выполнить такую схему практически невозможно, так как потребуется не только правильно рассчитать трансформаторы, но и верно настроить задающий генератор. А такие операции выполнить без специального оборудования затруднительно.

Генератор выполнен на микросхеме TL081. Его питание осуществляется девяти вольтовым стабилизатором. Сигнал в микросхеме преобразуется, уменьшается по частоте и подаётся на силовые ключи. В схеме реализована защита выхода от перегрузки, а вход защищается плавким предохранителем от перенапряжения.

Originally posted 2018-04-18 12:30:34.

Преобразователи постоянного напряжения

Преобразователь переменного напряжения в постоянное является самым часто используемым видом устройства этого типа. В быту это всевозможные блоки питания, а на производстве и в промышленности это питающие устройства:

  • Всех полупроводниковых схем;
  • Обмоток возбуждения синхронных двигателей и двигателей постоянного тока;
  • Катушек соленоидов масляных выключателей;
  • Оперативных цепей и цепей отключения там, где катушки требуют постоянного тока.

Тиристорный преобразователь напряжения — это наиболее часто применяемый для этих целей аппарат. Особенностью этих устройств является полное, а не частичное, преобразование переменного напряжения в постоянное без всякого рода пульсаций. Мощный преобразователь напряжения такого типа обязательно должен включать в себя радиаторы и вентиляторы для охлаждения, так как все электронные детали могут работать долго и безаварийно, только при рабочих температурах.

Виды заводских ламп для бани – на какой остановиться

В парилке и моечном помещении разный микроклимат. Иногда этот простой факт вводит начинающих мастеров в замешательство. Они перелистывают каталоги в поисках оптимального варианта отдельно для парилки, зоны отдыха и моечного отделения. На самом деле в бане все помещения отличаются повышенной влажностью. А значит, светильник для бани с маркировкой IP 54 можно ставить в любой из перечисленных комнат. Однако не думайте, что все приборы сделаны под копирку, в продаже можно встретить:

  • осветительные системы на основе оптического волокна;
  • светильники с лампой накаливания;
  • светодиодные лампы.

Стандартные приборы с лампой накаливания снабжаются резиновыми или силиконовыми уплотнителями. Последний вариант предпочтительней, силикон долговечней резины. Еще один нюанс – мощность лампочки не должна превышать 60 Вт, чтобы избежать ее сильного нагрева. Иногда достаточно нескольких градусов, чтобы вспыхнула деревянная обшивка парной. Тем не менее, невысокая цена таких светильников (от 300 рублей) обеспечивает им популярность. Хотя внешний вид и оставляет желать лучшего.

Другой вариант – светодиодные светильники. Они считаются практически безопасными. Недостатками таких приборов считают относительно высокую цену и слишком яркий свет. Впрочем, последнее можно исправить с помощью абажура и продуманного расположения.

Оптоволоконные осветительные приборы – по безопасности им нет равных. Оптическое волокно излучает только световые волны. Еще одно достоинство – устойчивость к высоким температурам (до 200°С).

Минус один – цена. Ее сложно назвать лояльной, стоимость комплекта стартует от 20 тыс. рублей.

Причины и области применения ШИМ

Принцип широтно-импульсной модуляции используется в регуляторах частоты вращения мощных асинхронных двигателей. В этом случае модулирующий сигнал регулируемой частоты (однофазный или трехфазный) формируется маломощным генератором синусоиды и накладывается на несущую аналоговым способом. На выходе получается ШИМ-сигнал, который подается на ключи потребной мощности. Дальше можно пропустить получившуюся последовательность импульсов через фильтр низкой частоты, например через простую RC-цепочку, и выделить исходную синусоиду. Или можно обойтись без нее – фильтрация произойдет естественным образом за счёт инерции двигателя. Очевидно, что чем выше частота несущей, тем больше форма выходного сигнала близка к исходной синусоиде.

Возникает естественный вопрос – а почему нельзя усилить сигнал генератора сразу, например, применением мощных транзисторов? Потому что регулирующий элемент, работающий в линейном режиме, будет перераспределять мощность между нагрузкой и ключом. При этом на ключевом элементе впустую рассеивается значительная мощность. Если же мощный регулирующий элемент работает в ключевом режиме (тринистор, симистор, RGBT-транзистор), то мощность распределяется во времени. Потери будут намного ниже, а КПД – намного выше.

В цифровой технике особой альтернативы широтно-импульсному регулированию нет. Амплитуда сигнала там постоянна, менять напряжение и ток можно лишь промодулировав несущую по ширине импульса и впоследствии усреднив её. Поэтому ШИМ применяют для регулирования напряжения и тока на тех объектах, которые могут усреднять импульсный сигнал. Усреднение происходит разными способами:

  1. За счет инерции нагрузки. Так, тепловая инерция термоэлектронагревателей и ламп накаливания позволяет объектам регулирования заметно не остывать в паузах между импульсами.
  2. За счёт инерции восприятия. Светодиод успевает погаснуть от импульса к импульсу, но человеческий глаз этого не замечает и воспринимает как постоянное свечение с различной интенсивностью. На этом принципе построено управление яркостью точек LED-мониторов. Но незаметное мигание с частотой несколько сот герц все же присутствует и служит причиной усталости глаз.
  3. За счет механической инерции. Это свойство используется при управлении коллекторными двигателями постоянного тока. При правильно выбранной частоте регулирования двигатель не успевает затормозиться в бестоковых паузах.

Поэтому ШИМ применяют там, где решающую роль играет среднее значение напряжения или тока. Кроме упомянутых распространенных случаев, методом PWM регулируют средний ток в сварочных аппаратах и зарядных устройствах для аккумуляторных батарей и т.д.

Если естественное усреднение невозможно, во многих случаях эту роль на себя может взять уже упомянутый фильтр низкой частоты (ФНЧ) в виде RC-цепочки. Для практических целей этого достаточно, но надо понимать, что без искажений выделить исходный сигнал из ШИМ с помощью ФНЧ невозможно. Ведь спектр PWM содержит бесконечно большое количество гармоник, которые неизбежно попадут в полосу пропускания фильтра. Поэтому не стоит строить иллюзий по поводу формы восстановленной синусоиды.

Очень эффективно и эффектно управление методом ШИМ RGB-светодиодом. Этот прибор имеет три p-n перехода – красный, синий, зеленый. Изменяя раздельно яркость свечения каждого канала, можно получить практически любой цвет свечения LED (за исключением чистого белого). Возможности по созданию световых эффектов с помощью PWM безграничны.

Наиболее употребительная сфера применения цифрового сигнала, промодулированного по длительности импульса – регулирование среднего тока или напряжения, протекающего через нагрузку. Но возможно и нестандартное использование этого вида модуляции. Все зависит от фантазии разработчика.

Проверка работоспособности

Освещение светодиодной лампой

Срок службы автоинвертора 12 220в зависит от степени защиты от влаги и пыли. В машине бывает много пыли, влажный воздух и конденсат. Если в корпусе есть вентиляционные отверстия, то загрязнения легко накапливаются внутри. Примером служит системный блок от компьютера, который чистить приходится каждые полгода.

Если перестал работать, то сделайте следующее:

  1. прочитайте инструкцию, производитель мог намутить с функционалом;
  2. подождите пока инвертор остынет;
  3. проверьте на короткое замыкание, обычно отваливаются провода в электрических вилках;
  4. проверьте предохранитель повышателя, даже если он многоразовый;
  5. прозвоните предохранитель прикуривателя;
  6. посмотрите на индикаторы режима работа, они могут подсказать неисправность.

После покупки рекомендую сразу проверить его на работу с номинальной нагрузкой. Для этого подключите к нему лампы накаливания, подходящей мощности. Например, 2-5 лампочек накаливания на 100вт. Пусть поработают в течение 30 минут, за это время автомобильный инвертор 12 220V должен прогреться до рабочей температуры, если окружающая атмосфера выше 0 градусов.

Ваттметр Robiton PM-2

Контролировать количество потребляемых ватт можно на индикаторе преобразователя напряжения с 12В на 220в, он есть в дорогих моделях. Проще купить бытовой ваттметр на 220В и подключить его. Я использую Robiton PM-2, очень высокая точность до 0,1W, другие подсчитывают гораздо хуже. Стоимость Robiton PM-2 равна самому дешевому китайскому ваттметру, а точность на порядок выше.

Продаются и отдельные встраиваемые модули вольтметра и амперметра, но они стоят дороговато от 600 руб. За эту сумму можно купить 2 самых простых мультиметра типа В830, B831. Затем подключить их, как позволяет ваша фантазия, примотав наноизолентой к корпусу инвертора.

Сергей, здравствуйте! Подскажите пожалуйста какой мне купить инвестор, что бы подключить в машине бытовую морозильную камеру? Нужно ехать в дальний переезд и очень нужна морозилка.

Мощность инвертора должна быть на 20-30% больше мощности морозильной камеры.

Здравствуй. Подскажи, какой приобрести преобразователь12-220, чтобы работал насос типа «Малыш» мощностью 400Вт, для поднятия воды с глубины 2 метра. Может лучше приобрести сам насос на 12 Вт или недорогой бензиновый генератор.

Это вам выбирать, что вам лучше купить насос или генератор.

Зависит от потребляемой мощности телевизора. Аккум идеале примерно 55*12=660 ватт.

Можно ли пользуясь инвертором в домашних условиях,подключить зарядное устройство для аккумулятора,от инвертора сразу на клемы аккомулятора,с которого питается инвертор?

Зачем такие сложности и преобразования в 220 чтобы сделать зарядку аккумулятора. Тут требуется другое зарядное, низковольтное.

Если Вы большую часть рабочего времени проводите в автомобиле, имеет смысл обзавестись инвертором тока 12 V в 220 V. В частности, подобные инверторы могут быть использованы даже в автомобиле для предоставления возможности эксплуатации бытовых электроприборов.

Кроме того, преобразователь тока с 12в на 220в может служить базой для организации бесперебойного питания практически в любом помещении. Необходимо соблюдать лишь одно условие – влажность воздуха не должна превышать 80%.

ШИМ – широтно-импульсная модуляция

ШИМ в преобладающем большинстве применяется для формирования сигнала синусоидальной формы. Часто ШИМ применяется для управления работой инверторного преобразователя. Инвертор предназначен для преобразования энергии постоянного тока в энергию переменного тока.

Рассмотрим простейшую схему инвертора напряжения.

В один момент времени открывается пара транзисторов VT1 и VT3. Создается путь для протекания тока от аккумулятора GB через активно-индуктивную нагрузку RнLн. В следующий момент VT1 и VT3 заперты, а открыты диагонально противоположные транзисторы VT2 и VT4. Теперь тока протекает от аккумулятора через RнLн в противоположном направлении. Таким образом, ток на нагрузке изменяет свое направление, поэтому является переменным. Как видно, ток на нагрузке не является синусоидальным. Поэтому применяют ШИМ для получения синусоидально формы тока.

Существует несколько типов ШИМ: однополярная, двухполярная, одностороння, двухсторонняя. Здесь мы не будем останавливаться на каждом конкретном типе, а рассмотрим общий подход.

В качестве модулирующего сигнала применяется синусоида, а опорным является сигнал треугольной формы. В результате сравнивания этих сигналов формируются длительности импульсов и пауз (нижний график), которые управляют работой транзисторов VT1…VT4

Обратите внимание, что амплитуда напряжения на нагрузке всегда равна амплитуде источника питания. Также остается неизменным период следования импульсов

Изменяется лишь ширина открывающего импульса. Поэтому при подключении нагрузки ток, протекающий через нее, будет иметь синусоидальную форму (показано пунктиром на нижнем графике).

Так вот, основное отличие между ШИР и ШИМ заключается в том, что при широтно-импульсном регулировании время импульса и паузы сохраняют постоянное значение. А при широтно-импульсной модуляции изменяются длительности импульсов и пауз, что позволяет реализовать выходной сигнал заданной формы.

Мониторинг электрических режимов и защита

Инвертор 3L EVA обеспечивает широкий набор встроенных функций, в частности мониторинг фазных токов. Для контроля нагрузки по всем трем фазам используются гальванически изолированные датчики, выходы которых соединены с соответствующими выводами сигнального коннектора и устройством защиты. Уровень отключения тока перегрузки (ОСР) составляет 125% от номинального значения (150 А × 1,25 = 187,5 ±8 А), при его достижении схема управления инвертора блокирует только те силовые ключи, в которых выявлено аварийное состояние.

Сигналы с датчиков температуры трех модулей MiniSKiiP поступают на разъем и схему защиты через оптическую изоляцию. Отключение IGBT производится при достижении уровня (115 ±4) °C. Таким же образом осуществляется гальваническая развязка сигнала, пропорционального напряжению на DC-шине (VDC). Выбранный пороговый уровень отключения силового каскада ((465 ±14) В) исключает возможность возникновения опасных для IGBT коммутационных перенапряжений. Инвертор 3L EVA не содержит тормозной чоппер, способный снизить уровень напряжения в звене постоянного тока, поэтому оно должно быть ограничено пользователем на уровне не более 750 В.

Чтобы обеспечить защиту силовых транзисторов от экстремально высоких токов короткого замыкания, в каждой фазе имеется схема детектирования выхода IGBT T1 и Т2 из насыщения (DESAT). Если падение напряжения на открытом ключе превышает 3 В (при номинальной нагрузке VCE ≈ 1 В), драйвер мгновенно отключает соответствующий транзистор и после некоторой временной задержки — все IGBT в фазной стойке. При этом на плате управления загорается светодиод DESAT.

Уникальной особенностью схемы защиты инвертора 3L EVA является наличие функции активного ограничения напряжения по каждому IGBT. При номинальном значении VCE (430–475 В, в зависимости от окружающей температуры и разброса параметров) через ограничительные стабилитроны, установленные между коллектором и затвором, протекает незначительный ток утечки. После достижения порогового уровня напряжения на коллекторе VCE ≈ 600 В (определяется суммарным падением напряжения на стабилитронах) транзистор переходит в состояние проводимости (активного ограничения). С учетом предельной блокирующей способности транзисторов (VCEmax = 650 В) при этом обеспечивается достаточный запас по перегрузке.

Дополнительные функции в инверторах

В современных инверторных устройствах реализованы некоторые опции, которые заметно облегчают работу сварщика:

  1. Горячий старт – зачастую у начинающих сварщиков, да и не только у них, возникают сложности с розжигом и поддержанием дуги в рабочем состоянии. В момент розжига, ток вырастает до необходимого уровня и сразу после розжига возвращается к рабочим параметрам. Процесс изменения тока происходит полностью автоматически, без участия сварщика.
  2. Еще одна проблема, которая преследует новичков – залипание электрода. Причин тому несколько, но решение у нее одно – снижение уровня сварочного тока. Эта операция так же выполняется автоматически.
  1. Форсаж дуги позволяет выполнять швы в разных пространственных положениях.
  2. Снижение напряжения холостого хода до безопасного для рабочего и его окружающих людей уровня.

Источник питания для питания портативных и карманных приемников

Бестрансформаторный источник питания (рис. 23) предназначен для питания портативных и карманных приемников от сети переменного тока напряжением 220 В. Следует учитывать, что этот источник электрически не изолирован от питающей сети. При выходном напряжении 9В и токе нагрузки 50 мА источник питания потребляет от сети около 8 мА.

Рис. 23. Схема бестрансформаторного источника питания на основе импульсного преобразователя напряжения.

Сетевое напряжение, выпрямленное диодным мостом VD1 — VD4 (рис. 23), заряжает конденсаторы С1 и С2. Время заряда конденсатора С2 определяется постоянной цепи R1, С2. В первый момент после включения устройства тиристор VS1 закрыт, но при некотором напряжении на конденсаторе С2 он откроется и подключит к этому конденсатору цепь L1, C3.

При этом от конденсатора С2 будет заряжаться конденсатор C3 большой емкости. Напряжение на конденсаторе С2 будет уменьшаться, а на C3 — увеличиваться.

Ток через дроссель L1, равный нулю в первый момент после открывания тиристора, постепенно увеличивается до тех пор, пока напряжения на конденсаторах С2 и C3 не уравняются. Как только это произойдет, тиристор VS1 закроется, но энергия, запасенная в дросселе L1, будет некоторое время поддерживать ток заряда конденсатора C3 через открывшийся диод VD5. Далее диод VD5 закрывается, и начинается относительно медленный разряд конденсатора C3 через нагрузку. Стабилитрон VD6 ограничивает напряжение на нагрузке.

Как только закрывается тиристор VS1 напряжение на конденсаторе С2 снова начинает увеличиваться. В некоторый момент тиристор снова открывается, и начинается новый цикл работы устройства. Частота открывания тиристора в несколько раз превышает частоту пульсации напряжения на конденсаторе С1 и зависит от номиналов элементов цепи R1, С2 и параметров тиристора VS1.

Конденсаторы С1 и С2 — типа МБМ на напряжение не ниже 250 В. Дроссель L1 имеет индуктивность 1…2 мГн и сопротивление не более 0,5 Ом. Он намотан на цилиндрическом каркасе диаметром 7 мм.

Ширина обмотки 10 мм, она состоит из пяти слоев провода ПЭВ-2 0,25 мм, намотанного плотно, виток к витку. В отверстие каркаса вставлен подстроечный сердечник СС2,8х12 из феррита М200НН-3. Индуктивность дросселя можно менять в широких пределах, а иногда и исключить его совсем.

Форма выходного напряжения

В разных инверторах напряжение на выходе отличается по форме. Если это прямоугольник, то расчет коммутации группы ключей, дополненных обратными диодами, осуществляется таким образом, чтобы на нагрузке возникло переменное напряжение и обеспечивался контроль над режимом циркуляции в цепях реактивной энергии.

Выходное напряжение становится пропорциональным за счет относительной продолжительности импульсов управления или между сигналами, управляющими группами ключей, сдвигаются фазы. Если же циркуляция реактивной энергии находится вне зоны контроля, в этом случае величина и форма напряжения находятся под непосредственным влиянием потребителя.

Преобразователь напряжения, имеющий на выходе ступенчатую форму, с помощью предварительного преобразователя высокой частоты, производит формирование ступенчатой однополярной кривой напряжения. По своей форме она приближена к синусоиде, у которой полный период составляет половину периода напряжения на выходе. Далее, под влиянием низкочастотной мостовой схемы однополярная ступенчатая кривая становится двумя стабилизированными половинками кривой с разной полярностью, форма которой приблизительно напоминает синусоиду.

Рекомендации по эксплуатации бытовых инверторов

Аппаратура этого класса показывает стабильность в работе и между тем требует к себе бережного отношения и своевременного обслуживания.

Инструкция сварочного инвертора

При работе с инвертором необходимо соблюдать несколько простых правил безопасности:

  1. Все токопроводящие рукава не должны иметь повреждений, клеммы для подключения должны надежно фиксироваться в аппарате.
  2. Если в конструкции аппарата предусмотрен вентилятор и во время включения он не вращается, эксплуатация такого устройства недопустима.
  3. При работе с аппаратом необходимо использовать средства индивидуальной защиты.

Как выбрать автомобильный инвертор

Рынок автомобильных инверторов чрезвычайно широк. Главное, определиться с двумя основными требованиями, которые вы предъявляете к прибору:

  • насколько мощным он должен быть – зависит от количества планируемых к подключению электроприборов;
  • сколько средств вы готовы потрать на приобретение гаджета.

Основное внимание в инверторе автомобильном на  12-220 V обращают на ресурс мощности, потому что бывает крайне обидно, когда к приобретенному инвертору не удается подключить дополнительный прибор, без риска выхода из строя  самого инвертора или неработоспособности подключенного прибора ввиду падения напряжения в сети

Производители автомобильных инверторов

Составление рейтингов всегда занятие неблагодарное. Особенно если на рынке представлено большое количество однотипной продукции, отличающейся только этикеткой на корпусе. Рекомендуем выбрать автомобильный инвертор, среди наиболее популярных в Москве производителей, признанных таковыми в 2019 году:

  • МАП «ЭНЕРГИЯ» 900;
  • ACMEPOWER 12/220V 1000W;
  • MEANWELL 12/220V 1500W;
  • RITMIX RPI-6010 CHARGER;
  • ШТИЛЬ PS12/300вт.

Как выбрать сварочный аппарат для дома и дачи на 220 В

При подборе сварочного оборудования потребитель должен определиться для решения, каких задач он будет необходим.

Если он будет использоваться для ремонта кузовных деталей, то у него должны быть одни параметры, а если для работы по изготовлению металлоконструкций то другими. Но в любом случае, устройства должны отвечать ряду требований, в частности, в домашнем аппарате должны быть реализованы такие функции, как горячий старт, антизалипание и некоторые другие. Именно этим инверторы отличаются от традиционных аппаратов.

В конструкции аппарата этого типа должен быть установлен вентилятор. Кроме того, схема должны быть защищена от скачков напряжения в питающей сети. В принципе устройство, обладающее такими параметрами, могут работать и в условиях домашней мастерской, и в условиях промышленного производства.

Сделай сам простейший инверт без транзисторов своими руками

Вам нужно всего два компонента, чтобы собрать простейший инвертор, преобразующий постоянный ток 12 В в 220 В переменного тока.


Абсолютно никаких дорогих или дефицитных элементов или деталей. Все можно собрать за 5 минут! Даже паять не надо! Скрутил проволокой и все.

Что понадобиться для инвертора?

  • Трансформатор от приемника, магнитофона, центра и т.п. Одна обмотка сетевая на 220 В, другая на 12 В.
  • Реле на 12 В. Такие много где используются.
  • Провода для подключения.
  • Нагрузка в виде лампочки.

Сборка инвертора

Все сводиться к тому, чтобы подключить реле и трансформатор следующим образом. Первым делом на сетевую обмотку трансформатора накидываем нагрузку в виде светодиодной лампочки — это будет выход инвертора. Затем низковольтную обмотку подключаем параллельно реле. Теперь один контакт идет на питание к аккумулятору, а второй подключаем к другому контакту аккумулятора, но только через замкнутый контакт реле. Плюс или минус значения не имеет. Все! Ваш инвертер готов! Супер просто! Подключаем к аккумулятору — он у нас в роли источника на 12 В и лампа на 220 В начинает светиться. При этом вы слышите писк реле.

Как же работает этот инвертер?

Все очень просто: когда вы подключаете питание все напряжение идет через замкнутые контакты на реле. Реле срабатывает и контакты размыкаются. В результате питание реле отключается и оно приводит контакты обратно на замкнутые. В результате чего цикл повторяется. А так как параллельно реле подключен повышающий трансформатор, мощные импульсы постоянного включения-выключения подаются ему и преобразуются в переменный высоковольтный ток. Частота такого преобразователя колеблется в пределах 60-70 Гц. Конечно, такой инвертор не долговечен — рано или поздно реле выйдет из строя, но не жалко — оно стоит копейки или вообще бесплатно, если взять старое. А выходное напряжение по роду тока и разбросу просто ужасно. Но этот простейший преобразователь может вас выручить в какой-нибудь серьезной ситуации.

Инверторный ИБП

Абсолютное большинство электроприборов в России, которые современный человек использует каждый день, рассчитаны на напряжение 220В-230В.

Химические источники напряжения, аккумуляторы, способные хранить заряд электричества в течении длительного времени, обеспечивают постоянное напряжение, слишком низкое для питания бытовой техники: 2 вольта, 6 вольт, 12В и т.д. Инверторы преобразуют постоянное напряжение от аккумуляторов в переменное 220В или 230В в зависимости от конструкции и настроек. На этом основана работа всех ИБП!

Видео что такое иверторный бесперебойник и как он работает

Время автономной работы бесперебойника, будет пропорционально количеству и емкости подключенных ко входу инвертора аккумуляторов. Но есть и другие факторы влияющие на время работы- Подробнее прочитать можно здесь.

Аккумуляторы могут хранить запас электрической энергии в течении длительного времени что позволяет держать в запасе большой объем накопленной электроэнергии для аварийных ситуаций, накопленный в АКБ.

При пропадании электричества на вводе в распределительный щит автоматика инвертора мгновенно перебросит питание подключенных к выходу инвертора электроприборов на аккумулятор (через электронную схему, преобразующую постоянное напряжение 12 Вольт, в переменное 220 В с заданной частотой (Гц)).

В онлайн системах переключение отсутствует-Подробнее можно прочитать здесь.

Главные преимущества электрических инверторов:

  • Это экологическая безопасность (отсутствие вредных загрязнений окружающей среды)
  • Низкий шум при работе, имеют низкий уровень шума вентилятора охлаждения в разы по сравнению с электростанциями…
  • Не требуют, заправки топливом и постоянного технического обслуживания.
  • Имеют высокий КПД, и низкую стоимость эксплуатации, привязанную к стоимости электроэнергии.
  • Непрерывное питание, отсутствует пауза (как в электростанциях), при переключении на батареи.
  • Возможность увеличивать время автономии путем наращивания количества батарей.

Основные области применения инверторов:

1)  ИБП для котлов  (ИБП для газовых котлов)

2)  ИБП для насосов (ИБП на длительное время резерва)

3)  Источник бесперебойного питания для систем сигнализации и видеонаблюдения  (ИБП для систем сигнализации и видеонаблюдения)

Пример применения в частном доме:

Рассмотрим модель ECOVOLT PRO 1012 .

Мощность нагрузки 1000 Вт при значении параметра cos =0.8 позволяет подключить электрооборудование суммарной мощностью 1 кВт.

Приблизительный расчет мощности нагрузки может быть такой:

  • Газовый котел с обвязкой – 300 Вт.
  • Циркуляционный насос 70 Вт,
  • Аварийное освещение – 300 Вт,
  • Телевизор – 200 Вт

(значения мощности электроприборов могут отличаться от приведенных здесь, точные значения можно получить из паспорта оборудования).

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: