Расчет мощности УКРМ
Коэффициент реактивной мощности на стороне ВН определяется следующим образом:
(2) |
Потребляемая активная мощность на шинах ВН складывается из активной мощности нагрузки и активных потерь мощности в трансформаторе:
(3) |
Потребляемая реактивная мощность на шинах ВН складывается из реактивной мощности нагрузки и реактивных потерь мощности в трансформаторе за вычетом расчетной мощности компенсирующего устройства:
(4) |
Выразим реактивную мощность нагрузки через известные величины (см. рис.1):
(5) |
(6) |
Потери активной и реактивной мощности в трансформаторе зависят от передаваемой мощности и рассчитываются по формулам (7) и (8):
(7) |
(8) |
где ΔPxx – потери активной мощности холостого хода трансформатора (паспортные данные), кВт;
ΔQμ – потери реактивной мощности холостого хода трансформатора, квар;
ΔPнагр. (ΔQнагр.) – нагрузочные активные (реактивные) потери в трансформаторе, кВт (квар);
ΔPк – потери активной мощности короткого замыкания трансформатора (паспортные данные), кВт;
SНН – потребляемая полная мощность на шинах НН, кВ*А:
(9) |
SТ – номинальная полная мощность трансформатора, кВ*А;
Iхх – ток холостого хода трансформатора, %;
Uк – напряжение короткого замыкания трансформатора, %.
Следует заметить, что расчеты по формулам (7) – (9) носят приближённый характер, так как на этом этапе нельзя определить значение QНН из-за того, что неизвестно расчетное значение реактивной мощности компенсирующего устройства QКУ.р, см. формулу (4). В этом случае можно:
- принять QКУ.р = 0 и выполнить расчет без компенсирующего устройства;
- принять QКУ.р = Qр.нагр. и выполнить расчет при полной компенсации реактивной мощности на шинах НН (этот вариант рекомендуется использовать из-за меньшей расчетной погрешности первой итерации расчёта потерь в трансформаторе).
Подставляя в (2) выражения (3), (4) и (5), получим выражение для расчета коэффициента реактивной мощности на шинах ВН, где вторым неизвестным является значение реактивной мощности компенсирующего устройства QКУ:
(10) |
Так как максимальное значение коэффициента реактивной мощности на шинах ВН нормировано, значит должно выполняться следующее условие:
(11) |
Выполнение условия (11) необходимо по нормативным требованиям, но недостаточно, так как коэффициент реактивной мощности может быть отрицательной величиной. Действительно, если в (10) QКУ.р будет достаточно большой величиной, чтобы числитель дроби стал отрицательным, то получим перекомпенсацию реактивной мощности QВН< 0 (генерацию в сеть высокого напряжения) и tgϕВН < 0. Перекомпенсация реактивной мощности также нежелательна, как и недокомпенсация, так как в сети опять появляются дополнительные потери мощности и энергии в электрической сети и возрастают капитальные затраты на её строительство. Таким образом, наряду с максимальным значением коэффициента реактивной мощности должно задаваться его минимальное значение tgϕmin. В отсутствие нормативных требований к величине tgϕmin его значение может быть определено из следующих соображений:
- если генерация реактивной мощности в сеть ВН недопустима, то tgϕmin = 0;
- если нельзя превышать заданный уровень потерь мощности и энергии в сети, а также обеспечить работу оборудования в номинальных режимах (перекомпенсация допустима), то tgϕmin = -tgϕmax.
Необходимое и достаточное условие для выбора УКРМ выглядит следующим образом:
(12) |
Подставив (10) в (12), получим:
(13) |
Рассмотрим отдельно левую и правую части выражения (13).
Очевидно, что tgϕmax будет при наименьшем расчетном значении реактивной мощности компенсирующего устройства QКУ.р.min. Заменим в (13) QКУ.р на QКУ.р.min и подставим знак равенства между правой и средней частью выражения:
(14) |
Выразив в (14) QКУ.р.min и выполнив необходимые преобразования (15), получим выражение для расчета минимально допустимой мощности компенсирующего устройства (16):
(15) |
(16) |
Аналогично для левой части (13), tgϕmin будет при наибольшем расчетном значении реактивной мощности компенсирующего устройства QКУ.р.max. Соответственно, выражение для расчета максимально допустимой мощности КУ:
(17) |
Номинальная мощность установки компенсации реактивной мощности выбирается из условия:
(18) |
где QКУ.р.max и QКУ.р.min – граничные значения реактивной мощности УКРМ, определенные для расчётных значений Pр.нагр. и cosϕр.нагр..
Подставив (16) и (17) в (18), получаем окончательные выражения для выбора номинальной реактивной мощности УКРМ:
(19) |
(20) |
Выбрав УКРМ, проводим вторую итерацию расчетов по формулам (7) – (9), подставляя в формулы вместо QКУ.р значение QКУ.ном, и уточняем величину QКУ.ном по выражениям (19) и (20).
Формулы расчета мощности
Мощность — это физическая величина, равная отношению количества работы ко времени совершения этой работы. Мощность электрического тока (P) — это величина, характеризующая скорость преобразования электрической энергии в другие виды энергии. Международная единица измерения — Ватт (Вт/W).
— Мощность по току и напряжению (постоянный ток): P = I × U — Мощность по току и напряжению (переменный ток однофазный): P = I × U × cos φ — Мощность по току и напряжению (переменный ток трехфазный): P = I × U × cos φ × √3 — Мощность по току и сопротивлению: P = I2 × R — Мощность по напряжению и сопротивлению: P = U2 / R
- I – сила тока, А;
- U – напряжение, В;
- R – сопротивление, Ом;
- cos φ – коэффициент мощности.
Выбор устройства КРМ
Что такое локомотив? какие бывают виды локомотивов?
Устройства КРМ выбираются по следующим техническим характеристикам:
- номинальная мощность;
- номинальное напряжение;
- номинальный ток;
- количество подключаемых ступеней;
- необходимость защиты от резонансных явлений с помощью реакторов.
Необходимая мощность набирается ступенями по 25 и 50 квар, при этом количество ступеней не должно превышать количество выходов контроллера, устанавливаемого в установку КРМ, так как к каждому выходу может быть подключена одна ступень.
Количество выходов контроллера обозначается цифрой, например, RVC6 (фирмы АББ) имеет 6 выходов.
В случае необходимости защиты от резонансных явлений требуется применение защитных реакторов (трехфазных дросселей), в таком случае должны выбираться установки, например типа MNS MCR и LK ACUL (фирмы АББ).
Пример выбора устройств КРМ
Ниже приведен пример выбора устройств КРМ для сети, показанной на рис.2.
Рис.2 – Однолинейная схема ГРЩ без УКРМ
Технические характеристики устройств, образующих сеть, следующие:
Питающая сеть:
- Номинальное напряжение 10 кВ;
- Частота 50 Гц;
- Коэффициент мощности cosϕ = 0,75;
Трансформаторы 1, 2:
- Номинальное напряжение первичной обмотки 10 кВ;
- Номинальное напряжение вторичной обмотки 400 В;
- Номинальная мощность S = 800 кВА;
Данные по кабелям и нагрузкам, подключаемым через вторичные распределительные щиты, представлены в таблице 1. Таблица 1
Выбор места установки устройства КРМ
В качестве места установки устройств КРМ приняты главные распределительные шины, как показано на рис. 3.
Рис.3 – Однолинейная схема ГРЩ с УКРМ
1. Требуемые мощности устройств определим по формуле:
2. Суммарные активные мощности нагрузок, получающих питание от каждого из двух трансформаторов, определим по формуле:
подставив значения из таблицы 1, получим:
суммарная нагрузка на первый трансформатор:
суммарная нагрузка на второй трансформатор:
3. Определяем средневзвешенный cosφ для первого трансформатора по формуле:
4. Определяем средневзвешенный cosφ для второго трансформатора по формуле:
5. Определим коэффициент Кс при помощи таблицы 2, учитывая, что требуемый cosφ2 = 0,95.
Получим:
- для первого устройства КРМ Кс1 = 0,474;
- для второго устройства КРМ Кс2 = 0,526.
6. Зная для каждого трансформатора Кс и P, определим требуемые мощности устройств КРМ:
для первого трансформатора:
для второго трансформатора:
Расчет мощности устройства КРМ на основе баланса мощности
7. Определим мощность устройства КРМ по формуле . • для первого трансформатора:
для второго трансформатора:
где:
- Р – суммарная нагрузка на трансформатор, кВт;
- tgϕ1 – фактический тангенс угла до применения установки КРМ;
- tgϕ2 – требуемый тангенс угла;
8. Определяем tgϕ1 и tgϕ2 зная cosϕ1 и cosϕ2:
для первого трансформатора tgϕ1:
для первого и второго трансформатора tgϕ2:
для второго трансформатора tgϕ1:
Как видно из двух вариантов расчета мощности КРМ, значения требуемой мощности практически не отличаются. Какой из вариантов выбора мощности устройства КРМ использовать, решайте сами. Я принимай мощность устройства КРМ по варианту с определением коэффициента Кс по таблице 2.
Соответственно принятая требуемая мощность устройства КРМ составляет 270 и 300 квар.
9. Рассчитаем номинальный ток устройства КРМ для первого трансформатора:
10. Рассчитаем номинальный ток устройства КРМ для второго трансформатора:
Защита УКРМ
При выборе автоматических выключателей для защиты устройства КРМ, нужно руководствоваться ПУЭ 7-издание пункт 5.6.15. Согласно которому аппараты и токоведущие части в цепи конденсаторной батареи должны допускать длительное прохождение тока, составляющего 130% номинального тока батареи.
Определяем уставку по защите от перегрузки:
- для УКРМ1: 390*1,3 = 507 А;
- для УКРМ2: 434*1,3 = 564 А
Уставка защиты от КЗ должна быть нечувствительна к броску тока. Уставка составляет 10 x In.
Определяем уставку защиты от КЗ:
- для УКРМ1: 390 x 10 = 3900 А;
- для УКРМ2: 434 x 10 = 4340 А
Проверка установки КРМ на отсутствие резонанса
В данном примере проверка установки КРМ на отсутствие резонанса не выполнялась, из-за отсутствия нелинейной нагрузки, а также отсутствия существенных искажений в сети 10 кВ.
В случае же, если у Вас преобладает нелинейная нагрузка, нужно выполнить проверку УКРМ на отсутствие резонанса, а также выполнить расчет качества электрической энергии после установки УКРМ и загрузку батарей статических конденсаторов (БСК).
Для удобства расчета по выбору устройства компенсации реактивной мощности, я к данной статье прикладываю архив со всей технической литературой, которую использовал при выборе УКРМ.
Литература:
Что такое УКРМ
Устройство компенсации реактивной мощности
– устройство, поглощающее «лишнее» электричество, не приносящее пользы.
Поток электричества с УКРМ и без установки
Чем мощнее энергопоток по кабелям, тем больше излишков остается из-за колебаний потоков. Результат: износ и перегрев проводов, нецелевые расходы электроэнергии (переплаты), при использовании мощного оборудования повышен риск поломки техники.
Группа «РУСЭЛТ» выпускает приборы для использования в промышленности. В зависимости от условий эксплуатации мы предлагаем различные модели устройств:
- КРМ-0,4(от 20 до 1000 кВар) – используются для автоматического и ручного регулирования мощности;
- КРМ-Ф (от 20 до 1000 кВар) кроме компенсации выполняют вторую немаловажную функцию – фильтрации;
- КРМ-MINI (20, 30, 40 кВар) – управляемые устройства, компенсирующие мощность электричества в сетевых кабелях.
Приборы рассчитаны на промышленную эксплуатацию в умеренных климатических условиях. Полная работоспособность сохраняется в температурном диапазоне -40-+40°С, рекомендованная влажность до 80%.
Качество электроэнергии и компенсация реактивной мощности в цифровизованных силовых сетях низкого и низкого среднего напряжения
Если рассматривать «цифровую трансформацию» потребительской сети с позиции менеджмента предприятия, включая лица и подразделения, которые отвечают за состояние оборудования, коммуникаций, электроснабжения в целом, то уже в ближайшей перспективе следует ожидать:
- перераспределения акцентов на приоритетах, обусловленного изменением подхода к самим определениям качества, надежности, стабильности электроснабжения;
- ужесточения требований к обеспеченности силового оборудования контроллерами, причем с быстрым (по времени срабатывания) откликом на управляющие сигналы;
- формализации внедрения технических средств для локализации источников гармонических возмущений, в том числе наряду с УКРМТ.
Приоритеты
Вне зависимости от архитектуры конкретной силовой сети и даже способа последовательной связи полевого уровня ключевым приоритетным условием бесперебойного и четкого функционирования ведущих (master) устройств программно-аппаратного комплекса и ведомых (slave) контроллеров, датчиков или приводов является «чистая» сеть, т. е. не имеющая искажений по току, напряжению, частоте, в том числе вызываемых гармониками/интергармониками. Причем речь идет не только о сегментах силовой сети, но и слаботочных линий, за электромагнитные возмущения на которых ответственна силовая нагрузка, а значит придется решать проблему комплексно и отнюдь не только компенсацией реактивной мощности на фундаментальной частоте 50 Гц.
Справка По факту даже коррекция коэффициента мощности теперь не может рассматриваться с точки зрения экономической целесообразности — нивелирование наброса реактивных токов в силовую сеть становится обязательным условием четкой работы всей архитектуры цифровой сети, а инструмент для контроля над состоянием сети и оборудования уже формализован приказом № 465 Минэнерго России от 14.05.2019 и пока обязательное (с 18 января) техническое освидетельствование откладывалось из-за эпидемиологической ситуации в стране (мире). Следует ожидать и ужесточения контроля над всеми параметрами качества силовой сети по ГОСТ 32144-2013, а также актуализации стандарта с IEEE 1459-2010, где введены определения, нормы, требования к разным составляющим неактивной мощности, в том числе мощности гармоник, искажений тока, напряжения, которые существенно влияют на параметры качества электроэнергии и, соответственно, функциональность связей в архитектуре цифровых сетей.
Ужесточение требований
Здесь в части различных ШИМ-преобразователей (приводов и активных фильтров гармоник АФГ) будут востребованы многоуровневые конвертеры (по терминологии ГОСТ IEC 60050-151-2014) на транзисторах, причем приоритетными становятся биполярные транзисторы с изолированным затвором (IGBT), отличающиеся от униполярных МОП-транзисторов (MOS-FET) большей мощностью, а от биполярных транзисторов (LTR) — большим частотным диапазоном.
Мощность и диапазоны рабочих частот транзисторов LTR, MOS-FET и IGBT
Формализации внедрения технических средств
В сегменте установок компенсации реактивной мощности востребованными останутся УКРМТ с управлением тиристорными ключами, а контакторные автоматические УКРМ из-за длительного времени коммутации (с учетом предустановленной задержки с целью исключения частых включений-отключений) наверняка отживают свои последние месяцы.
Справка Несмотря на «закат» автоматических релейных УКРМ, нерегулируемые установки, а также конденсаторные батареи всё же смогут найти применение и быть эффективными в плане снижения затрат на компенсацию реактивной мощности, причем в сетях с любым характером нагрузки, но имеющим «фоновую потребность» в реактивной энергии. Т.е. там, где часть оборудования работает непрерывно экономически оправданно использовать нерегулируемые установки, которые будут «срезать» фоновый наброс реактивных токов и не требуют автоматического управления включением/отключением;
Компенсаторы реактивной мощности в квартире
Многие промышленные предприятия, особенно крупные, применяют в целях экономии устройства компенсации реактивной мощности. Однако этот трюк не пройдёт в обычной квартире. Вытекает это из ряда причин:
- Бытовые однофазные счётчики электроэнергии, используемые в жилых домах, не способны вычислять реактивную мощность. Соответственно, никто не сможет взыскать за неё оплату. Особенно это относится к старым индукционным счётчикам.
- Организации, поставляющие электроэнергию, ведут учёт реактивной мощности только для крупных промышленных предприятий. Установка подобных устройств в жилых домах не является требованием ПУЭ.
- С технической точки зрения, проблематично и дорого будет рассчитать УКРМ для каждой квартиры или тем более поставить автоматические системы на микропроцессоре, ведь данные приборы стоят внушительных денег.
Cosф бытовых потребителей
Важно! По интернету гуляют предложения купить мошенническую чудо-коробочку. Она подключается к розетке и тем самым избавляет квартиру от излишков реактивной мощности
Как показывают обзоры, внутри этого прибора не содержится ничего, кроме светодиода. Соответственно, такое устройство никак не поможет сэкономить.
Как установить конденсаторные устройства
Предварительно понадобится схема работы электросети, и документы от ПУЭ, по которым и проводится решение о компенсации энергии и реактивной мощности ДСП. Далее необходим экономический расчет:
- сумма потребления энергии всеми приборами (это печи, цод, автоматические машины, холодильные установки и прочее);
- сумма поступления тока в сеть;
- вычисление потерь в цепях до поступления энергии к приборам, и после этого поступления;
- частотный анализ.
Далее нужно сгенерировать часть мощности сразу на месте её поступления в сеть при помощи генератора. Это называется централизованная компенсация. Она может проводится также при помощи установки cos, electric, schneider, tg.
Но существует также индивидуальная однофазная компенсация реактивной энергии и мощности (либо поперечная), её цена намного ниже. В этом случае производится установка упорядоченных регулирующих устройств (конденсаторов), непосредственно у каждого потребителя питания. Это оптимальный выход, если регулируется трехфазный двигатель или электропривод. Но у этого типа компенсации есть существенный недостаток – она не регулируется, и поэтому называется еще и нерегулируемой или нелинейной.
Статические компенсаторы или тиристоры работают при помощи взаимоиндукции. В этом случае переключение производят при помощи двух или более тиристоров. Самый простой и безопасный метод, но его существенным недостатком является то, что гармоники генерируются вручную, что значительно усложняет процесс монтажа.
Способы снижения потребления реактивной мощности: компенсация реактивной мощности
Принципиальная схема ступенчатого КРМ. Наиболее действенным и эффективным способом снижения потребляемой из сети реактивной мощности является применение установок компенсации реактивной мощности (конденсаторных установок).
Использование конденсаторных установок для компенсации реактивной мощности позволяет:
- разгрузить питающие линии электропередачи, трансформаторы и распределительные устройства;
- снизить расходы на оплату электроэнергии при использовании определенного типа установок, снизить уровень высших гармоник;
- подавить сетевые помехи, снизить несимметрию фаз;
- сделать распределительные сети более надежными и экономичными.
Из всего изложенного следует сделать вывод: предприятия, работа которых основана на использовании мощностей электродвигателей, в первую очередь должны быть укомплектованы компенсаторными установками. Затраты окупятся несомненно.
Для того чтобы произвести расчет установки компенсации реактивной мощности 0.4 кв, заполните пожалуйста поля, приведенные ниже и нажмите кнопку “Рассчитать”.
Формула расчета реактивной мощности КРМQ = Pa· ( tgφ1-tgφ2) – реактивная мощность установки КРМ (кВАр)Q = Pa · K, гдеPa -активная мощность (кВт), K- коэффициент из таблицыPa= S· cosφ, гдеS -полная мощность(кВА)cos φ – коэффициент мощностиtg(φ1+φ2) согласуются со значениями cos φ в таблице. Таблица определения установки компенсации реактивной мощности, cos(φ):
Текущий (действующий) | Требуемый (достижимый) cos (φ) |
tan (φ) | cos (φ) |
Коэффициент K |
Пример:
• Активная мощность двигателя : P=200 кВт• Действующий cos φ = 0,61 • Требуемый cos φ = 0,96• Коэффициент K из таблицы = 1,01Необходимая реактивная мощность КРМ (кВАр):
Активная мощность (P)Другими словами активную мощность можно назвать: фактическая, настоящая, полезная, реальная мощность. В цепи постоянного тока мощность, питающая нагрузку постоянного тока, определяется как простое произведение напряжения на нагрузке и протекающего тока, то естьP = U Iпотому что в цепи постоянного тока нет понятия фазового угла между током и напряжением. Другими словами, в цепи постоянного тока нет никакого коэффициента мощности.
Но при синусоидальных сигналах, то есть в цепях переменного тока, ситуация сложнее из-за наличия разности фаз между током и напряжением. Поэтому среднее значение мощности (активная мощность), которая в действительности питает нагрузку, определяется как:
P = U I CosθВ цепи переменного тока, если она чисто активная (резистивная), формула для мощности та же самая, что и для постоянного тока: P = U I.
Формулы для активной мощностиP = U I – в цепях постоянного токаP = U I cosθ – в однофазных цепях переменного токаP = √3 UL IL cosθ – в трёхфазных цепях переменного токаP = 3 UPh IPh cosθP = √ (S2 – Q2) илиP =√ (ВА2 – вар2) или Активная мощность = √ (Полная мощность2 – Реактивная мощность2) иликВт = √ (кВА2 – квар2)Реактивная мощность (Q)Также её мощно было бы назвать бесполезной или безваттной мощностью.
Мощность, которая постоянно перетекает туда и обратно между источником и нагрузкой, известна как реактивная (Q).
Реактивной называется мощность, которая потребляется и затем возвращается нагрузкой из-за её реактивных свойств. Единицей измерения активной мощности является ватт, 1 Вт = 1 В х 1 А. Энергия реактивной мощности сначала накапливается, а затем высвобождается в виде магнитного поля или электрического поля в случае, соответственно, индуктивности или конденсатора.
None Единицей измерения реактивной мощности является вольт-ампер реактивный (вар): 1 вар = 1 В х 1 А. Проще говоря, единица реактивной мощности определяет величину магнитного или электрического поля, произведённого 1 В х 1 А.
Конденсаторные установки УКРМ на 0 4, 6, 10 кВ и более
- Конструктивно установка конденсаторная укрм представляет собой стандартную оболочку электрического шкафа (степени защиты от IP20 до IP55) с установленным внутри активным оборудованием(конденсаторы, держатели предохранителей, контакторы, реакторы, регулятор и т.п.). Оборудование внутри шкафа крепится на монтажные платы и несущие профили;
- Безопасность эксплуатации обеспечивает защита от прикосновения к токоведущим частям, возможностьотключения всех конденсаторов переключателем или регулятором на двери, возможность создания видимого разрыва цепи при помощи предохранителей-выключателей-разъединителей;
- Контроллер-регулятор с индикацией режимов работы выведен на дверь установки;
- Конструкция, монтаж и эксплуатация укрм 0.4 соответствует требованиям безопасности по ГОСТ.
Преимущества
Укрм 04 конструктивно позволяет проводить обследование и замену поврежденных конденсаторов без снятия напряжения с других ступеней, это обеспечивается легкой доступностью к конденсаторам, возможностью создания видимого разрыва в питании каждого конденсатора, применением экранов для защиты от прикосновения к токоведущим частям установки. Функционально установка предназначена для компенсации реактивной мощности для особых условий по техническим условиям заказчика (например, шкафы для наружной установки, для взрывоопасных зон, и т.д). Принимая решение купить укрм вы получаете значимый результат — в снижении потребляемого тока и оплаты за электроэнергию.
Устройство установки УКРМ
Установки изготавливаются по согласованным техническим условиям заказчика. Полные перечни технических характеристик УКРМ и схемы принципиальные электрические приведены в паспортах, передаваемых к каждой установке, завод-изготовитель предлагает на укрм прайс, в котором указаны цены на различные комплекты установок.
В комплект поставки УКРМ входят:
- Установка компенсации реактивной мощности;
- Плавкие вставки в соответствии со ступенями регулирования;
- Паспорт;
- Руководство по эксплуатации.
Установки (например модели: укрм 150, укрм 250) устанавливаются на подготовленное выровненное основание. Дополнительное крепление может осуществляться также при помощи болтовых соединений через отверстия, выполненные в нижнем поясе изделия.
Подключение проводов и кабелей к зажимам предохранителей-выключателей-разъединителей возможно как сверху, так и снизу, в зависимости от исполнения установки укрм и требований заказчика. Таким образом стоимость может меняться от дополнительных электро компонентов.
Производим доставку в Санкт-Петербург, Москву, Казань, Новосибирск, Ростов-на-Дону, Нижний Новгород, Екатеринбург, Челябинск, Омск, Уфа, Самара, Пермь, Воронеж, Волгоград, Тюмень, Саратов, Оренбург, Краснодар, Красноярск и другие города России, а так же в республику Казахстан, Беларусь, Армения, Кыргыстан.