Применение кварцевых резонаторов
Следует отметить, что благодаря своим свойствам кварцевые генераторы получили широкое применение.
Многие измерительные приборы работают с помощью кварцевых генераторов, т.к. они обеспечивают высокую точность измерений. Сконструированы специальные стандарты частоты или первичные эталоны частоты с генератором, стабилизированным пьезоэлектрическим кварцевым резонатором. Пьезокварцевая пластина используется как резонатор в эхолоте для обнаружения находящихся в воде объектов, исследования рельефа морского дна, определения местонахождения рифов и отмелей. Это позволило изучить океан даже в самых глубоководных местах и создать точнейшие карты морских глубин.
А так как относительное изменение частоты кварцевой пластины под влиянием температуры при соответствующей технологии ее изготовления может быть сведено до минимума и исчисляется значениями 10 и меньше, был создан прибор для точного измерения времени и частоты — кварцевые часы.
Потребность в кварцевых резонаторах различных типов постоянно растет. Этому способствует постоянно расширяющиеся области их применения, высокие метрологические характеристики, рентабельность их серийного производства, а также другие рассмотренные выше параметры качества и эффективности в работе. Избирательный, ярко выраженный резонансный характер сопротивления этих компонентов определяет основные области применения кварцевых резонаторов — высокостабильные генераторы тактовых сигналов и опорных частот, цепи частотной селекции, синтезаторы частоты и т. д.
Применение
С развитием радиоэлектроники КР нашли своё применение в таких приборах, как:
- кварцевые часы работают на основе эффекта кварцевого резонанса, что позволяет им функционировать с максимальной точностью;
- различные измерительные устройства, оснащённые кварцевыми резонаторами, являются высокоточными приборами;
- морские эхолоты, благодаря кварцевым резонаторам, определяют местонахождение различных объектов на большой глубине под водой (рельеф дна, отмели и разные крупные и мелкие предметы);
- опорные генераторы;
- радиостанции;
- полосовые фильтры радиоприёмников.
Преимущества
Кварцевые резонаторы обладают непревзойдённой точностью метрологических параметров. Высокая эффективность работы вызвала повсеместную замену аналоговых приборов на кварцевые устройства.
Дополнительная информация. Появление нового материала такого, как графен, может в будущем совершенно изменить конструкцию резонатора.
Геометрия пластины
Кварцевые пластины вырезаются под различным углом к осям кристалла. Исторически первые пластины вырезались перпендикулярно электрической оси, имели прямоугольную форму и колебались продольно. Такой выбор объяснялся тем, что в таких пластинах пьезоэффект максимален. Однако подобные резонаторы имеют и существенные недостатки: наличие побочных резонансов и температурную нестабильность. Поэтому в настоящее время такие резонаторы применяются редко.
Попытки усовершенствовать кварцевые резонаторы привели к созданию «косых» срезов, которые более сложны в изготовлении, но обладают массой достоинств, одни из которых высокая температурная стабильность и малое количество побочных резонансов. От геометрии пластины напрямую зависит и резонансная частота кварца. В практике используются десятки видов срезов кристаллических элементов, удовлетворяющих всему многообразию требований к кварцевым резонаторам как по параметрам, так и по их геометрическим размерам, часто лимитируемым конструкцией аппаратуры. Геометрия пьезоэлемента подбирается так, чтобы связанные колебания сдвига по контуру и колебания изгиба не влияли на частоту или чтобы их связь с основным резонансом не проявлялась в пределах рабочего интервала температур.
Резонансная частота является важным параметром, характеризующим кварцевые резонаторы. В настоящее время выпускаются кварцы на резонансные частоты от сотен герц до сотен мегагерц. Кварцевые резонаторы, предназначенные для работы в низкочастотном диапазоне, обычно резонируют на основной (или, как ещё говорят, фундаментальной) гармонике. Исходный кристалл при изготовлении таких резонаторов распиливается параллельно одной из осей кристаллической решетки. Для высокочастотных резонаторов кристалл пилится по другим осям, а вот «гармониковые» кварцы, предназначенные для работы на частотах доходящих вплоть до 150–300 МГц, изготавливают особенно тщательно.
Технические характеристики кварцевых резонаторов для поверхностного монтажа
Маркировка резонатора | Диапазон частот | Емкость нагрузки | Шунтирующая емкость | Сопротивление потерь | Отклонение частоты | Температурная стабильность | Долговременная стабильность |
MJ (5032) | 8,0…80 МГц | 12 пФ | 3,0 пФ типовая | 25 Ом | 30 ppm | ± 20 ppm | ± 2 ppm |
MQ (7050) | 8,0…110 МГц | 12 пФ | 3,0 пФ типовая | 25 Ом | 25 ppm | ± 20 ppm | ± 2 ppm |
Кварцевые резонаторы представляют собой кристалл кварца с нанесенными на его поверхность двумя электродами. Кристалл закреплен в корпусе, при подаче на него переменного электрического напряжения, система меняет свои механические характеристики. При совпадении часто электрического воздействия и собственного резонанса кварцевой механической системы происходит понижение затрат энергии необходимой для поддержания генерации. Это свойство используется в колебательном контуре, включенном в цепь генератора частоты. Высокая добротность резонансной характеристики колебательного контура используемой в схеме генератора позволяет получать стабильную частоту на его выходе. SMD кварцевые генераторы широко используются в изделиях электронной техники в качестве генераторов тактовой частоты синхронизирующих работу узлов и блоков приборов. Предельное значение резонансной частоты кварцевого резонатора ограничено механическими размерами и свойствами структуры кристалла, имеют максимальное значение частоты около 150МГц в случае использования мезо структуры резонатора. В SMD корпусах аналогичных типоразмеров 5032 и 7050 поставляются кварцевые тактовые генераторы для поверхностного монтажа в диапазоне частот от 6МГц до 150МГц. В SMD корпусах меньших типоразмеров SS и 3215 поставляются часовые кварцевые резонаторы. Для бюджетных применений предназначен микроминиатюрный керамический SMD резонатор Murata на 16МГц. Для стабилизации более высоких частот применяют SMD ПАВ резонаторы на 433,92МГц Технические характеристики и маркировка кварцевых резонаторов SMD 0532 для поверхностного монтажа
Технические характеристики и маркировка кварцевых резонаторов SMD 0705 для поверхностного монтажа
Емкость нагрузки СL
Измеренное или вычисленное значение емкости, включенной параллельно с кварцевым резонатором. Резонансная частота кварца, включенного в реальную электрическую цепь, будет изменяться в некоторых пределах при разных значениях емкости нагрузки. Для упрощения взаимодействия заказчиков и производителей резонаторов практикуется настройка резонаторов при определенном значении нагрузочной емкости. В этом случае измеренная частота должна соответствовать номинальной с учетом указанной точности настройки.
Как правило, для согласования емкости нагрузки используют конденсаторы Cg , подключаемые между выводами кварцевого резонатора и общим проводом (рисунок 2). Расчет номинала емкости конденсаторов Cg осуществляется по формуле (6), где CL – емкость нагрузки, указанная в технической документации, а CS – значение паразитной емкости (примерно 5 пФ).
Например, для емкости нагрузки равной 16 пФ имеем:
Cg = 2·(16-5) = 22 пФ
Обычно определяется как мощность, рассеиваемая кварцевым резонатором. Минимальное значение этого параметра определяется количеством энергии, необходимой для нормального запуска резонатора и обеспечения устойчивых колебаний. Однако повышенное значение этого параметра может вызвать ухудшение параметров старения и механические повреждения кристалла.
Современный и устаревший резонаторы.
Сфера применения
- кварцевые часы, обеспечивая точность работы независимо от температуры окружающей среды;
- измерительные приборы, гарантируя им высокую точность показателей;
- морские эхолоты, которые применяются при исследованиях и создании карт дна, фиксации рифов, отмелей, поиска объектов, находящихся в воде;
- схемы, соответствующие опорным генераторам, синтезирующим частоты;
- схемы, применяемые при волновом указании SSB или сигнала телеграфа;
- радиостанции с DSB-сигналом с промежуточной частотой;
- полосовые фильтры приемников супергетеродинного типа, которые более стабильны и добротны, чем LC-фильтры.
Свойства кварцевого резонатора
Какие бывают счетчики электроэнергии Нева?
Во многих приборах резонансный радиокомпонент является незаменимым элементом. К положительным свойствам КР относятся:
- Хорошая добротность превышает этот показатель аналогичных устройств. Добротность характеризует ширину резонанса, определяющую, во сколько раз запас энергии больше её потери за время изменения фазы на 1 радиан. Кварц достигает значений добротности в 104-106 раз больше, чем эквивалентный колебательный контур.
- Невосприимчивость к перепадам температуры окружающей среды;
- Каскадные фильтры на кварцевых радиодеталях позволяют обходиться без ручной настройки;
- Большой срок службы;
- Простота устройства прибора делает КР доступной деталью на радиорынке.
Пьезоэлектрики
На самом деле, кварц – это один из самых распространенных минералов в земной коре. Его доля составляет около 60%! Если полупроводниковые радиокомпоненты в основном делают из кремния, то кварц тоже состоит из кремния но в связке с кислородом. Его химическая формула SiO2.
Выглядит минерал кварц примерно вот так.
минерал кварц
Ну прямо как сокровище какое-то! Но ценность этого сокровища спрятана не в самом кварце, а в том, каким свойством он обладает. И этот эффект кварца сделал революцию в прецизионной (точной) электронике для генерации высокостабильных колебаний электрического сигнала.
Еще в 19 веке два брата Кюри обнаружили интересное свойство некоторых твердых кристаллов генерировать ЭДС , деформируя эти кристаллы. Деформация – это изменение формы какого-либо тела с помощью кручения, удара, растяжения и так далее. Так вот, ударяя по таким кристаллам, они обнаружили, что те могут выдавать какое-либо кратковременное напряжение.
пьезоэффект
Но они также обнаружили еще и обратный эффект. При подаче напряжения на такие кристаллы, эти кристаллы деформировались сами. Невооруженным глазом это было практически не заметно. Такой эффект назвали пьезоэффектом, а вещества – пьезоэлектриками.
Следует заметить, что ЭДС возникает только в процессе сжатия или растяжения. Может быть вы подумали, что можно прижать такой кристалл какой-нибудь увесистой болванкой и всю жизнь получать из него энергию? Как бы не так! Кстати, радиоэлемент пьезоизлучатель тоже относится к пьезоэлектрикам, и из него можно получить ЭДС. Ниже можно рассмотреть этот случай на видео. Светодиод, подпаянный к пьезоизлучателю, зажигается при ударе самого пьезоизлучателя.
Не так давно смотрел фильм по National Geographic. Там целые пьезоэлектрические плиты устанавливали на дороге. По ним ходили люди и вырабатывали электрическую энергию, сами того не подозревая). Кстати, очень халявная, чистая и возобновляемая энергия. Ладно, что-то отвлекся… Так вот, кристаллы кварца тоже обладают пьезоэффектом и способны также вырабатывать ЭДС или деформироваться (изгибаться, изменять форму) под воздействием электрического тока.
Что это такое, и зачем он нужен
Прибор является источником, обеспечивающим гармонические колебания высокой точности. Имеет, при сравнении с аналогами, большую эффективность работы, стабильные параметры.
Первые образцы современных устройств появились на радиостанциях в 1920-1930 гг. как элементы, имеющие стабильную работу, способные задавать несущую частоту. Они:
- пришли на смену кристальным резонаторам, работавшим на сегнетовой соли, появившимся в 1917 в результате изобретения Александра М. Николсона и отличавшимся нестабильностью;
- заменили использовавшуюся ранее схему с катушкой и конденсатором, которая не отличалась большой добротностью (до 300) и зависела от температурных изменений.
Чуть позже кварцевые резонаторы стали составной частью таймеров, часов. Электронные компоненты с собственной резонансной частотой 32768 Гц, которая в двоичном 15-разрядном счетчике задает временной промежуток равный 1 секунде.
Приборы используются сегодня в:
- кварцевых часах, обеспечивая им точность работы независимо от температуры окружающей среды;
- измерительных приборах, гарантируя им высокую точность показателей;
- морских эхолотах, которые применяются при исследованиях и создании карт дна, фиксации рифов, отмелей, поиска объектов, находящихся в воде;
- схемах, соответствующих опорным генераторам, синтезирующим частоты;
- схемах, применяемых при волновом указании SSB или сигнала телеграфа;
- радиостанциях с DSB-сигналом с промежуточной частотой;
- полосовых фильтрах приемников супергетеродинного типа, которые более стабильны и добротны, чем LC-фильтры.
Устройства изготавливаются с разными корпусами. Делятся на выводные, применяемые в объемном монтаже, и SMD, используемые в поверхностном монтаже.
Их работа зависит от надежности схемы включения, влияющей на:
- отклонение частоты от необходимого значения, стабильность параметра;
- темп старения прибора;
- нагрузочную емкость.
Возможные причины выхода из строя
Существует достаточно много методов вывести собственный кварцевый резонатор
из строя. С некими самыми пользующимися популярностью стоит ознакомиться, чтоб в дальнейшем избежать каких-либо заморочек:
- Падения с высоты. Самая пользующаяся популярностью причина. Помните: всегда нужно содержать рабочее место в полном порядке и смотреть за своими действиями.
- Присутствие неизменного напряжения. В целом кварцевые резонаторы не страшатся его. Но прецеденты были. Для проверки работоспособности включите поочередно конденсатор на 1000 мФ — этот шаг вернет его в строй либо дозволит избежать негативных последствий.
- Очень большая амплитуда сигнала. Решить данную делему можно различными методами:
- Увести частоту генерации мало в сторону, чтоб она отличалась от основного показателя механического резонанса кварца. Это более непростой вариант.
- Снизить количество Вольт, что питают сам генератор. Это более лёгкий вариант.
- Проверить, вышел ли кварцевый резонатор вправду из строя. Так, предпосылкой падения активности может быть флюс либо посторонние частички (нужно в таком случае его отменно очистить). Также может быть, что очень интенсивно эксплуатировалась изоляция, и она растеряла свои характеристики. Для контрольной проверки по этому пт можно на КТ315 спаять «трехточку» и проверить осцом (сразу можно сопоставить активность).
Кварцевый резонатор это кристаллический электронный прибор, поддерживающий резонансные колебания на заданной частоте. Кварцевый резонатор обладает высокой стабильностью и точность. Чтобы проверить работоспособность кварцевого резонатора, нужно собрать одну из предложенных ниже схем для проверки.
Здесь транзистор VT1 используется в роли генератора, а его частоту определяет проверяемый кварцевый резонатор. При поступлении питания на схему, генератор начинает генерировать импульсы с частотой его основного резонанса. Импульсная последовательность проходит через конденсатор С3, который отфильтровывает постоянную составляющую и поступает на аналоговый частотомер построенный на детекторных диодах VD1, VD2 и пассивных элементах С4, R3 и микроамперметре. В зависимости от частоты прямо пропорционально меняется напряжение на конденсаторе С4, то есть чем выше частота резонанса кварца, тем выше напряжение. Данным пробником можно не только проверить работу кварцевого резонатора, но и косвенно определить частоту его резонанса. С помощью этой схемы можно проверить кварцевые резонаторы с частотой от 3 до 10 мГц.
Если мы захотим более точно определить резонансную частоту кварцевого резонатора, необходимо подключить к выходу генератора частотомер или осциллограф. Он позволяет рассчитать частоту с помощью фигур Лиссажу. Однако не следует забывать, что кварц может возбудится как на основной частоте, так и на гармониках.
Проверка сразу двух кварцевых резонаторов
Виды кварцевых резонаторов
По типу корпуса кварцевые резонаторы могут быть выводные для объемного монтажа (стандартные и цилиндрические) и для поверхностного монтажа (SMD). Кварцевые резонаторы могут изготавливаться различной конструкции, иметь разнообразную «упаковку» (корпуса могут быть пластмассовые, стеклянные, металлические, самых разных форм и размеров), но все они предназначены для стабилизации частоты в радиоэлектронных устройствах.
Пьезоэлектрические кварцевые резонаторы различают:
- по назначению (генераторный, фильтровый и т.д.);
- по заполнению внутреннего объема корпуса (негерметизированный, герметизированный, вакуумный и др.);
- по порядку колебаний пьезоэлемента;
- по числу электромеханических резонансных систем (одинарный, сдвоенный и т.д.).
Активность кварцевых резонаторов является важнейшим параметром для успешной эксплуатации этих приборов. Активность пьезоэлектрического резонатора — качественная характеристика оценки способности кварцевого резонатора возбуждаться в определенных условиях. Активность резонатора не определяется полностью его собственными параметрами. Емкость схемы, в которой работает кварцевый резонатор, оказывает огромное влияние на его активность.
Практически определены оптимальные значения нагрузочной емкости для резонаторов, работающих в схеме на основной частоте колебаний и на механических гармониках. В первом случае нагрузочная емкость должна быть в пределах от 20 до 100 пФ (стандартизованные значения 20, 30, 50 и 100 пФ) и дпя резонаторов, работающих на механических гармониках (на частотах выше 15 МГц) в схемах последовательного резонанса 12, 15,120 и 30 пФ. Такие нагрузочные емкости обеспечивают сочетание высокой активности и хорошей стабильности частоты.
Режим работы кварцевого резонатора значительно ухудшается, если эксплуатировать его без учета влияния параметров схемы генератора на параметры резонатора. Условия работы кварцевого резонатора и его активность в большой мере зависят от параметров колебательного контура и режима работы кварцевого генератора.
В кварцевых резонаторах, применяемых в фильтрах, используются в основном те же виды колебаний, что и в генераторных кварцевых резонаторах. В фильтрах применяются двух- и четырехэлектродные вакуумные кварцевые резонаторы. В специальных схемах многозвенных кварцевых фильтров наиболее часто используются четырехэлектродные резонаторы как более экономичные. Наличие в любом пьезоэлементе нежелательных резонансных частот наряду с основной частотой колебаний заставляет особенно тщательно выбирать тип среза пьезоэлемента при использовании его в фильтровой схеме. Необходимо, чтобы его нежелательные резонансы были сдвинуты относительно основной частоты, а также не участвовали в основных колебаниях и не влияли на характеристику фильтра. Величина нежелательных резонансов и их сдвиг относительно основной частоты являются определяющими при выборе кварцевых резонаторов для электрических фильтров.
Для уменьшения ухода частоты резонаторов в широких пределах изменения температур используют термостатирование. Кварцевый резонатор помещают в термостат, в котором автоматически поддерживается постоянная температура.
На эквивалентные параметры кварцевых резонаторов влияет ряд причин. Следует отметить, что для практического использования существенно не само значение какого-либо эквивалентного параметра, а его изменение, вызванное переменами влияющего фактора. Динамические параметры кварцевого резонатора определяются физическими константами кварца и размерами. Эти параметры сильно зависят от внешних факторов (например, изменения механического контакта крепления пьезоэлементов в держателе).
Емкость нагрузки СL
Измеренное или вычисленное значение емкости, включенной параллельно с кварцевым резонатором. Резонансная частота кварца, включенного в реальную электрическую цепь, будет изменяться в некоторых пределах при разных значениях емкости нагрузки. Для упрощения взаимодействия заказчиков и производителей резонаторов практикуется настройка резонаторов при определенном значении нагрузочной емкости. В этом случае измеренная частота должна соответствовать номинальной с учетом указанной точности настройки.
Как правило, для согласования емкости нагрузки используют конденсаторы Cg , подключаемые между выводами кварцевого резонатора и общим проводом (рисунок 2). Расчет номинала емкости конденсаторов Cg осуществляется по формуле (6), где CL – емкость нагрузки, указанная в технической документации, а CS – значение паразитной емкости (примерно 5 пФ).
Например, для емкости нагрузки равной 16 пФ имеем:
Cg = 2·(16-5) = 22 пФ
Обычно определяется как мощность, рассеиваемая кварцевым резонатором. Минимальное значение этого параметра определяется количеством энергии, необходимой для нормального запуска резонатора и обеспечения устойчивых колебаний. Однако повышенное значение этого параметра может вызвать ухудшение параметров старения и механические повреждения кристалла.
Современный и устаревший резонаторы.
Параметры кварцевых резонаторов
Номинальная частота – частота Fн, указанная на маркировке или в документации на кварцевый резонатор (измеряется в МГц или кГц). Базовая частота – реальная частота резонатора Fо, измеренная в заданных условиях эксплуатации. Как правило, определяются только климатические условия, а именно базовая температура окружающей среды То, (равная 25± 2°С для резонаторов со срезом типа АТ). Рабочая частота – реальная частота резонатора F, измеренная в реальных условиях эксплуатации (климатических, механических и электрических). Обычно определен только допустимый диапазон изменения рабочей температуры.
Будет интересно Что такое подстроечный резистор: описание устройства и область его применения
Точность настройки частоты – максимально допустимое относительное отклонение базовой частоты резонатора от номинальной частоты. Измеряется в миллионных долях от номинальной частоты, обозначаемых как ppm (part per m illion) или 1•10 -6. В отдельных редких случаях значение этого параметра приводится в процентах. Как правило, значение точности настройки частоты кварцевого резонатора выбираются из стандартного ряда.
Параметры кварцевых резонаторов.
Температурная нестабильность частоты
Относительное отклонение рабочей частоты резонатора от базовой частоты. Может быть представлено в виде зависимости от рабочей температуры T, в соответствии с формулой для кварцевых пластин с типом среза АТ и формулой (4) для кварцевых пластин остальных типов. Долговременная нестабильность частоты (старение) – систематическое изменение базовой частоты с течением времени из-за внутренних изменений в кварцевом резонаторе. Параметр старения задается как относительное изменение базовой частоты за заданный промежуток времени. Это значение выражается в частях миллиона за год (например, 3 ppm / year ). Уход частоты под влиянием старения в максимальной степени сказывается в течение первых 30 – 60 дней эксплуатации, после чего влияние этого фактора уменьшается. Стандартный ряд относительных отклонений частоты для резонаторов общего назначения включает следующие классы точности: ±5, ±10, ±15, ±20, ±30, ±50, ±75 и ±100 ppm.
Материал в тему: устройство подстроечного резистора.
Режим работы резонатора (номер гармоники)
Режим работы резонатора – неизменяемый параметр, определяющий частоту колебания. Для кристаллов кварца может использоваться не только основная частота, но и ее нечетные гармоники – обертоны. Например, кристалл может работать на основной частоте 10 МГц, или в нечетных гармониках приблизительно 30 МГц (третий обертон), 50 МГц (пятый обертон) и 70 МГц (седьмой обертон).