Регулирование частоты вращения двигателя постоянного тока независимого возбуждения дпт нв

Торможение электрического двигателя постоянного тока

Для торможения  электроприводов с ДПТ также есть три варианта: торможение противовключением, динамическое и рекуперативное. Первое происходит за счет изменения полярности тока в обмотке якоря и напряжения. Второе происходит благодаря замыканию накоротко (через резистор) обмотки якоря. Электрический двигатель при этом работает как генератор, преобразуя в электрическую, запасенную им  механическую энергию, которая выделяется в виде тепла. Это торможение сопровождается мгновенной остановкой двигателя.

Последнее происходит, если электрический мотор, включенный в сеть, вращается со скоростью, которая выше скорости холостого хода. ЭДС обмотки двигателя в этом случае, превышает значение напряжении я в сети, что приводит к изменению на противоположное направление тока в обмотке мотора, т.е. двигатель отдает в сеть энергию, переходя в режим генератора. Одновременно возникает тормозной  момент на валу.

Принцип работы шагового двигателя

Состоит это электромеханическое устройство из статора, где размещены катушки возбуждения, и вращающейся части с постоянными магнитами или обмотками. Такая конструкция ротора обеспечивает его фиксацию после отработки управляющей команды.

На статоре расположено несколько обмоток. При подаче напряжения на катушку, под воздействием магнитного поля ротор поворачивается на определенный угол в соответствии с пространственным положением обмотки. При ее обесточивании и подаче управляющего сигнала на другую катушку вращающаяся часть электродвигателя занимает другую позицию. Каждый поворот вала соответствует углу шага. При обратной последовательности подачи напряжения на катушки ротор вращается в противоположном направлении.

Для поворота ротора на меньший угол одновременно включаются 2 обмотки. Количество шагов ограничено и зависит от числа полюсов статора электромотора. Для обеспечения плавного вращения ротора на катушки статора подают разные токи, разность которых определяет положение ротора. Такой способ управления позволяет снизить дискретность и увеличить количество шагов до 400.

К числу недостатков шаговых двигателей можно отнести довольно низкую скорость, пропуск шагов при высокой (выше расчетной) нагрузке на валу, снижение момента при высокой частоте вращения и большое время разгона.

Конструкция якоря

Рисунок 2. Диск (а) и сегмент (б) стали якоря

Сердечник якоря набирается из штампованных дисков (рисунок 2, а) электротехнической стали толщиной 0,5 мм. Диски насаживаются либо непосредственно на вал (при Dа ≤ 75 см), либо набираются на якорную втулку (Dа ≥ 40 см), которая надевается на вал. Сердечники якоря диаметром 100 см и выше составляют из штампованных сегментов (рисунок 2, б) электротехнической стали. Сегменты набираются на корпус якоря, который изготовляется обычно из листового стального проката и с помощью втулки соединяется с валом. Для крепления к корпусу якоря сегменты отштамповываются с гнездами для ласточкиных хвостов либо с выступающими ласточкиными хвостами (рисунок 3).

Рисунок 3. Крепление сегментов стали якоря с помощью ласточкиных хвостов

1 – вентиляционные распорки; 2 – лист стали якоря; 3 – стяжной болт; 4 – ребро ступицы якоря; 5 – лист ступицы якоря

В сердечнике якоря в зависимости от выбранной системы вентиляции могут быть аксиальные или радиальные каналы. Аксиальные каналы образуются выштампованными в дисках сердечника отверстиями. Радиальные каналы создаются с помощью вентиляционных распорок или ветрениц, посредством которых сердечник якоря (рисунок 4) подразделяется на отдельные пакеты 1 шириной 40 – 70 мм и каналы 2 между ними шириной около 5 – 10 мм. Ветреницы приклепываются или привариваются к крайним листам пакетов. Сердечник якоря крепится с помощью нажимных плит или фланцев 6.

Рисунок 4. Сердечник якоря с обмоткой

В пазы на внешней поверхности якоря укладываются катушки обмотки якоря. Выступающие с каждой стороны из сердечника якоря (рисунок 4) лобовые части обмотки 3 имеют вид цилиндрического кольца и своими внутренними поверхностями опираются на обмоткодержатели 5, а по внешней поверхности крепятся проволочными бандажами 7. Обмотка соединяется с коллектором 4.

Воздушный зазор между полюсами и якорем в малых машинах менее 1 мм, а в крупных – до 1 см.

Электромагнитный момент и электромагнитная мощность

При тех же предположениях, что и при определении Eа, электромагнитный момент машины

Если выразить сумму в этом выражении, как и выше, через Bср и Фδ, то в окончательной форме получим

причем постоянный для каждой данной машины коэффициент cм определяется равенством (7).

Сделанные выше замечания о влиянии формы кривой поля, шага обмотки, скоса пазов и сдвига щеток с нейтрали действительны и для данного случая. Момент в системе СИ получается в ньютон-метрах (Н × м). При необходимости выразить момент в килограмм-метрах (кгс × м) надо результат разделить на 9,81.

Отметим, что выражение (8) с учетом равенства (7) можно представить также в виде

(9)

откуда следует, что момент пропорционален потоку всех полюсов (2p × Фδ) и току всех проводников якоря

Из соотношений (6) и (8) вытекают также два равноценных выражения для электромагнитной мощности:

При выводе формул э. д. с. и момента предполагалось, что проводники обмотки расположены на гладкой поверхности якоря. В действительности проводники находятся в пазах, где магнитная индукция ослаблена. Однако полученные формулы справедливы и в этом случае, так как э. д. с. и момент определяются значением потока, сцепляющегося с секциями обмотки. При расположении проводников в пазах механические усилия действуют главным образом не на проводники обмотки, а на зубцы якоря.

Источник



Бесколлекторный электродвигатель постоянного тока. Общие сведения и устройство прибора

Контроллеры электродвигателей такого типа зачастую питаются благодаря постоянному напряжению, отчего и получили своё название. В англоязычной технической литературе вентильный электродвигатель называют PMSM или BLDC.

Бесколлекторный электродвигатель был создан в первую очередь для оптимизации любого электродвигателя постоянного тока в целом. К исполнительному механизму такого устройства (особенно к высокооборотному микроприводу с точным позиционированием) ставились очень высокие требования.

Это, пожалуй, и обусловило использование таких специфических приборов постоянного тока, бесколлекторные трёхфазные двигатели, также называемые БДПТ. По своей конструкции они практически идентичны синхронным двигателям переменного тока, где вращение магнитного ротора происходит в обычном шихтованном статоре при наличии трёхфазных обмоток, а количество оборотов зависит напряжения и нагрузок статора. Исходя из определённых координат ротора, происходит переключение разных обмоток статора.

обмотки статора выполняют функцию фиксирующего элемента

Если одна из обмоток будет выключена, то будет измеряться и в дальнейшем обрабатываться тот сигнал, который был наведён, однако, такой принцип работы невозможен без профессора обработки сигналов. А вот для реверса или торможения такого электродвигателя мостовая схема не нужна – достаточно будет подачи в обратной последовательности управляющих импульсов на обмотки статора.

В ВД (вентильном двигателе) индуктор в виде постоянного магнита расположен на роторе, а якорная обмотка – на статоре. Исходя из положения ротора, формируется напряжение питания всех обмоток электродвигателя. При использовании в таких конструкциях коллектора, его функцию будет выполнять в вентильном двигателе полупроводниковый коммутатор.

Основное отличие синхронного и вентильного двигателей заключается в самосинхронизации последнего при помощи ДПР, что обусловливает пропорциональную частоту вращения ротора и поля.

Чаще всего бесколлекторный электродвигатель постоянного тока находит применение в следующих сферах:

  • морозильное или холодильное оборудование (компрессоры);
  • электропривод;
  • системы нагрева воздуха, его кондиционирования или вентиляции.

Статор

Это устройство имеет классическую конструкцию и напоминает такой же прибор асинхронной машины. В состав входит сердечник из медной обмотки (уложенной по периметру в пазы), определяющей количество фаз, и корпус. Обычно синусной и косинусной фаз достаточно для вращения и самозапуска, однако, часто вентильный двигатель создают трёхфазным и даже четырёхфазным.

Электродвигатели с обратной электродвижущей силой по типу укладки витков на обмотке статора делятся на два типа:

  • синусоидальной формы;
  • трапецеидальной формы.

В соответствующих видах двигателя электрический фазный ток меняется также по способу питания синусоидально или трапецеидально.

Ротор

Самыми распространёнными и дешёвыми для изготовления ротора считаются ферритовые магниты, но их недостатком является низкий уровень магнитной индукции, поэтому на замену такому материалу сейчас приходят приборы, созданные из сплавов различных редкоземельных элементов, поскольку могут предоставить высокий уровень магнитной индукции, что, в свою очередь, позволяет уменьшить размер ротора.

ДПР

Датчик положения ротора обеспечивает обратную связь. По принципу работы устройство делится на такие подвиды:

  • индуктивный;
  • фотоэлектрический;
  • датчик с эффектом Холла.

Последний тип получил наибольшую популярность благодаря своим практически абсолютным безынерционным свойствам и способности избавляться по положению ротора от запаздывания в каналах обратной связи.

Система управления

Система управления состоит из силовых ключей, иногда также из тиристоров или силовых транзисторов, включающих изолированный затвор, ведущих к сбору инвертора тока либо инвертора напряжения. Процесс управления этими ключами реализуется чаще всего путём использования микроконтроллера, требующего для управления двигателем огромного количества вычислительных операций.

Лекция 11

Замкнутые схемы управления АЭП с ДПТВопросы1) Замкнутые схемы управления электроприводов с двигателями постоянного тока по скорости2) Регулирование (ограничение) тока и момента двигателя постоянного тока с помощью нелинейной отрицательной обратной связи по току3) Замкнутая схема электрического привода с двигателями постоянного тока с обратными связями по скорости и току4) Замкнутые электропривода с подчиненным регулированием координат

  1. Замкнутые схемы управления электроприводов с

двигателями постоянного тока по скороститго.сз.свхз.сувхUусвхy2 Регулирование (ограничение) тока и момента двигателя постоянного тока с помощью нелинейной отрицательной обратной связи по токушо.тШо.тз.т отсо.т.отсо.твхз.свхyпз.т

  1. Замкнутая схема электрического привода с двигателями постоянного тока с обратными связями по скорости и току

отсотс

  1. Замкнутые электропривода с подчиненным регулированием координат

з.со.с1lо.с1о.с2о.с1о.со.с2з.тЛЕКЦИЯ 12Замкнутые схемы управления электроприводов сдвигателями переменного токаВопросы

  1. Замкнутая схема управления асинхронного электропривода, выполненного по системе «тиристорный регулятор напряжения—асинхронный двигатель» (ТРН—АД)
  2. Замкнутый электрический привод с частотным управлением асинхронного двигателя
  3. Замкнутая схема импульсного регулирования скорости асинхронного двигателя с помощью резистора в цепи ротора

1 Замкнутая схема управления асинхронного электропривода, выполненного по системе «тиристорный регулятор напряжения—асинхронный двигатель» (ТРН—АД)yтг з.с3.Cггуз.стгс3.С2С1 С2ТГтгС2с3.С2 Замкнутый электрический привод с частотным управлением асинхронного двигателя3 Замкнутая схема импульсного регулирования скорости асинхронного двигателя с помощью резистора в цепи ротора3.Co.cyЗ.С ОС2yЛЕКЦИЯ 13Электромашинные преобразователи частотыВопросы

  1. Законы частотного регулирования
  2. Электромашинные преобразователи частоты с использованием синхронного генератора
  3. Электромашинный асинхронный преобразователь частоты
  4. Вентильно-электромашинный преобразователь частоты
    1. Законы частотного регулирования

1 ?o=2?f1 11111 М= kФI2cos?2(U1/f1) =const(U1/f12)=constMc=const; Pc=const;

    1. Электромашинные преобразователи частоты с

использованием синхронного генератораU2f2=constном4

    1. Электромашинный асинхронный преобразователь частоты

21М2М2121221.212?. 22

    1. Вентильно-электромашинный преобразователь частоты

ЛЕКЦИЯ 14Статические преобразователи частотыВопросы

  1. Преобразователи частоты с непосредственной связью
  2. Статический преобразователь частоты с промежуточным звеном постоянного тока
  3. Преобразователь частоты с инвертором, работающим по принципу широтно-импульсной модуляции (ШИМ)
      1. Преобразователи частоты с непосредственной связью

Статический преобразователь частоты с промежуточнымзвеном постоянного тока

  1. Преобразователь частоты с инвертором, работающим по принципу широтно-импульсной модуляции (ШИМ)

,Лекция 15Энергосбережение в АЭПВопросы

  1. Общие вопросы энергосбережения
  2. Способы повышения КПД и коэффициента мощности АЭП
  3. Снижение потерь энергии в переходных режимах
  4. Энергосбережение в регулируемом АЭП
    1. Общие вопросы энергосбережения

ГОСТ Р 51379—99. Энергосбережение. Энергетический паспорт промышленного потребителя топливно-энергетических ре­сурсов.ГОСТ Р 31380—99. Энергосбережение. Методы подтверждения соответствия по­казателей энергетической эффективности энергопотребляющей продукции их нор­мативным значениям. Общие требования.ГОСТР 51387—99. Энергосбережение. Нормативно-методическое обеспечение.ГОСТР 51541-99. Энергосбережение. Энергетическая эффективность. Состав показателей.

    1. Способы повышения КПД и коэффициента мощности АЭП

22эппууэдмпСпособы повышения КПД и коэффициента мощности ЭП:

  • обеспечение нагрузки близкой к номинальной (в том числе путем замены малонагруженного (менее 40% от номинальной мощности) двигателя на двигатель меньшей мощности (должно быть экономически обоснованно));
  • выбор высокочастотных электродвигателей.
    1. Снижение потерь энергии в переходных режимах

11c,c,, 22ном

    1. Энергосбережение в регулируемом АЭП

(номном22.1эл2

Для чего может быть нужен электродвигателю частотный преобразователь

Применение частотных преобразователей позволяет снизить затраты на электроэнергию, расходы на амортизацию двигателей и оборудования. Их возможно использовать для дешевых двигателей с короткозамкнутым ротором, что снижает издержки производства.

Многие электродвигатели работают в условиях частой смены режимов работы (частые пуски и остановки, изменяющуюся нагрузку). Частотные преобразователи позволяют плавно запускать электродвигатель и снижают максимальный пусковой момент и нагрев оборудования

Это важно, например, в грузоподъемных машинах и позволяет снизить негативное влияние резких пусков, а также исключить раскачивание груза и рывки при остановке

При помощи ПЧ можно плавно регулировать работу нагнетательных вентиляторов, насосов и позволяет автоматизировать технологические процессы (применяются в котельных, на горнодобывающих производствах, в нефтедобывающей и нефтеперерабатывающей сферах, на водопроводных станциях и других предприятиях).

Использование частотных преобразователей в транспортерах, конвейерах, лифтах позволяет увеличить срок службы их узлов, так как снижает рывки, удары и другие негативные факторы при пусках и остановке оборудования

Они могут плавно увеличивать и уменьшать частоту вращения двигателя, осуществлять реверсивное движение, что важно для большого количества высокоточного промышленного оборудования

Преимущества частотных преобразователей:

  1. Снижение затрат на электроэнергию: за счет снижения пусковых токов и регулирования мощности двигателя исходя из нагрузки;
  2. Увеличение надежности и долговечности оборудования: позволяет продлить срок эксплуатации и увеличить срок от одного технического облуживания до другого;
  3. Позволяет внедрить внешний контроль и управление оборудованием с удаленных компьютерных устройств и способность встраивания в системы автоматизации;
  4. Частотные преобразователи могут работать с любой мощностью нагрузки (от одного киловатта до десятков мегаватт);
  5. Наличие специальных компонентов в составе частотных преобразователей позволяет защитить от перегрузок, обрыва фазы и короткого замыкания, а также обеспечить безопасную работу и отключение оборудования при возникновении аварийной ситуации.

Конечно, глядя на такой список достоинств можно задаться вопросом, почему бы их не использовать для всех двигателей на предприятии? Ответ тут очевиден, увы, но это высокая стоимость частотников, их монтаж и наладка. Не каждое предприятие может позволить себе эти расходы.

Особенности и схема подключения частотного преобразователя к разным типам электродвигателей

Схема работы устройства плавного пуска, его назначение и конструкция

Преобразователи напряжения с 12 на 220 вольт

Устройство, виды и принцип действия асинхронных электродвигателей

Что такое импульсный блок питания и где применяется

Что такое контактор: назначение, принцип работы, виды, схемы подключения

Современное применение и перспективы

Существует немало устройств, для которых увеличение времени безотказной работы имеет важнейшее значение. В подобном оборудовании применение БДКП всегда оправданно, несмотря на их сравнительно высокую стоимость. Это могут быть водяные и топливные насосы, турбины охлаждения кондиционеров и двигателей и т. д. Бесщёточные моторы используются во многих моделях электрических транспортных средств

В настоящее время на бесколлекторные двигатели всерьёз обратила внимание автомобильная промышленность

БДКП идеально подходят для малых приводов, работающих в сложных условиях или с высокой точностью: питатели и ленточные конвейеры, промышленных роботы, системы позиционирования. Существуют сферы, в которых бесколлекторные двигатели доминируют безальтернативно: жёсткие диски, насосы, бесшумные вентиляторы, мелкая бытовая техника, CD/DVD приводы. Малый вес и высокая выходная мощность сделали БДКП также и основой для производства современных беспроводных ручных инструментов.

Подключение к однофазным и трехфазным источникам питания

По типу питающей сети электродвигатели переменного тока классифицируют на одно- и трехфазные.

Подключение асинхронных однофазных двигателей осуществляет очень легко – для этого достаточно подвести к двум выходам на корпусе фазный и нулевой провод однофазной 220В сети. Синхронные двигатели тоже можно запитывать от сети данного типа, однако подключение немного сложнее – необходимо соединить обмотки ротора и статора так, чтобы их контакты однополюсного намагничивания были расположены напротив друг друга.

Подключение к трехфазной сети представляется несколько более сложным

В первую очередь, следует обратить внимание, что клеммная коробка содержит 6 выводов – по паре на каждую из трех обмоток. Во-вторых, это дает возможность использовать один из двух способов подключения («звезда» и «треугольник»). Неправильное подключение может привести в поломке двигатель от расплавления обмоток статора

Неправильное подключение может привести в поломке двигатель от расплавления обмоток статора.

Главное функциональное отличие «звезды» и «треугольника» заключается в различном потреблении мощности, что сделано для возможности включения машины в трехфазные сети с различным линейным напряжением — 380В или 660В. В первом случае следует соединять обмотки по схеме «треугольник», а во втором – «звездой». Такое правило включения позволяет в обоих случаях иметь напряжение 380В на обмотках каждой фазы.

На панели подключения выводы обмоток располагаются таким образом, чтобы перемычки, используемых для включения, не перекрещивались между собой. Если коробка выводов двигателя содержит только три зажима, значит, он рассчитан для работы от одного напряжения, которое указано в технической документации, а обмотки соединены между собой внутри устройства.

Классификация электродвигателей

Электрические машины можно разбить на две группы, обращая внимание на особенности образования момента вращения: магнитоэлектрические и гистерезисные. Вторая группа применяется редко, у них вращение происходит за счёт перемагничивания ротора

Статор — понятие и принцип действия

Магнитоэлектрические моторы подразделяются по роду тока на модели:

  • постоянного тока;
  • пульсирующего тока;
  • переменного тока;
  • универсальные.

Универсальными моторы называются, потому что могут потрeбллять для работы, как постоянный, так и переменный ток.

Двигатели постоянного тока

Несмотря на то, что такие моторы могут питаться, как постоянным, так и переменным током, в основном на их обмотки подают постоянное напряжение.

Внимание! Способ переключения фаз позволяет разделять ДПТ на коллекторные и вентильные. Присутствие обратных связей по току, напряжению и скорости допускает наличие регулируемого электропривода

Коллекторные машины имеют проблемное место: щёточно-коллекторный узел (ЩКУ), который создаёт сложность в облуживании и некоторую ненадёжность в работе.

Вентильные электромоторы лишены коллектора, фазы переключает инвертор (электронный блок). У таких машин возможна обратная связь через датчик позиции ротора.

Двигатели пульсирующего тока

Подобные аппараты используются на электровозах. Питание мотора осуществляется от пульсирующего тока. От ДПТ их конструктивно отличает следующее:

  • присутствие компенсационной обмотки;
  • увеличенное количество полюсных пар;
  • шихтованные допполюса;
  • шихтованные включения в каркас.

К сведению. Такой ток получается в результате сложения двух токов: постоянного и переменного, потому имеет обе составляющие. Он не меняет направления, а пульсирует, кратковременно меняя значения от максимума до минимума и не во всех случаях до нуля.

Двигатели переменного тока (ПТ)

По способу работы такие машины делятся на двигатели: синхронные и асинхронные.

Почему синхронные? Потому что скорость ротора и скорость вращающегося в статоре МП абсолютно совпадают. У асинхронных моторов скорость вращения МП в статоре выше, чем у ротора.

Универсальный коллекторный электродвигатель (УКД)

Такой тип применяется в электроинструментах: это отрезная машинка, дрель, триммер и др. Незаменим там, где нужны высокие обороты (выше 3000 об./мин.), маленькие размеры и небольшой вес. Двигатель работает от обоих видов тока и обладает последовательно включённой обмоткой возбуждения. В электронную схему входит линейный преобразователь напряжения.

Внимание! При использовании постоянного тока напряжением 220В обмотка возбуждения подключается полностью, при переменном токе и аналогичном напряжении включение частичное

Синхронный электродвигатель возвратно-поступательного движения

Принцип действия электродвигателя заключается в том, что на штоке, который движется, установлены магниты постоянной природы. В корпус мотора вмонтирован магнитопровод с катушками, на которые подаётся ПТ. Катушки установлены так, что создаваемое ими МП заставляет двигаться шток туда-сюда.

Плюсы и минусы электродвигателя

Преимуществ перед ДВС у электродвигателя много:

  • малый вес и достаточно компактные размеры. К примеру, инженеры Yasa Motors разработали мотор весом 25 кг, который может выдавать до 650 Нм;
  • долговечность, простая эксплуатация;
  • экологичность;
  • максимальный крутящий момент доступен уже с 0 об/мин;
  • высокий КПД;
  • нет необходимости в коробке передач. Хотя, по мнению специалистов, электромобилю она не помешает;
  • возможность рекуперации.

Как выглядит роторОбратите внимание! Существенных недостатков у самого электродвигателя нет. Но есть большие сложности в его питании

Несовершенство источников тока не дают пока что массово использовать электродвигатели в автомобилестроении.

Виды двигателей постоянного тока

К концу 19 века уже началась эксплуатация электрических машин постоянного тока: генераторов и моторов. Причем оба вида не отличаются конструктивно и могли применяться как для выработки электроэнергии, так и для производства работ.

Коллекторный мотор

Принцип вращения рамки с током в поле постоянного магнита наиболее ярко реализован в коллекторных электродвигателях. Такие электродвигатели работают как от постоянного, так и от переменного тока. Впервые судно с двигателем постоянного тока запустил Б.С. Якоби по реке Неве в 1838г.

Такой двигатель состоит из неподвижной части (статор), на которой устанавливаются магниты для маломощных двигателей или катушки из ферримагнитных сталей, и обмотки с медным проводом для мощных электрических машин.

Якорь МПТ собран из пластин электротехнической стали, изолированных от вала и друг от друга для уменьшения вихревых токов. В пазы цилиндра укладывается витки провода из меди разного сечения в зависимости от токов и выбранной схемы (петлевая, волновая). Концы проводов выводятся и ввариваются (впаиваются) в ламели коллектора.

Коллектор состоит из медных изолированных пластин (ламелей) закрепленных по окружности, изолированных друг от друга и корпуса якоря. По ним перемещаются притертые подпружиненные щетки, закрепленные в щеткодержателе, для последовательной подачи тока в обмотки якоря. При подаче напряжения на щетки, якорь начинает вращаться и двигатель постоянного тока выходит в заданный режим.

Универсальный коллекторный мотор

Дальнейшее развитие коллекторных ДПТ позволило использовать их при работе от источников переменного тока. Для этого шихтуется не только якорь, но и цилиндр статора набирается из пластин электротехнической стали, а обмотки возбуждения соединяются последовательно с якорными. Одновременная смена полярности на них при прохождении переменного тока не меняет направление вращения вала двигателей.

Основное отличие — шихтованные статор и якорь делают магнитный поток стабильным и не создают вихревых токов (меньше греются). В остальном универсальный двигатель мало чем отличается от обычного коллекторного.

Вентильно-индукторные двигатели

Такие электромоторы иногда называются бесщёточными или безколлекторными. Суть такой конструкции в том, что ротор имеет зубчатое строение, собранное из постоянных магнитов, а обмотки возбуждения размещаются на зубчатых полюсах статора.

Переключением полюсов (катушек) занимается встроенный контроллер, за обратную связь, контролирующую положение якоря (ротора), отвечает датчик Холла. При включении пары катушек магнит на роторе движется к ней, затем следующая пара получает питание. Скорость вращения определяется частотой переключения катушек — чем выше частота, тем выше скорость.

Недостатком такой конструкции является пульсирующий крутящий момент. Плюсы: нет коллектора и щеток, простая конструкция, хорошее управление скоростью и малые габариты.

Безколлекторный с независимым возбуждением

Конструкция ротора этого двигателя собрана из двух зубчатых пакетов из магнитной стали на общей оси. Вершины зубцов пакета смещены друг относительно друга на 120°. Пакеты отстоят друг от друга на расстоянии, а зубцы одного совпадают с впадинами другого, таким образом, что суммарный магнитный поток ротора равен нулю.

Размещенная на статоре обмотка возбуждения тоже распределена со смещением в 120°.  Собранный из электротехнической стали статор имеет размер такой, чтобы его магнитное поле перекрывало оба пакета магнитов ротора.

Поочередное включение катушек ротора создает магнитное поле в обоих магнитных блоках и ротор начинает плавно вращаться. Изменяя частоту и направление переключения секций обмотки возбуждения, а также силу тока в них, можно получить бесконтактный реверс, линейный крутящий момент и плавное изменение скорости.

Кроме этих достоинств есть еще отсутствие магнитов и графитовых щеток с коллектором. К недостаткам можно отнести сложность конструкции двигателей и питание обмоток от электронного преобразователя.

Несомненными достоинствами двигателей постоянного тока можно отнести:

  • уровень плавного регулирования скорости достигает 10000 об/мин;
  • легкость управления скоростью за счет напряжения, а крутящего момента — током якоря;
  • за счет обратной связи можно поддерживать хороший момент на малых оборотах.

Их недостатков можно отметить обязательное наличие преобразователя переменного тока в постоянный и сложность конструкции некоторых видов двигателей (коллектор со щетками, сложный якорь).

Преимущества и недостатки

Одновременная смена полярности в статоре и роторе обеспечит электродвигателю одно и то же направление силы Лоренца в течение всего времени воздействия переменного напряжения. Это расширяет полезные свойства двигателя, работающего на пт. Однако на постоянном токе сердечники дпт могут работать в режиме насыщения, обеспечивая при взаимодействии ротора и статора максимальную силу.

В этом заключается главное преимущество дпт. На переменном напряжении индуктивность ротора и статора не позволит получить нормальный режим работы с аналогичными по силе магнитными полями.

А вот недостаток дпт по сути только один — это коллектор. Самое худшее в электротехнике — это контакты. Большинство проблем и неисправностей обусловлено именно этими деталями. А коллектор — это и есть контакты, много контактов. Причем колектору присущи следующие недостатки:

Коммутация индуктивной нагрузки, которой является каждая рамка. В результате на щетках появляется искрение, которое при определенных условиях (оборотах и мощности) развивается в круговой огонь на коллекторе. Это недопустимо опасный режим, который быстро портит дпт.


Круговой огонь на коллекторе
Круговой огонь на коллекторе

  • Истирание щеток создает угольную пыль, которая проникает повсюду и увеличивает вероятность замыканий и неисправностей.
  • Щетки ограничивают рабочий ресурс дпт и должны регулярно проверяться и заменяться.


Узел коллектора дпт, загрязненный палью от истирающихся щеток

Устранить недостатки дпт путем изменения его конструкции стало возможным только с появлением полупроводниковых ключей, запираемых при пт. Но при этом получается новый тип двигателя, который часто именуется шаговым. Применение электромагнитов в роторе и статоре все равно не избавляет от контактов. Для питания рамок ротора нужны те же щетки, но уже не коллектор, а кольца. Полупроводниковый коммутатор в цепи каждой рамки подключает ее к кольцам, и рамка поворачивается. Скорость вращения вала в таком двигателе зависит и от напряжения, и от работы коммутаторов.

От колец в шаговом двигателе можно отказаться, если ротор сделать на основе постоянного магнита, а рамки с полупроводниковыми коммутаторами разместить на статоре. По сути, получается синхронная машина пт, в которой статор с коммутаторами создает вращающееся магнитное поле. Это наиболее функциональное и современное техническое решение. Оно позволяет получить наибольший крутящий момент применительно к габаритам движков. Но в принципе, шаговые двигатели, так же как и еще одна разновидность дпт — униполярные электродвигатели, — это уже совсем другая история…

Управление

Не трудно понять, что если изменить полярность напряжения, то направление вращения якоря также изменится. Это позволяет легко управлять электромотором, манипулируя полярностью щеток.

Механическая характеристика

Рассмотрим график зависимости частоты от момента силы на валу. Мы видим прямую с отрицательным наклоном. Эта прямая выражает механическую характеристику электродвигателя постоянного тока. Для её построения выбирают определённое фиксированное напряжение, подведённое для питания обмоток ротора.


Примеры механических характеристик ДПТ независимого возбуждения

Регулировочная характеристика

Такая же прямая, но идущая с положительным наклоном, является графиком зависимости частоты вращения якоря от напряжения питания. Это и есть регулировочная характеристика синхронного двигателя.

Построение указанного графика осуществляется при определённом моменте развиваемом ДПТ.


Пример регулировочных характеристик двигателя с якорным управлением

Благодаря линейности характеристик упрощается управление электродвигателями постоянного тока. Поскольку сила F пропорциональна току, то изменяя его величину, например переменным сопротивлением, можно регулировать параметры работы электродвигателя.

Регулирование частоты вращения ротора легко осуществляется путём изменения напряжения

В коллекторных двигателях с помощью пусковых реостатов добиваются плавности увеличения оборотов, что особенно важно для тяговых двигателей. Это также один из эффективных способов торможения

Мало того, в режиме торможения синхронный электродвигатель вырабатывает электрическую энергию, которую можно возвращать в энергосеть.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: