Ремонт симисторного регулятора – Dimmer-а
C1-C4 = 47n | R4 = 250k | L0 = 30µH |
R1 = 390k | R6 = 1k | D11 = 30V |
R2 = 68k | R7 = 56k | D12 = 60V |
R3 = 10k | R8 = 200k | TR1 = 68169 |
На чертеже изображена оригинальная электрическая схема промышленного диммера фирмы Leviton, предназначенного для работы в сети, напряжением 120 Вольт.
Проверка неисправных диммеров показала, что кроме самого симистора в них ничего не пострадало. Некоторые симисторы были пробиты, а некоторые оборваны. Один из диммером вышел из строя прямо у меня на глазах, когда внутри одной из ламп накаливания, вкрученной в люстру, произошло короткое замыкание.
И я бы не стал описывать процедуру замены симистора в этом регуляторе, если бы не «подводные камни», встретившиеся на этом пути.
Дело в том, что в ремонтируемых мною диммерах были установлены какие-то диковинные симисторы с надписью «68169». Мне не удалось найти на них даже даташита.
Кроме всего, у этих симисторов, размещённых в корпусе TO-220, контактная площадка оказалась изолированной от электродов симистора (триака). Хотя, как видите, контактная площадка у этих симисторов выполнена из меди и вовсе не покрыта пластиком, как это бывает у корпусов транзисторов. Доселе, я даже не знал, что существуют симисторы в таком удобном исполнении. Могу только предположить, что компания, выпускающая диммеры, получает данные компоненты по индивидуальному заказу, дабы усложнить ремонт своих неоправданно дорогих изделий.
Ещё одним «подарком» оказался метод крепления симисторов к радиатору с помощью пустотелых заклёпок. При использовании изолирующих прокладок, такой способ крепления применять нежелательно. Да и в плане ремонтопригодности он никуда не годится.
В общем, ремонт занял немало времени именно из-за проблем с установкой такого типа триаков, на которые диммер рассчитан не был.
Измерение мощности на нагрузках
Дальнейшее снятие характеристик (заполнение таблицы) с теми же нагрузками производил с использованием этого прибора уже без измерения напряжения и тока на нагрузке. Видно, что после установки резистора R4 характеристики сместились и стали более прямолинейными, исходящими из «0», чего и добиваются «линеаризацией».
Рис.4. Схема регулятора мощности после наладки.
Индуктивности/дроссели L1 и L2, как оказалось позже, сыграли отрицательную роль. А именно, будучи намотаны на ферритовых стержнях, при длительной нагрузке 1..1,5 кВт стали перегреваться, и их ПХВ-оболочка оплавилась и обуглилась. Изначально ПХВ-оболочка скрыла их “коварную” ферритовую сущность, дроссели превратились в серьезную нагрузку в силовой цепи регулятора, и их пришлось удалить из схемы. Убрал и конденсаторы на входе питания 220в.
Анализ максимальных табличных значений мощностей по нагрузкам показывает, что включенные через регулятор электроприборы не добирают своей полной мощности даже при крайнем положении движка регулятора, особенно кипятильник (470 вместо 500 Вт – 94%) и утюг (790 вместо 1000 Вт – 80%). Получается, для работы нагрузок/электроприборов на полную мощность их следует включать в сеть напрямую.
Так и предусмотрено в схемах фирменных электроинструментов – при полном нажатии курка срабатывают контакты прямого включения, минуя регулятор оборотов. Этот недостаток кроется и в схемном решении рассматриваемого регулятора и его устранение, вероятно, потребует детального анализа осциллограмм работы схемы и корректировки ее элементов, что не входит в объем представленной статьи.
Источники
- • Характеристики регулятора мощности.xls / , xls, 113.5 kB, скачан: 665 раз./ – программа анализа и построения графика .
- Простой регулятор мощности для паяльника – https://oldoctober.com/ru/power_regulator/
- • Сплан — Splan_7.0_rus — программа для черчения электрических схем / Программа непрофессиональная, но очень удобна в быстром и простом начертании схем. Архив содержит русский хелп, библиотеки компонентов, файл установки, просмотрщик, файл описания. Не требует ключа активации, работает сразу после установки., rar, 3.55 MB, скачан: 17244 раз./
- Alt-коды вывода спецсимволов – https://ru.wikipedia.org/wiki/Alt-код
Что это такое
Как показано на Рис.2, тиристор составлен из двух транзисторов разной проводимости: npn и pnp, включенных «навстречу» друг-другу. Если приоткрыть один из транзисторов (npn), приложив между его эмиттером и базой напряжение порядка 0,6 … 0,8 В (напряжение открывания кремниевого p-n перехода), то в коллекторе потечет ток.
Появившееся напряжение между базой и эмиттером второго транзистора начнет открывать его и, одновременно, через коллектор второго транзистора, — первый транзистор. Все это будет лавинообразно нарастать с очень большой скоростью, и теперь уже независимо от начального напряжения. Достаточно только «подтолкнуть» процесс открывания небольшим начальным импульсом.
Для закрывания тиристора необходимо понизить ток в его цепи до минимальной величины, называемой током удержания, и чуть ниже. Поскольку переменный ток так себя и ведет в каждом полупериоде, то каждая половинка симистора будет закрываться, когда меняется полярность в цепи тока.
Схема симистора показана на рисунке Рис. 3 слева, а его физическое устройство, — справа. Напоминаем, что это два встречно-параллельно включенных тиристора. Выводы Т1 и Т2 уже нельзя назвать анодом и катодом, в цепи переменного тока они становятся равноправными. Однако, в цепи постоянного тока триак ведет себя как обычный тиристор и даже содержит «запасной», хотя для его использования придется поменять полярность управляющего напряжения.
Дополнительная информация! Кстати говоря, как тиристор, так и симистор, могут быть составлены из обычных транзисторов разной структуры, имея ту же работоспособность. Главное, чтобы они были рассчитаны на требуемый ток и допустимое напряжение. Но на практике это не используется, с очень давних времен (1960-е) тиристоры стали выпускать в виде готовых приборов в одном корпусе.
Современный тиристор или симистор средней мощности выглядит, как показано на Рис. 4.
Принцип работы регулятора на симисторе
Напомним, что симистором принято называть модификацию тиристора, играющего роль полупроводникового ключа с нелинейной характеристикой. Его основное отличие от базового прибора заключается в двухсторонней проводимости при переходе в «открытый» режим работы, при подаче тока на управляющий электрод. Благодаря этому свойству симисторы не зависят от полярности напряжения, что позволяет их эффективно использовать в цепях с переменным напряжением.
Помимо приобретенной особенности, данные приборы обладают важным свойством базового элемента – возможностью сохранения проводимости при отключении управляющего электрода. При этом «закрытие» полупроводникового ключа происходит в момент отсутствия разности потенциалов между основными выводами прибора. То есть тогда, когда переменное напряжение переходит точку нуля.
Дополнительным бонусом от такого перехода в «закрытое» состояние является уменьшение числа помех на этой фазе работы
Обратим внимание, что не создающий помех регулятор может быть создан под управлением транзисторов
Благодаря перечисленным выше свойствам, можно управлять мощностью нагрузки путем фазового управления. То есть, симистор открывается каждый полупериод и закрывается при переходе через ноль. Время задержки включения «открытого» режима как бы отрезает часть полупериода, в результате форма выходного сигнала будет пилообразной.
Форма сигнала на выходе регулятора мощности: А – 100%, В – 50%, С – 25%
При этом амплитуда сигнала будет оставаться прежней, именно поэтому такие устройства неправильно называть регуляторами напряжения.
Выбери триак
По этой причине схема тиристора, а особенно симисторного регулятора мощности получается более простой, экономичной и надежной. Особенно если он быстро включается. У регулятора мощности на симисторе кроме него нет больше полупроводниковых приборов, по которым течет ток нагрузки. А у регуляторов с остальными ключами такими приборами обязательно будут выпрямительные диоды, в том числе встроенные. Поэтому рекомендуем остановиться на симисторах — схемы с ними есть во многих справочниках, популярных журналах а, следовательно, и в интернете. Их легко найти и выбрать что-либо приемлемое.
Первый регулятор мощности на симисторе КУ208Г используется уже много лет, начиная с 80-х годов прошлого века.
Параметры симистора КУ208Г
Схема простейшего регулятора мощности
Как работает фазовый регулятор
Главную роль в работе фазового регулятора играет симистор. Он представляет собой нелинейный ключ на основе полупроводника. Данный элемент был получен благодаря усовершенствованию тиристора. Главное отличие состоит в том, что этот полупроводниковый ключ в открытом состоянии пропускает ток не в одном, а в двух направлениях. Это свойство дает симисторам возможность применения в цепях с переменным током, так как на них никак не влияет полярность напряжения, которая постоянно меняется в данных цепях.
Вам это будет интересно Особенности дросселя для ламп дневного света
Наличие нового свойства не означает отсутствие старого, характерного и для симисторов, и для тиристоров. Даже когда электрод управления отключен, проводимость всего элемента активна. Момент, когда элемент закрыт, наступает только тогда, когда переменный ток находится в положении ноль (то есть разность потенциалов на двух других контактах будет также равна нулю).
Обратите внимание! Еще одно полезное свойство применения симистора в качестве основного элемента — подавление помех на фазе при закрытии элемента. Это намного проще транзисторного регулятора, который также умеет уменьшать шумы входного сигнала
Изменения сигнала
Все эти характеристики позволяют конструкции на основе симисторов осуществлять фазное изменение в сигнале. Каждый полупериод проводимость отключается, а время между закрытием и открытием прибора срезает часть периода. Сигнал из-за этого становится пилообразной формы. Путем изменения формы сигнала и происходит фазовое управление мощностью тока.
Важно! Симистор никак не влияет на амплитуду напряжения, поэтому название «регулятор напряжения» неправильно
Пролог
Я уже описывал конструкцию самого простого регулятора мощности для паяльника. Некоторые радиолюбители приспособили этот регулятор напряжения для управления яркостью осветительных ламп. При правильном подборе элементов, регулятор позволяет управлять мощностью ламп накаливания и даже оборотами асинхронных двигателей, но всё же не так хорошо, как бы этого хотелось.
В связи с ремонтом подобных регуляторов, я испытал одну из схем, которая оказалось более помехоустойчивой и простой в настройке, чем описанная ранее.
Но, расскажу обо всём по порядку.
Так вот, пришлось мне ремонтировать электропроводку вдали от родного дома. А именно, нужно было поменять выключатели с регуляторами мощности, или, как их там называют, диммеры (Dimmer).
В магазине новые выключатели с индикацией и регулировкой мощности стоили слишком дорого (45$ до налога). Так что, было решено временно заменить их более дешёвыми и менее функциональными выключателями, а неисправные диммеры отремонтировать. Ну, а так как на месте не было ни радиодеталей, ни необходимого инструмента, пришлось привести их домой. Вот в связи с этими мытарствами и родилась статья.
Приехав домой, я первым делом купил на местном радиорынке симисторы подходящей мощности BT139-800 всего по 0,65$ за штуку и вычертил электрическую схему диммера.
Современные симисторы в регуляторах
Устаревший дизайн КУ208Г не всегда удобен для размещения в корпусе регулятора. Новая модель BT136 600E, у которой параметры включения и регулировки примерно такие же, позволит собрать более компактный симисторный регулятор мощности. С этой моделью из-за ее компактности получается значительно больше вариантов конструкции, из которых можно выбирать.
Симисторный регулятор мощности
Если самостоятельно изготавливается регулятор мощности, схема которого взята из какого-либо источника, обязательно сравните максимальные токи используемого ключа и нагрузки. В этих целях разделите паспортную мощность нагрузки на 220. Для надежной работы регулятора мощности на симисторе и не только полученное значение тока должно составлять 0,7 от номинального значения ключа, используемого в схеме. Поэтому для многих бытовых электроприборов КУ208Г окажется слабоват. Но его можно заменить более мощным, например ВТА 12.
Характеристики симистора BTA 12
Этот ключ со своими 12 амперами сможет надежно регулировать нагрузку до 1848 Вт с непродолжительным увеличением ее до 2000 Вт. Собранный регулятор мощности на симисторе этой модели, например, можно применить для управления электрическим чайником. Один из таких вариантов показан далее.
Регулятор на ключе-триаке BTA 12
При выборе схемы регулятора мощности
- коллекторного мотора постоянного тока,
- универсальных (тоже коллекторных) двигателей,
- пригодного для управления электродвигателя в каком-либо электрооборудовании,
рекомендуем обратить внимание на безопасность управления. Она обеспечивается гальванической развязкой в схеме регулятора
Ключ надежно развязывается от управляющего элемента, к которому прикасается пользователь. Для этого применяются схемотехнические решения с трансформаторами, а также оптронные электронные приборы. Примеры подобных схем показаны далее. В этих схемах управляющий элемент является частью контроллера.
Схемы работы симистора
Эффективный, надежный и безопасный регулятор мощности добавит многим вашим электроприборам новые потребительские свойства. За вами остается правильный выбор устройства при покупке или изготовление их без ошибок своими руками по выбранной схеме.
Схемы на основе симистора
Если по каким-то причинам нет возможности приобрести готовый регулятор мощности, то его вполне можно сделать своими руками. Заранее необходимо определиться, для какого электроприбора он будет изготовлен.
Эта схема довольно проста в сборке и не требует большого количества деталей. Такой регулятор можно применить для регулировки не только температуры паяльника, но и обычных ламп накаливания и светодиодных. К этой схеме можно подключать различные дрели, болгарки, пылесосы, шлифмашинки, которые изначально шли без плавной регулировки скорости.
Вот такой регулятор напряжения 220в своими руками можно собрать из следующих деталей:
- R1 — резистор 20 кОм, мощностью 0,25 Вт.
- R2 — переменный резистор 400−500 кОм.
- R3 — 3 кОм, 0,25 Вт.
- R4—300 Ом, 0,5 Вт.
- C1 C2 — конденсаторы неполярные 0,05 Мкф.
- C3 — 0,1 Мкф, 400 в.
- DB3 — динистор.
- BT139−600 — симистор необходимо подобрать в зависимости от нагрузки которая будет подключен. Прибор, собранный по этой схеме, может регулировать ток величиной 18А.
- К симистору желательно применить радиатор, так как элемент довольно сильно греется.
Схема проверена и работает довольно стабильно при разных видах нагрузки.
Существует еще одна схема универсального регулятора мощности.
На вход схемы подается переменное напряжение 220 В, а на выходе уже 220 В постоянного тока. Эта схема имеет в своем арсенале уже больше деталей, соответственно и сложность сборки повышается. На выход схемы возможно подключить любой потребитель (постоянного тока). В большинстве домов и квартир люди стараются поставить энергосберегающие лампы. Не каждый регулятор справится с плавной регулировкой такой лампы, например, тиристорный регулятор использовать нежелательно. Эта схема позволяет беспрепятственно подключать эти лампы и делать из них своего рода ночники.
Особенность схемы заключается в том, что при включении ламп на минимум все бытовые приборы должны быть отключены от сети. После этого в счетчике сработает компенсатор, и диск медленно остановится, а свет будет продолжать гореть. Это возможность собрать симисторный регулятор мощности своими руками. Номиналы деталей нужных для сборки, можно увидеть на схеме.
Еще одна занимательная схема, которая позволяет подключить нагрузку до 5А и мощностью до 1000Вт.
Регулятор собран на базе симистора BT06−600. Принцип работы этой схемы заключается в открытии перехода симистора. Чем больше элемент открыт, тем больше мощность поступает на нагрузку. А также в схеме присутствует светодиод, который даст знать, работает устройство или нет. Перечень деталей, которые понадобятся для сборки аппарата:
- R1 — резистор 3.9 кОм и R2 — 500 кОм своеобразный делитель напряжения, который служит для зарядки конденсатора С1.
- конденсатор С1- 0,22 мкФ.
- динистор D1 — 1N4148.
- светодиод D2, служит для индикации работы устройства.
- динисторы D3 — DB4 U1 — BT06−600.
- клемы для подключения нагрузки P1, P2.
- резистор R3 — 22кОм и мощностью 2 вт
- конденсатор C2 — 0.22мкФ рассчитан на напряжение не меньше 400 В.
Симисторы и тиристоры с успехом используются в качестве пускателей. Иногда необходимо запустить очень мощные тэны, управлять включением сварочного мощного оборудования, где сила тока достигает 300−400 А. Механическое включение и выключение с помощью контакторов уступает симисторному пускателю из-за быстрого износа контакторов, к тому же при механическом включении возникает дуга, которая также пагубно влияет на контакторы. Поэтому целесообразным будет использовать симисторы для этих целей. Вот одна из схем.
Все номиналы и перечень деталей указаны на Рис. 4. Достоинством этой схемы является полная гальваническая развязка от сети, что обеспечит безопасность в случае повреждения.
Схема регулятора
Давайте рассмотрим простой симисторный регулятор мощности, который можно использовать с любой нагрузкой. Управление фазово-импульсное, все компоненты традиционные для таких конструкций. Нужно применять такие элементы:
Непосредственно симистор, рассчитанный на напряжение 400 В и ток 10 А.
Динистор с порогом открывания 32 В.
Для регулировки мощности используется переменный резистор.
Ток, который протекает через переменный резистор и сопротивление, заряжает конденсатор с каждой полуволной. Как только конденсатор накопит заряд и напряжение между его пластинами будет 32 В, откроется динистор. При этом конденсатор разряжается через него и сопротивление на управляющий вход симистора. Последний при этом открывается, чтобы ток прошел к нагрузке.
Чтобы изменить длительность импульсов, нужно подобрать переменный резистор и пороговое напряжение динистора (но это постоянная величина). Поэтому придется «играть» с сопротивлением переменного резистора. В нагрузке мощность оказывается прямо пропорциональна сопротивлению переменного резистора. Диоды и постоянный резистор использовать не обязательно, цепочка предназначена для того, чтобы обеспечить точность и плавность регулировки мощности.
Трехфазный регулятор мощности своими руками
Из-за проблемы с электричеством люди все чаще покупают регуляторы мощности.
Не секрет, что резкие перепады, а также чрезмерно пониженное или повышенное напряжение пагубно влияют на бытовые приборы.
Для того чтобы не допустить порчи имущества, необходимо пользоваться регулятором напряжения, который защитит от короткого замыкания и различных негативных факторов электронные приборы.
Типы регуляторов
В наше время на рынке можно увидеть огромное количество различных регуляторов как для всего дома, так и маломощных отдельных бытовых приборов.
Существуют транзисторные регуляторы напряжения, тиристорные, механические (регулировка напряжения осуществляется при помощи механического бегунка с графитовым стержнем на конце). Но самым распространенным является симисторный регулятор напряжения. Основой этого прибора являются симисторы, которые позволяют резко среагировать на скачки напряжения и сгладить их.
Симистор представляет собой элемент, который содержит пять p-n переходов. Этот радиоэлемент имеет возможность пропускать ток как в прямом направлении, так и в обратном.
Эти компоненты можно наблюдать в различной бытовой технике начиная от фенов и настольных ламп и заканчивая паяльниками, где необходима плавная регулировка.
Принцип работы
Принцип работы симистора довольно прост. Это своего рода электронный ключ, который то закрывает двери, то открывает их с заданной частотой.
При открытии P-N перехода симистора он пропускает небольшую часть полуволны и потребитель получает только часть номинальной мощности.
То есть чем больше открывается P-N переход, тем больше мощности получает потребитель.
К достоинствам этого элемента можно отнести:
- Симисторы довольно долговечны, так как в них отсутствуют механические контакты.
- Из-за отсутствия механической составляющей отсутствует искрообразование.
- В моменты нулевого сетевого тока симистор может проводить коммутацию, что тем самым снижает количество помех и обеспечивает высокую точность работы схемы.
В связи с вышесказанными достоинствами симисторы и регуляторы на их основе используются довольно часто.
Распространенные модели
Существуют модели готовых регуляторов мощности. Одним из представителей является модель РМ-2. Довольно простая модель и недорогая модель. Цена колеблется от 1300 до 1500 р.
Прибор рассчитан на напряжение от 30 до 400 В. А также есть возможность использовать как в домашних условиях, так и на производстве.
Как правило, прибор применяют для регулировки температуры различного электронагревательного оборудования.
Следующей модификацией будет модель РМ 2 16А.
Задачей РМ 2 16 А, является изменение уровня освещения и управление вращением двигателей различного типа.
Входное напряжение не должно превышать 400 В, а нагрузка 16А. Цена этого аппарата может обойтись в 2300 рублей.
Модель РНЭ-1 нашла свое применение в бытовых условиях: для регулировки нагрева паяльника, изменение яркости ламп (использование в качестве диммера), а также с успехом можно подключить обогреватели и регулировать температуру. В конструкцию прибора входит защита от короткого замыкания, которая представлена в виде плавкого предохранителя. При чрезмерном перегреве срабатывает термозащита и регулятор останавливает подачу энергии к прибору. После остывания прибор вновь можно включить и эксплуатировать дальше. Небольшая цена является довольно весомым плюсом и составляет 1200 рублей.
Если покупатель обладает знаниями в области радиоэлектроники, то можно собрать регулятор тока своими руками, и модель NF будет лучшим выбором.
В комплект входят печатная плата из фольгированного стеклотекстолита, различные электронные компоненты.
Цена этой модели колеблется от 900 до 1100 рублей.
Схемы на основе симистора
Если по каким-то причинам нет возможности приобрести готовый регулятор мощности, то его вполне можно сделать своими руками. Заранее необходимо определиться, для какого электроприбора он будет изготовлен.
Зачастую при покупке обычного паяльника температура его настолько велика, что возможны отслоения дорожек на печатных платах, а также порча радиокомпонентов. Вот одна из схем регулятора мощности на симисторе.
Как собрать регулятор
Для сборки возьмем простейшую принципиальную схему. В этой схеме используется симистор VD2 – ВТВ 12-600В (600 – 800 В, 12 А), резисторы: R1 -680 кОм, R2 – 47 кОм, R3 – 1.5 кОм, R4 – 47 кОм. Конденсаторы: С1 – 0,01 мФ, С2 – 0,039 мФ.
Чтобы собрать такую схему своими руками, вам понадобится делать определенные действия в правильном порядке:
- Необходимо приобрести все детали с перечня представленного выше.
- Вторым этапом будет разработка печатной платы. При разработке следует учесть, что часть деталей будет выполнена навесным монтажом. А часть деталей установится непосредственно в плату.
- Создание платы начинается с прорисовки рисунка с расположением деталей и контактных дорожек между деталями. Затем рисунок переносят на заготовку платы. Когда рисунок перенесен на плату, то далее все идет по известной методике. Травление платы, сверление отверстий под детали, лужение дорожек на плате. Многие используют для получения рисунка платы современными компьютерными программами, такими как Sprint Layout, но если у вас их нет ничего страшного. В данном случае мы имеем небольшую схему. Её можно сделать вручную.
- Когда плата готова, вставляем в подготовленные отверстия необходимые радиодетали детали, укорачиваем кусачками длину контактов до необходимой и начинаем пайку. Для этого прогреваем паяльником место контакта на плате, подносим к нему припой, когда припой расплывётся по поверхности в точке контакта, убираем паяльник, даем охладиться припою. При этом все детали должны оставаться на местах, не двигаться. При пайке следует соблюдать меры безопасности. В первую очередь надо беречься от ожогов, их может причинить контакт с паяльником, или брызги раскаленного припоя или флюса. Следует иметь одежду, максимально защищающую все участки тела. А для защиты глаз, необходимо надеть защитные очки. Место пайки должно быть в проветриваемом помещении, поскольку в процессе работы могут появляться едкие газы.
- Заключительным этапом сборки будет размещения полученной платы в коробку. Какую выбрать коробку, это будет напрямую зависеть от типа вашего регулятора. В случае с нашей схемой будет достаточно коробки размером с пластмассовую розетку. Небольшое количество деталей, самая большая из них переменный резистор, занимают мало места, и помещаются в маленькое пространство.
- Последним шагом будет проверка и настройка прибора. Для этого понадобится измерительный прибор для контроля напряжения, и устройство для нагрузки, в нашем случае паяльник. Вращая ручку регулятора, надо исследовать, насколько плавно меняется напряжения на выходе. При необходимости можно нанести метки возле резистора регулировки.
На транзисторах
Сборки на транзисторах больше подходят для индуктивной нагрузки, ими можно регулировать обороты электродвигателей.
Простая схема
Данная сборка очень практичная — этот регулятор напряжения представляет собой простой блок питания, универсальный адаптер к радиоустройствам на разные напряжения (вольтаж). Собрать сможет даже пользователь с начальными познаниями и небольшим опытом.
Элементы:
- транзистор КТ815Г, можно и 817 Г;
- переменник на 10 кОм;
- резистор стандартный 0.125 Вт на 1 кОм
Спаять элементы можно без площадки, но покажем, как это сделано с ней. Создаем плату:
Пайка компонентов:
Транзистор, важно не перепутать его выводы (эмиттер и базу).
Резистор на 1 кОм.
Впаиваем с проводами переменник на 10 кОм. Можно применить и другой, припаять сразу, без них, если позволяет типоразмер.
Четыре вывода — к питанию, к выходам.
Подсоединяем к питанию, выход оснащаем светодиодом, подключаем нагрузку (лампу), моторчик, тот же светодиод (в нашем примере он). Двигаем регулятор — наблюдаем изменение напряжения.
Особенность: диапазон обслуживаемой мощность и ток нагрузки ограничены предельными характеристиками транзистора — примерно половина 1 Ампера. Для увеличения диапазона такого регулируемого стабилизатора надо брать транзисторы КТ805, 819.
Другие варианты маломощных транзисторных схем
С 2 деталями: транзистором и переменником. Алгоритм элементарный: последний указанный элемент индуцирует (отпирает) первый. Чем ниже номинал настроечного резистора, тем более плавная регулировка. Это вариант для маломощной нагрузки, например, для вентиляторов, слабых электромоторчиков, светодиодов. Транзистор нагревается сильно, поэтому радиатор желательный.
Мощная сборка
Опишем особо мощный регулятор для нагрузки в несколько кВт. Тут ток на нагрузку идет также через симистор, но управляется все через каскад транзисторов. Переменником настраивается ток, поступающий в базу первого транз. (маломощного), а тот посредством коллекторно-эмиторного перехода осуществляет управление базой уже мощного транз., который реализует открывание/закрывание симистора. Так создается возможность очень плавной настройки огромных токов на нагрузке.
Как работает фазовый регулятор
Главную роль в работе фазового регулятора играет симистор. Он представляет собой нелинейный ключ на основе полупроводника. Данный элемент был получен благодаря усовершенствованию тиристора. Главное отличие состоит в том, что этот полупроводниковый ключ в открытом состоянии пропускает ток не в одном, а в двух направлениях. Это свойство дает симисторам возможность применения в цепях с переменным током, так как на них никак не влияет полярность напряжения, которая постоянно меняется в данных цепях.
Вам это будет интересно Пускатель звезда треугольник
Наличие нового свойства не означает отсутствие старого, характерного и для симисторов, и для тиристоров. Даже когда электрод управления отключен, проводимость всего элемента активна. Момент, когда элемент закрыт, наступает только тогда, когда переменный ток находится в положении ноль (то есть разность потенциалов на двух других контактах будет также равна нулю).
Обратите внимание! Еще одно полезное свойство применения симистора в качестве основного элемента — подавление помех на фазе при закрытии элемента. Это намного проще транзисторного регулятора, который также умеет уменьшать шумы входного сигнала
Изменения сигнала
Все эти характеристики позволяют конструкции на основе симисторов осуществлять фазное изменение в сигнале. Каждый полупериод проводимость отключается, а время между закрытием и открытием прибора срезает часть периода. Сигнал из-за этого становится пилообразной формы. Путем изменения формы сигнала и происходит фазовое управление мощностью тока.
Важно! Симистор никак не влияет на амплитуду напряжения, поэтому название «регулятор напряжения» неправильно