Суть электричества простыми словами. почему и как работает электричество, его природа и принцип действия

Содержание:

В электромагнитная энергия это тот, который распространяется посредством электромагнитных волн (ЭМ). Примерами этого являются солнечный свет, излучающий тепло, ток, который извлекается из электрической розетки, и тот, которым рентгеновские лучи обладают, чтобы производить рентгеновские лучи.

Подобно звуковым волнам, когда они вызывают вибрацию барабанной перепонки, электромагнитные волны способны передавать энергию, которая позже может быть преобразована в тепло, электрические токи или различные сигналы.

Электромагнитная энергия распространяется как в материальной среде, так и в вакууме, всегда в форме поперечной волны, и ее использование не является чем-то новым. Солнечный свет — первичный источник электромагнитной энергии и самый старый из известных, но использование электричества появилось несколько позже.

И только в 1891 г.Компания Эдисон ввела в эксплуатацию первую электроустановку в Белом доме в Вашингтоне. И это в качестве дополнения к газовым светильникам, которые использовались в то время, потому что сначала было много скептицизма относительно их использования.

Дело в том, что даже в самых удаленных местах и ​​при отсутствии линий электропередач электромагнитная энергия, непрерывно поступающая из космоса, продолжает поддерживать динамику того, что мы называем своим домом во Вселенной.

Измерение напряжения

Для замера напряжение используется прибор вольтметр, хотя сейчас наиболее популярны мультиметры.  Мультиметр это такой комбинированный прибор имеющий в себе много чего. О нем я писал в статье и рассказывал как им пользоваться.

Вольтметр это как раз тот прибор который измеряет разность потенциалов между двумя точками. Напряжение (разность потенциалов) в любой точке схемы обычно измеряется относительно НОЛЯ или ЗЕМЛИ или МАССЫ или МИНУСА батарейки

Не важно главное это должна быть точка имеющая наименьший потенциал во всей схеме

Итак чтобы измерить напряжение постоянного тока между двумя точками, делаем следующее. Черный (минусовой ) щуп вольтметра втыкается в ту точку, где предположительно мы можем наблюдать точку с меньшим потенциалом (НОЛЬ).  Красный щуп (плюсовой) втыкаем в точку, потенциал которой нам интересен.

И результатом измерения будет  числовое значение разности потенциалов, или другими словами напряжение.

ФИЗИКА

§ 39. Электрическое напряжение

Мы знаем, что электрический ток — это упорядоченное движение заряженных частиц, которое создаётся электрическим полем, а оно при этом совершает работу. Работу сил электрического поля, создающего электрический ток, называют работой тока. В процессе такой работы энергия электрического поля превращается в другой вид энергии — механическую, внутреннюю и др.

От чего же зависит работа тока? Можно с уверенностью сказать, что она зависит от силы тока, т. е. от электрического заряда, протекающего по цепи в 1 с. В этом мы убедились, знакомясь с различными действиями тока (см. § 35). Например, пропуская ток по железной или никелиновой проволоке, мы видели, что чем больше была сила тока, тем выше становилась температура проволоки, т. е. сильнее было тепловое действие тока.

Но не только от одной силы тока зависит работа тока. Она зависит ещё и от другой величины, которую называют электрическим напряжением или просто напряжением.

Напряжение — это физическая величина, характеризующая электрическое поле. Оно обозначается буквой U

Чтобы ознакомиться с этой очень важной физической величиной, обратимся к опыту

На рисунке 64 изображена электрическая цепь, в которую включена лампочка от карманного фонарика. Источником тока здесь служит батарейка. На рисунке 64, б показана другая цепь, в неё включена лампа, используемая для освещения помещений. Источником тока в этой цепи является городская осветительная сеть. Амперметры, включённые в указанные цепи, показывают одинаковую силу тока в обеих цепях. Однако лампа, включённая в городскую сеть, даёт гораздо больше света и тепла, чем лампочка от карманного фонаря. Объясняется это тем, что при одинаковой силе тока работа тока на этих участках цепи при перемещении электрического заряда, равного 1 Кл, различна. Эта работа тока и определяет новую физическую величину, называемую электрическим напряжением.

Рис. 64. Различное свечение ламп при одной и той же силе тока:
а — источник тока — батарейка; б — источник тока — городская сеть

Напряжение, которое создаёт батарейка, значительно меньше напряжения городской сети. Именно поэтому при одной и той же силе тока лампочка, включённая в цепь батарейки, даёт меньше света и тепла.

Напряжение показывает, какую работу совершает электрическое поле при перемещении единичного положительного заряда из одной точки в другую.

Зная работу тока А на данном участке цепи и весь электрический заряд q, прошедший по этому участку, можно определить напряжение U, т. е. работу тока при перемещении единичного электрического заряда:

U = A / q

Следовательно, напряжение равно отношению работы тока на данном участке к электрическому заряду, прошедшему по этому участку.

Из предыдущей формулы можно определить:

A = Uq, q = A / U.

Электрический ток подобен течению воды в реках и водопадах, т. е. течению воды с более высокого уровня на более низкий. Здесь электрический заряд (количество электричества) соответствует массе воды, протекающей через сечение реки, а напряжение — разности уровней, напору воды в реке. Работа, которую совершает вода, падая, например, с плотины, зависит от массы воды и высоты её падения. Работа тока зависит от электрического заряда, протекающего через сечение проводника, и от напряжения на этом проводнике. Чем больше разность уровней воды, тем большую работу совершает вода при своём падении; чем больше напряжение на участке цепи, тем больше работа тока. В озёрах и прудах уровень воды всюду одинаков, и там вода не течёт; если в электрической цепи нет напряжения, то в ней нет и электрического тока.

Вопросы

  1. Опишите опыт, который доказывает, что работа тока зависит не только от силы тока, но и от напряжения.
  2. Что такое электрическое напряжение?
  3. Как можно определить его через работу тока и электрический заряд?

Как понять закон Ома?

Чтобы интуитивно понять закон Ома, обратимся к аналогии представления тока в виде жидкости. Именно так думал Георг Ом, когда проводил опыты, благодаря которым был открыт закон, названный его именем.

Представим, что ток – это не движение частиц-носителей заряда в проводнике, а движение потока воды в трубе.  Сначала воду насосом поднимают на водокачку, а оттуда, под действием потенциальной энергии, она стремиться вниз и течет по трубе. Причем, чем выше насос закачает воду, тем быстрее она потечет в трубе.

Отсюда следует вывод, что скорость потока воды (сила тока в проводе) будет тем больше, чем больше потенциальная энергия воды (разность потенциалов)

Теперь обратимся к сопротивлению. Гидравлическое сопротивление – это сопротивление трубы, обусловленное ее диаметром и шероховатостью стенок. Логично предположить, что чем больше диаметр, тем меньше сопротивление трубы, и тем большее количество воды (больший ток) протечет через ее сечение.

Такую аналогию можно проводить лишь для принципиального понимания закона Ома, так как его первозданный вид – на самом деле довольно грубое приближение, которое, тем не менее, находит отличное применение на практике.

В действительности, сопротивление вещества обусловлено колебанием атомов кристаллической решетки, а ток – движением свободных носителей заряда. В металлах свободными носителями являются электроны, сорвавшиеся с атомных орбит.

Ток в проводнике

В данной статье мы постарались дать простое объяснение закона Ома. Знание этих на первый взгляд простых вещей может сослужить Вам неплохую службу на экзамене. Конечно, мы привели его простейшую формулировку закона Ома и не будем сейчас лезть в дебри высшей физики, разбираясь с активным и реактивным сопротивлениями и прочими тонкостями.

Если у Вас возникнет такая необходимость, Вам с удовольствием помогут сотрудники нашего студенческого сервиса. А напоследок предлагаем Вам посмотреть интересное видео про закон Ома. Это действительно познавательно!

Кто ввел понятие энергия

Термин «Энергия» был введен в обиход Аристотелем, на страницах известного трактата «Физика». При этом значение употребляемого слова было отнесено сугубо к деятельности людей.

Более современный смысл был передан слову в обмен на словосочетание «живая сила» Томасом Юнгом. Чуть позднее, в 1829 году Гаспар-Гюстав Кориолис обнаружил взаимосвязь работы и кинетической энергии, а в 1853 году Ренкин дополнил понятие разновидностью: «потенциальная».

В 1881 году Уильямом Томсоном было заявлено, что введенное Томасом Юнгом определение справедливо. В подтверждение этого была выдвинута теория, которая устанавливала взаимосвязь между математическими расчетами и природой самого процесса. В свое время Томсон говорил, что только сейчас видение Томсона получило практическое подтверждение.

Примечание

В течение последующих 30-ти лет появлялись новые термины: «динамическая теория тепла», «термодинамика и ее законы», «биологическая термодинамика», «термоэкономика» и пр. Параллельно шли понятия: «энтропия», «мощность», «поток энергии» и т.д.

В начале 60-х годов прошлого века нобелевский лауреат Р.Фейнман утверждал, что исключений из закона сохранения энергии, как управляющего явлениями природы, не существует. Несмотря на то, что это математические действия, суть закономерности ни в коем случае не меняется.

Вентилятор внешнего кондиционера не работает

Если вентилятор внешнего блока не вращается, сначала проверьте автоматический выключатель или блок предохранителей. 

Если сброс всех блоков переменного тока не решает проблемы, возможно, возникнет пара проблем:

Пусковой конденсатор не работает: Если компрессор агрегата работает нормально, возможно, проблема с конденсатором, т. Е. Из-за грязи или ржавчины вентилятор мог застрять. Вы можете попробовать запустить или очистить вентилятор, толкая его деревянными палками, но не запускайте вентилятор рукой. Кроме того, не пытайтесь сильно запустить вентилятор, так как есть вероятность сжечь компрессор, что является дорогостоящим ремонтом для блоков переменного тока. Если проблема не исчезнет, ​​вам необходимо заменить пусковой конденсатор блоков, вызвав местного специалиста. 

Как узнать какая мощность в цепи переменного тока

Стоит указать, что это величина, которая прямо связывается с иными показателями. К примеру, она находится в прямой зависимости от времени, силы, скорости, вектора силы и скорости, модуля силы и скорости, момента силы и частоты вращения. Часто в формулах во время вычисления электромощности используется также число Пи с показателем сопротивления, мгновенным током, напряжением на конкретном участке электрической сети, активной, полной и реактивной силой. Непосредственно участник вычисления это амплитуда, угловая скорость и начальная сила тока с напряжением.

Формула мощности в цепи переменного тока

В однофазной цепи

Понять, какой мощностный показатель есть в однофазной цепи переменного тока, можно при помощи применения трансформатора тока. Для этого необходимо воспользоваться ваттметром, который включен через токовый трансформатор. Показания следует перемножить на трансформаторный коэффициент тока. В момент измерения мощности в высоком напряжении трансформатор тока необходим, чтобы заизолировать ваттметр и обеспечить безопасность пользователя. Параллельна цепь включается не непосредственным способом, а благодаря трансформатору напряжения. Вторичные обмотки с корпусами измерительных трансформаторных установок необходимо заземлять во избежание случайного изоляционного повреждения и попадания высокого напряжения на приборы.

Обратите внимание! Для определения параметров в сети необходимо амперметр перемножить на трансформаторный коэффициент тока, а цифры, полученные вольтметром, перемножить на трансформаторный коэффициент напряжения. В однофазной цепи. В однофазной цепи

В однофазной цепи

В трехфазной цепи

В цепи переменного тока мощностный показатель в трехфазной цепи определить можно, перемножив ток на напряжение. Поскольку это непостоянный электроток, он зависит от времени и других параметров, поэтому необходимо использовать другие проверенные схемы. Так, можно использовать ваттметр.

Измерение должно быть проведено только в одной фазе и по формуле умножено на три. Этот способ экономит приборы и уменьшает габариты измерения. Применяется для высокой точности измерения каждой фазы. В случае несимметричной нагрузки, нужно использовать соответствующую схему подключения ваттметра. Это более точный способ, но требует наличие трех ваттметров.

Обратите внимание! Если цепь не предусматривает наличие нулевого проводника, нужна также соответствующая схема. Стоит указать, что сегодня измерить можно необходимые показатели не только аналоговым, но и цифровым прибором. Отличие второго в уменьшенных размерах и легкости

Кроме того, цифровые агрегаты способы осуществлять фиксацию тока с напряжением, косинусом сети и другим. Это позволяет на дистанции осуществлять отслеживание различных величин и передавать предупреждения, если есть отклонение. Это удобно, поскольку не нужно измерять ток с напряжением, а потом, используя формулы, все досконально просчитывать

Отличие второго в уменьшенных размерах и легкости. Кроме того, цифровые агрегаты способы осуществлять фиксацию тока с напряжением, косинусом сети и другим. Это позволяет на дистанции осуществлять отслеживание различных величин и передавать предупреждения, если есть отклонение. Это удобно, поскольку не нужно измерять ток с напряжением, а потом, используя формулы, все досконально просчитывать

Стоит указать, что сегодня измерить можно необходимые показатели не только аналоговым, но и цифровым прибором. Отличие второго в уменьшенных размерах и легкости. Кроме того, цифровые агрегаты способы осуществлять фиксацию тока с напряжением, косинусом сети и другим. Это позволяет на дистанции осуществлять отслеживание различных величин и передавать предупреждения, если есть отклонение. Это удобно, поскольку не нужно измерять ток с напряжением, а потом, используя формулы, все досконально просчитывать.

В трехфазной цепи

В целом, мощность — это величина, основное предназначение которой показывать силу работы конкретного прибора и во многих случаях скорость деятельности, взаимодействуя с ним. Она бывает механической, электрической, гидравлической и для постоянного с переменным током. Измеряется по международной системе в ваттах и киловаттах.


Урок 363. Мощность в цепи переменного тока

Сила тока в проводнике

Очень часто можно увидеть задачки по физике с вопросом: какая сила тока в проводнике? Проводник, он же провод, может иметь различные параметры: диаметр, он же площадь поперечного сечения; материал, из которого сделан провод; длина, которая играет также важную роль.

Да и вообще, сопротивление проводника рассчитывается по формуле:

формула сопротивления проводника

Таблица с удельным сопротивлением из разных материалов выглядит вот так.

таблица с удельным сопротивлением веществ

Для того, чтобы найти силу тока в проводнике, мы должны воспользоваться законом Ома для участка цепи. Выглядит он вот так:

закон Ома

Задача

У нас есть медный провод длиной в 1 метр и его площадь поперечного сечения составляет 1 мм2 . Какая сила тока будет течь в этом проводнике (проводе), если на его концы подать напряжение в 1 Вольт?

задача на силу тока в проводнике

Решение:

Приборы для измерения частоты

 В практике испытаний ЭМ приходится измерять частоты в довольно широком диапазоне примерно от 1 Гц до 60 кГц. Для этих целей применяются как аналоговые электромеханические частотомеры, так и цифровые электронно-счетные частотомеры. Возможности применения частотомеров могут быть расширены за счет различных измерительных преобразователей — для измерения температуры, давления, деформации, числа оборотов, скольжения и других величин. Для измерения частоты в сетях переменного тока с частотой 50 Гц применяется частотомер типа Д126, а в сетях с частотой 400 или 500 Гц — частотомер Д126/1 ферродинамической системы, класса точности 1,5. Более совершенными являются частотомеры электронные типа Ф5048 с прибором магнитоэлектрической системы в качестве отсчетного устройства. Частотный диапазон прибора разбит на 21 узкий диапазон измерений со средними частотами от 35 до 5000 Гц. Кроме того, он имеет следующие широкие диапазоны измерений: 0—200; 0— 400; 0—1000; 0—2000; 0—4000; 0—10000; 0—20000 Гц. Допускаемая погрешность не превышает ± 0,5% разности конечного и начального значений диапазона измерений для узких диапазонов измерений и конечного значения диапазона измерений для широких диапазонов измерений. Диапазон входных напряжений 1—500 В. Входное сопротивление прибора не менее 20 МОм. Применение при испытаниях ЭМ электронно-счетных частотомеров (ЭСЧ) с цифровой индикацией позволяет с возможно высокой степенью точности проводить измерение частоты и периода электрических колебаний, длительность импульсов, интервал времени, отношение частот двух сигналов, количество электрических импульсов, отклонение частоты от номинального значения. ЭСЧ работают в диапазоне частот от 0,1 Гц до 50 МГц. Принцип работы ЭСЧ заключается в подсчете числа периодов измеряемых колебаний за определенный промежуток времени. Основными элементами ЭСЧ являются электронный счетчик импульсов (ЭСИ) с запоминающим устройством и системой цифровой индикации; временной селектор; формирующие устройства (ФУ), вырабатывающие нормированные по значению и временным параметрам сигналы; устройство формирования времени счета (УФВС), в состав которого входит блок декадных делителей частоты (ДДЧ), устройство управления, обеспечивающее необходимую синхронизацию работы всех элементов ЭСЧ в различных режимах работы. Рис. 1.17. Электронно-счетный частотомер, работающий в режиме измерения частоты

Рис. 1.18. Электронно-счетный частотомер, работающий в режиме измерения периодов

В режиме измерения частоты (рис. 1.17) импульсы, вырабатываемые из измеряемого сигнала, поступают через селектор, открытый на время, формируемое сигналом образцовой частоты, на ЭСИ, на цифровом табло которого индицируется среднее значение измеряемой частоты в единицах частоты. Время счета (усреднения) тсч = 1, 10, 100 мс, 1 или 10 с определяется числом ДДЧ. В режиме измерения периода (рис. 1.18) УФВС вырабатывает импульс длительностью 1 или 10й (п — целое положительное число) периодов входного сигнала, открывающий селектор. Через открытый селектор на ЭСИ от устройства формирования сигнала (УФС) поступают импульсы, сформированные из сигнала образцовой частоты. На цифровом табло ЭСЧ индицируется значение одиночного или усредненного периода в единицах времени (микросекундах, миллисекундах). Коэффициент усреднения 10″ определяется числом п делителей, включенных в тракт формирования времени счета. Погрешность частотомера не превышает значения нестабильности образцовой частоты внутреннего генератора, суммированного с одной единицей младшего разряда отсчетного устройства. Все ЭСЧ имеют цифровой выход и могут успешно применяться в автоматизированных измерительных системах. Технические данные ЭСЧ приведены в .

В чем измеряется электроэнергия по счетчику

Для определения количества потребленной электроэнергии, используются электрические счетчики активной энергии, они служат для ее учета. В промышленности существуют также счетчики реактивной энергии.

Чтобы определить, в чем измеряется потребление электроэнергии в квартире, используют 1 кВт*час. Для счетчиков реактивной энергии, интегрированная реактивная мощность измеряется как 1 кВар*час. Необходимо заметить, что при записи потребляемой энергии, по счетчику правильно надо писать, мощность умножить на время.

Килова́тт-час

(кВтч ) — внесистемная единица измерения количества произведённой или потреблённой энергии, теплоты, а также выполненной механической работы.

Используется преимущественно для измерения потребления электроэнергии в быту, народном хозяйстве и для измерения выработки электроэнергии в электроэнергетике .

В чем измеряется электроэнергия по счетчику

Для определения количества потребленной электроэнергии, используются электрические счетчики активной энергии, они служат для ее учета. В промышленности существуют также счетчики реактивной энергии.

Чтобы определить, в чем измеряется потребление электроэнергии в квартире, используют 1 кВт*час. Для счетчиков реактивной энергии, интегрированная реактивная мощность измеряется как 1 кВар*час. Необходимо заметить, что при записи потребляемой энергии, по счетчику правильно надо писать, мощность умножить на время.

Вольт

(часто обозначается просто V) – это величина напряжения, которое толкает ток по цепи. В Европе ток, снабжающий домашние строения, обычно имеет напряжение в 240 вольт, хотя напряжение может варьировать до 14 вольт выше или ниже этой величины.

Ампер

(амп. или А, для сокращения) – это величина, которая используется для измерения силы тока, т.е. количества электрических заряженных частиц, называемых электронами, которые проходят через данную точку цепи каждую секунду. Биллионы электронов необходимы, чтобы получить один ампер. Величина, выраженная в амперах, определяется частично напряжением и частично сопротивлением.

Ом

– величина, служащая для измерения сопротивления. Она названа в честь немецкого физика 19 века Георга Симона Ома, который установил закон, гласящий, что сила тока, проходящего через проводник, обратно пропорциональна сопротивлению. Этот закон можно выразить уравнением: Вольты/Омы = Амперы. Следовательно, если вам известны две из названных величин, вы можете вычислить и третью.

Ватт

(W) – это величина энергии, показывающая, какое количество тока в приборе потребляется в любой момент. Соотношение между вольтами, амперами и ваттами выражено другим уравнением, которое поможет вам сделать любые расчеты. Они вам могут понадобиться для вычислений в данной книге:

Вольты х Амперы = Ватты

Принято пользоваться киловаттом (kW)

как единицей энергии для крупных вычислений. Один киловатт равен одной тысяче ваттов.

Киловатт-час

– это величина для измерения полного количества потребляемой энергии. Например, если вы из расходуете 1 kW энергии за 1 час, это будет отражено на счетчике, и это значение израсходованной электроэнергии будет включено в вашу книгу расчета за электричество.

Кинетическая энергия

Поскольку кинетической энергией обладает механическая система, находящаяся в зависимости от скоростей, на которых движутся различные её точки, то она бывает поступательного и вращательного типа. Для измерения энергии используется единица Джоуль (Дж) в системе СИ.

Давайте рассмотрим то, как найти энергию. Формула кинетической энергии:

  • Ex= mv²/2,
    • Ek – это кинетическая энергия, измеряемая в Джоулях;
    • m – масса тела (килограммы);
    • v–скорость (метр/секунду).

Для определения того, как найти кинетическую энергию для твердого тела, выводят сумму кинетической энергии поступательного и вращательного движения.

Вычисленная таким образом кинетическая энергия тела, которое движется на определенной скорости, демонстрирует работу, которую должна выполнить сила, воздействующая на тело в состоянии покоя, чтобы придать ему скорость.

Провал напряжения

Одним из параметров качества электроэнергии является провал напряжения. Провал напряжения определяется показателем времени провала напряжения.

Предельно допустимое значение

длительности провала напряжения в электросетях напряжением до 20 000 В включительно равно 30 секунд. Длительность автоматически устраняемого провала напряжения в любой точке присоединения к электрическим сетям определяется выдержками времени релейной защиты и временем срабатывания автоматики.

Провал напряжения определяется, когда напряжение падает до значения 0,9U и характеризуется длительностью процесса. Предельно допустимая длительность — 30 секунд. Глубина провала иногда может доходить и до 100%.

Как рассчитать энергию

Кинетическая энергия – это характеристика любой системы, которая находится в движении. Но как найти кинетическую энергию?

Сделать это несложно, так как расчетная формула кинетической энергии весьма проста:

Конкретное значение определяется двумя основными параметрами: скоростью перемещения тела (V) и его массой (m). Чем больше данные характеристики, тем большей значением описываемого явления обладает система.

Но если объектом не совершаются перемещения (т.е. v = 0), то и кинетическая энергия равна нулю.

Потенциальная энергия – это характеристика, зависящая от положения и координат тел.

Любое тело подвержено земному притяжению и воздействию сил упругости. Такое взаимодействие объектов между собой наблюдается повсеместно, поэтому тела находятся в постоянном движении, меняют свои координаты.

Установлено, чем выше от поверхности земли находится предмет, чем больше его масса, тем большим показателем данной величины оно обладает.

Таким образом, зависит потенциальная энергия от массы (m) , высоты (h). Величина g – ускорение свободного падения, равное 9,81 м/сек2. Функция расчета ее количественного значения выглядит так:

Единицей измерения этой физической величины в системе СИ считается джоуль (1 Дж). Именно столько нужно затратить сил, чтобы переместить тело на 1 метр, приложив при этом усилие в 1 ньютон.

Важно! Джоуль как единица измерения утвержден на Международном конгрессе электриков, который проходил в 1889 году. До этого времени эталоном измерения была Британская термическая единица BTU, используемая в настоящее время для определения мощности тепловых установок

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: