Как проверить фоторезистор мультиметром

Виды

Вообще все фотодатчики разделены на две основные группы:

  1. Детали, обладающие внутренним фотоэффектом.
  2. Детали с внешним фотоэффектом.

Их отличает друг от друга технология производства, а если быть точнее — сам состав фоторезистивного слоя.

Если в первых при изготовлении применены чистейшие химические составляющие, без посторонних примесей. Таким образом, у датчика меняются характеристики, фоторезистор практически не реагирует на видимый свет, но хорошо работает в инфракрасном диапазоне.

То вторые, наоборот, содержат примеси в полупроводниковом веществе. За счет этого расширяется спектр чувствительности в зоне видимого света и даже захватывает инфракрасный диапазон (тепловые лучи).

Хотя по принципу срабатывания и как подключить эти два вида не отличаются — внутреннее сопротивление уменьшается с увеличением интенсивности падающего на них светового потока.

Собственно это свойство помогает при монтаже плат с фотодатчиками. Вопрос как проверить фоторезистор решается проверкой его сопротивления мультиметром. В рабочем элементе должно быть большее сопротивление при отсутствии освещения. Если на его чувствительный элемент подать свет, то сопротивление моментально снизится до нескольких кОм.

Что такое фоторезистор, принцип работы и область применения

В электротехнике используется огромное количество различных элементов, и далеко не последнее место среди них занимает сопротивление особого рода – фоторезистор. В этой статье я расскажу, что это такое, а также где до сих пор активно используются эти элементы. Итак, начнем.

Что такое фоторезистор, принцип работы и область применения

Определение, исполнение и изображение на схемах

Итак, для начала давайте дадим определение. Фоторезистор — это полупроводниковый прибор, сопротивление (проводимость) которого изменяется в зависимости от уровня освещенности чувствительной части изделия.

Что такое фоторезистор, принцип работы и область применения

На выше представленной фотографии показан наиболее распространенный вариант исполнения, но встречаются модели в специальных защитных кожухах с прозрачной верхней частью.

А вот таким образом такой элемент обозначается на схемах:

yandex.ru

Принцип действия

Теперь давайте узнаем каков принцип действия у данного радиоэлемента.

Между двумя токопроводящими электродами размещается полупроводник. В том случае если свет не попадает на полупроводник, то его оммическое сопротивление имеет высокое значение (до нескольких МОм). Как только на полупроводник попадает свет, его сопротивление начинает снижаться, то есть проводимость увеличивается.

yandex.ru

Для производства полупроводящего слоя могут использоваться следующие материалы: сульфид Кадмия, сульфид Свинца, Селенит Кадмия и т.п. От того какой материал был применен для производства полупроводника будет зависеть его спектральная характеристика.

Иначе говоря диапазон длин волн, при освещении которыми будет происходить корректное изменение сопротивления.
Именно по этой причине при выборе резистора важно понимать, для работы в каком спектре он предназначен.
Спектральные характеристики материалов таковы:

yandex.ru

Очень часто возникает вопрос: какова полярность фоторезистора? Так вот у данного элемента нет P-N перехода, а это значит что определенного направления протекания тока тоже нет. То есть абсолютно без разницы, каким образом подключать фоторезистор, так как он неполярный элемент.

Как проверить исправность элемента

Проверка фоторезистора на самом деле предельно проста. Для этого нам потребуется мультиметр и, например, папка для бумаг.

Что такое фоторезистор, принцип работы и область применения

Проверка выполняется следующим образом: переведите рукоять мультиметра в положение измерения сопротивления, крокодилами подсоедините щупы (полярность не имеет значения) и поместите элемент в папку, чтобы исключить воздействие света на элемент.

Что такое фоторезистор, принцип работы и область применения

Таким образом вы получите сопротивление элемента в затемненном состоянии. Вытащив фоторезистор из папки, вы увидите, что сопротивление элемента изменилось. Причем чем интенсивнее будет световой поток, тем меньшим сопротивлением будет обладать элемент.

Что такое фоторезистор, принцип работы и область применения

Причем зависимость сопротивления от освещенности будет иметь следующий вид:

yandex.ru

Главные характеристики фоторезисторов

У данных элементов есть несколько основных характеристик, на которые следует обращать внимание при выборе изделия:

1. Темновое сопротивление. Это сопротивление элемента, когда на него не оказывает воздействие световой поток.

Важно также знать, что все фоторезисторы обладают инерционностью в той или иной степени. Сопротивление изменяется не мгновенно, а в течении определенного отрезка времени (десятки микросекунд)

Этот фактор ограничивает применение фоторезисторов в быстродействующих схемах.

Где применяются такие элементы

Итак, несмотря на некоторые ограничения, эти элементы активно используются в следующих устройствах:

1. Фотореле. Устройства, которые предназначены для автоматического включения отключения систем освещения без активного вмешательства человека.

2. Датчики освещенности. В таких устройствах фоторезисторы выполняют функцию регистратора светового потока.

Что такое фоторезистор, принцип работы и область применения

3. Сигнализация. В сигнализационных системах применяются фоторезисторы чувствительные ультрафиолетовым волнам. Принцип таков фоторезистор постоянно освещается источником ультрафиолетового излучения и как только между источником и приемником возникает препятствие — срабатывает сигнализация.

4. Датчики, регистрирующие наличие чего-либо.

Заключение

Вот краткая информация о фоторезисторе, его устройстве и области применения. Если статья оказалась вам полезна или интересна, то оцените ее лайком

Спасибо за ваше внимание

Что это такое и где применяется

Фототранзистор – это полупроводниковый прибор оптоволоконного типа, который используется для управления электрическим током при помощи определенного оптического излучения. Эти устройства разработаны на базе обычного транзистора. Их современными аналогами являются фотодиоды, но фототранзисторы лучше подходят для многих современных радио и электронных приборов. По принципу действия, они напоминают также фоторезисторы.


Фото — фототранзистор

В отличие от фотодиодов, у этих полупроводников более высокая чувствительность.

Где используется фототранзистор:

  1. Охранные системы (в основном, используются ИК-фототранзисторы);
  2. Кодеры;
  3. Компьютерные логические системы управления;
  4. Фотореле;
  5. Автоматическое управление освещения (здесь также используется инфракрасный фото-полупроводник);
  6. Датчики уровня и системы подсчета данных.

Нужно отметить, что из-за диапазона Вольт гораздо чаще в подобных системах используются фотодиоды, но фототранзисторы имеют несколько существенных преимуществ:

  1. Могут производить больший ток, чем фотодиоды;
  2. Эти радиодетали сравнительно очень дешевые;
  3. Могут обеспечить мгновенный высокий ток на выходе;
  4. Главным достоинством приборов является то, что они могут обеспечить высокое напряжение, чего, к примеру, не сделают фоторезисторы.

При этом данный аналог светодиода имеет существенные недостатки, что делает фототранзистор довольно узкоспециализированной деталью:

  1. Многие полупроводниковые устройства выполнены из силикона, они не способны обрабатывать напряжение свыше 1000 вольт.
  2. Данные радиодетали очень чувствительны к перепадам напряжения в локальной электрической сети. Если диод не перегорит от скачка напряжения, то транзистор, скорее всего, не выдержит испытания;
  3. Фототранзистор не подходит для использования в лампах из-за того, что не позволяет быстро двигаться направленным заряженным частицам.

Маркировки и основные параметры

Фототранзисторы, которые управляются внешними факторами, имеют обозначение аналогичное обычным транзисторам. На рисунке ниже Вы можете видеть, как такой датчик схематически показывается на чертеже.

Фото — обозначение транзисторов

При этом VT1, VT2 – это фототранзисторы и база, а VT3 – без базы (например, из мышки)

Обратите внимание, цоколевка показана также, как у обычных транзисторов

Вместе с прочими приборами полупроводникового типа (n-p-n), использующимися для трансформации излучения, эти устройства являются оптронами. Соответственно, их можно изобразить как светодиод в корпусе либо как оптроны (с двумя стрелками, находящимися под углом 90 градусов к базе коллектора). Усилитель на большинстве таких схем обозначается так же, как и база коллектора.

Основные характеристики фототранзисторов LTR 4206E, ФТ 1К и ИК-SFH 305-2/3:

Название Ток коллектора, mA Ток фотоэлемента, mA Напряжение, V Область использования Длина волны, nm
LTR 4206E 100 4,8 30 Радиоэлектронные схемы. 940
ФТ 1К 100 0,4 30 Логические системы управления, сигнализация и т. д. 940
ИК-SFH 305-2/3 (Osram) 50 0.25 – 0.8 32 Охранные системы, роботы, датчики препятствия Arduino (Ардуино) на фототранзисторе. 850

При этом светосинхронизатор ФТ 1 выполнен из кремния, что дает ему явное преимущество – долговечность и устойчивость к перепадам напряжения. ВАХ представляют собой формулу:

Фото — формула ВАХ

Расчет производится так же, как и у биполярных транзисторов.

В зависимости от потребностей, Вы можете купить фототранзистор SMD PT12-21, КТФ-102А или LTR 4206E (перед тем, как взять деталь, нужно проверить её работоспособность). Цена от 3 рублей до нескольких сотен.

Видео: как проверить работу фототранзистора

Обозначение на схемах

Фоторезистор на принципиальной схеме обозначается почти также как и стандартный резистор. Но есть небольшое отличие. Это всё тот же прямоугольник, но в круге, снаружи которого есть изображение двух стрелок под углом в 45°. Эти стрелки — символически показывают падающий на элемент поток излучения.

Такое обозначение принято международной электротехнической комиссией IEC (International Electrotechnical Commission).

В иностранных источниках можно увидеть и другое условное обозначение. Фотоэлемент условно показан в виде ломаной линии. Это устаревшее условное обозначение, но и его можно встретить на схемах довольно часто.

Алгоритм поиска неисправности

Визуальный осмотр

Любой ремонт начинается с внешнего осмотра платы

Нужно без приборов просмотреть все узлы и особое внимание обратить на пожелтевшие, почерневшие части и узлы со следами сажи или нагара. При внешнем осмотре вам может помочь увеличительное стекло или микроскоп, если вы работаете с плотным монтажом SMD компонентов

Разорванные детали могут указывать не только на локальную проблему, но и проблему в элементах обвязки этой детали. Например, взорвавшийся транзистор мог за собой утянуть и пару элементов в обвязке.

Не всегда пожелтевшая от температуры область на плате указывает на последствия выгорания детали. Иногда так получается в результате долгой работы прибора, при проверке все детали могут оказаться целыми.

Кроме осмотра внешних дефектов и следов гари стоит и принюхаться, чтобы проверить, нет ли неприятного запаха как от горелой резины. Если вы нашли почерневший элемент – нужно его проверить. У него может быть одна из трёх неисправностей:

Иногда поломка бывает столь очевидной, что её можно определить и без мультиметра, как в примере на фото:

Проверка резистора на обрыв

Проверить исправность можно обычной прозвонкой или тестером в режиме проверки диодов со звуковой индикацией (см. фото ниже). Стоит отметить, что прозвонкой можно проверить лишь резисторы сопротивлением в единицы Ом — десятки кОм. А 100 кОм уже не каждая прозвонка осилит.

Для проверки нужно просто подключить оба щупа к выводам резистора, неважно это СМД компонент или выводной. Быструю проверку можно провести без выпаивания, после чего всё же выпаять подозрительные элементы и проверить повторно на обрыв

Внимание! При проверке детали не выпаивая с печатной платы, будьте внимательны – вас могут ввести в заблуждение параллельно стоящие элементы. Это актуально как при проверке без приборов, так и при проверке мультиметром

Не ленитесь и лучше выпаяйте подозрительную деталь. Так можно проверить только те резисторы, где вы уверены, что параллельно им в цепи ничего не установлено.

Проверка короткого замыкания

Кроме обрыва, резистор могло пробить накоротко. Если вы используете прозвонку – она должна быть низкоомной, например на лампе накаливания. Т.к. высокоомные светодиодные прозвонки «звонят» цепи сопротивлением и в десятки кОм без существенных изменений яркости свечения. Звуковые индикаторы с этой проверкой справляются лучше чем светодиоды. По частоте пищания можно судить о целостности цепи, на первом месте по достоверности находятся сложные измерительные приборы, такие как мультиметр и омметр.

Проверка на КЗ проводится одним способом, рассмотрим инструкцию пошагово:

  1. Измерить омметром, прозвонкой или другим прибором участок цепи.
  2. Если его сопротивление стремится к нулю и прозвонка указывает на замыкание, выпаивают подозрительный элемент.
  3. Проверить участок цепи уже без элемента, если КЗ ушло – вы нашли неисправности, если нет – выпаивают соседние, пока оно не уйдет.
  4. Остальные элементы монтируют обратно, тот после которого КЗ ушло заменяют.
  5. Проверить результаты работы на наличие КЗ.

Читать также: Как подключить шуруповерт к компьютерному блоку питания

Вот наглядный пример того, что сгоревший резистор оставил следы на соседних резисторах, есть вероятность, что и они повреждены:

Резистор почернел от высокой температуры, на соседних элементах видны не только следы гари, но и следы перегретой краски, её цвет изменился, часть токопроводящего резистивного слоя могла повредиться.

На видео ниже наглядно показывается, как проверить резистор мультиметром:

Принцип работы

В неактивном состоянии полупроводник проявляет свойства диэлектрика. Для того, чтобы он проводил ток, необходимо воздействие на вещество внешнего стимулятора. Таким стимулятором может быть термическое воздействие или световое.

Под действием фотонов света полупроводник насыщается электронами, в результате чего он становится способным проводить электрический ток. Чем больше электронов образуется, тем меньшее сопротивление току оказывает полупроводниковый материал. Зависимость силы тока от освещения иллюстрирует график на рис. 6.


Рис. 6. График зависимости силы тока от освещения

На этом принципе базируется работа фоторезисторов. Образованию электронов способствует как видимый спектр света так и не видимый. Причем фоторезистор более чувствителен к инфракрасным лучам, имеющим большую энергию. Низкую чувствительность к видимому свету проявляют чистые материалы.

Для повышения чувствительности фоторезистивного слоя его легируют разными добавками, которые образуют обновленную внешнюю зону, расположенную поверх валентной зоны полупроводника. Такое внешнее насыщение электронами потребует меньше энергии для перехода в состояние насыщения фототоком проводимости. Возникает внешний фотоэффект, стимулированный видимым спектром излучения.

Путем подбора легирующих добавок можно создавать фоторезисторы для работы в разных спектральных диапазонах. Фоторезистор имеет спектральную чувствительность. Если длина световых волн находится вне зоны проводимости, то прибор перестает реагировать на такие лучи. Освещенность в таких случаях, уже не может оказывать влияния на токопроводимость изделия.

Выбор спектральных характеристик зависит от условий эксплуатации изделия и решаемых задач. Если интенсивностей излучения не достаточно для стабильной работы устройства, его эффективность можно повысить путем подбора чувствительных элементов, с соответствующим полупроводниковым слоем.

Важно помнить, что инерционность фоторезисторов заметно выше чем у фотодиодов и фототранзисторов. Инерционность прибора имеет место потому, что для насыщения полупроводникового слоя требуется некоторое время

Поэтому датчик всегда подает сигнал с некоторым опозданием.

Фоторезисторы

Проводимость полупроводников повышается при освещении их. Именно поэтому диоды помещают в специальные герметичные корпуса. За счет энергии светового пучка, падающего на полупроводник, происходит разрыв ковалентных связей, и образуются свободные электроны и дырки. Они становятся носителями заряда, вследствие чего появляется электрический ток. Это явление получило название внутреннего фотоэлектрического эффекта.

Фоторезистор – полупроводниковый прибор, сопротивление которого меняется под действием света.

Формы, материалы и размеры выпускаемых фоторезисторов колеблются в широких диапазонах. Чаще всего фоторезисторы используются для регистрации слабых световых сигналов.Помимо обычных фоторезисторов, имеются фоторезисторы, которые способны реагировать на инфракрасное излучение, невидимое человеческому глазу.

Широкое распространение получили фоторезисторы в системах автоматической охраны территорий и помещений. Устройство этих систем очень простое. Световой луч проходит через территорию помещения и попадает на фоторезистор.

Если какое-либо тело появится на пути луча, то свет на фоторезистор не попадет, и на вход другой системы подается импульс – срабатывает сигнал тревоги. Обычно именно здесь используют фоторезисторы, реагирующие на инфракрасные лучи, дабы обеспечить скрытность охранной системы. Свойство изменения сопротивления фоторезистора при пересечении подсвечивающего его светового потока широко используется в различных счетчиках, например, на конвейерах или в частотомерах.

Основные характеристики фоторезисторов

Вид фоторезисторов Старое обозначение Новое обозначение
Сернисто-свинцовые ФСА-0, ФСА-1, ФСА-6, ФСА-Г1, ФСА-Г2
Сернисто-кадмиевые ФСК-0, 1, 2, 4, 5, 6, 7, ФСК-Г1, ФСК-Г2, ФС’Р;-Г7, ФСК-П1 СФ2-1, 2, 4, 9, 12
Селенисто-кадмиевые ФСД-0, ФСД-1, ФСД-Г1 СФ3-1, 8

Чувствительность фоторезисторов меняется (уменьшается) в первые 50 часов работы, оставаясь в дальнейшем практически постоянной в течение всего срока службы, измеряемого несколькими тысячами часов. Интервал рабочих температур для сернисто-кадмиевых фоторезисторов составляет от -60 до +85°С для селенисто-кадмиевых — от -60 до +40°С и для сернисто-свинцовых — от -60 до +70°С.

Конструкция фоторезистора

Впервые фотопроводимость была обнаружена у Селена, впоследствии были обнаружены и другие материалы с аналогичными свойствами. Современные фоторезисторы выполнены из сульфида свинца, селенида свинца, антимонида индия, но чаще всего из сульфида кадмия и селенида кадмия. Популярные LDR из сульфида кадмия обозначаются как CDS фоторезистор.

Спектральная кривая отклика сульфида кадмия совпадает с человеческим глазом. Длина волны пиковой чувствительности составляет около 560-600 нм, что соответствует видимой части спектра.

Область применения фоторезисторов

Основной областью применения фоторезисторов является автоматика, где они в некоторых случаях с успехом заменяют вакуумные и газонаполненные фотоэлементы. Обладая повышенной допустимой мощностью рассеивания по сравнению с некоторыми типами фотоэлементов, фоторезисторы позволяют создавать простые и надежные фотореле без усилителей тока. Такие фотореле незаменимы в устройствах для телеуправления, контроля и регулирования, в автоматах для разбраковки, при сортировке и счете готовой продукции, для контроля качества и готовности самых различных деталей.

Широко используются фоторезисторы в полиграфической промышленности при обнаружении обрывов бумажной ленты, контроле за количеством листов, подаваемых в печатную машину.

В измерительной технике фоторезисторы применяются для измерения высоких температур, для регулировки температуры в различных технологических процессах.

Контроль уровня жидкости и сыпучих тел, защита персонала от входа в опасные зоны, контроль за запыленностью и задымленностью самых различных объектов, автоматические выключатели уличного освещения и т.д.

Применение фоторезисторов можно так же встретить в детских игрушках. Это далеко не полный перечень областей применения фоторезисторов.

Виды

Вообще все фотодатчики разделены на две основные группы:

  1. Детали, обладающие внутренним фотоэффектом.
  2. Детали с внешним фотоэффектом.

Их отличает друг от друга технология производства, а если быть точнее — сам состав фоторезистивного слоя.

Если в первых при изготовлении применены чистейшие химические составляющие, без посторонних примесей. Таким образом, у датчика меняются характеристики, фоторезистор практически не реагирует на видимый свет, но хорошо работает в инфракрасном диапазоне.

То вторые, наоборот, содержат примеси в полупроводниковом веществе. За счет этого расширяется спектр чувствительности в зоне видимого света и даже захватывает инфракрасный диапазон (тепловые лучи).

Хотя по принципу срабатывания и как подключить эти два вида не отличаются — внутреннее сопротивление уменьшается с увеличением интенсивности падающего на них светового потока.

Собственно это свойство помогает при монтаже плат с фотодатчиками. Вопрос как проверить фоторезистор решается проверкой его сопротивления мультиметром. В рабочем элементе должно быть большее сопротивление при отсутствии освещения. Если на его чувствительный элемент подать свет, то сопротивление моментально снизится до нескольких кОм.

Тень и полутень

В солнечные дни мы наблюдаем тени, отбрасываемые различными предметами, людьми, зданиями, растениями. В физике дополнительно используется понятие полутени. Образование тени и полутени объясняется прямолинейностью распространения света в однородной среде.

Рассмотрим получение тени (рисунок 3). Используя точечный источник света S (карманный фонарик), мы освещаем непрозрачный шар. Само слово «непрозрачный» говорит нам о том, что шар не пропускает свет, который на него падает. В затемненной комнате на экране образуется тень.

Рисунок 3. Получение тени

Возьмем точку A на краю шара. Проведем прямую через точки S и A. Продолжим ее до экрана с тенью. Точка B окажется тоже на этой прямой. Таким образом, прямая SB — это луч света, который касается шара в точке A.

Проделав те же действия с другой стороны шара, мы получим луч света SC, который касается шара в точке B. 

Если бы свет распространялся не прямолинейно, то мы могли и не получить тень. Мы же получили четкую тень. Такая тень называется полной. Это получилось, потому что расстояние между нашим источником света и экраном намного меньше размеров используемой лампочки в фонарике.

Теперь возьмем большую лампу, размеры которой будут сравнимы с расстоянием от нее до экрана (рисунок 4).

Рисунок 4. Получение полутени

На экране мы увидим небольшую тень в центре и частично освещенное пространство вокруг нее — полутень.

Давайте рассмотрим, как этот опыт подтверждает прямолинейное распространение света. В данном случае наш источник света — это множество точек. Каждая из них испускает лучи. В итоге, на экране мы видим области, в которые попадает свет от одних точек, а от других не попадает. В таких областях и образуется полутень (области A и B). При этом в центре все же будет полностью неосвещенная область — полная тень.

{"questions":,"answer":}}}]}

Датчик освещенности и плавное изменение яркости подсветки

Можно модифицировать проект так, чтобы в зависимости от уровня освещенности менялась яркость светодиода. В алгоритм мы добавим следующие изменения:

  • Яркость лампочки будем менять через ШИМ, посылая с помощью analogWrite() на пин со светодиодом значения от 0 до 255.
  • Для преобразования цифрового значения уровня освещения от датчика освещенности (от 0 до 1023) в диапазон ШИМ яркости светодиода (от 0 до 255) будем использовать функцию map().

Пример скетча:

#define PIN_LED 10
#define PIN_PHOTO_SENSOR A0

void setup() {
  Serial.begin(9600);
  pinMode(PIN_LED, OUTPUT);
}

void loop() {
  int val = analogRead(PIN_PHOTO_SENSOR);
  Serial.println(val);

  int ledPower = map(val, 0, 1023, 0, 255); // Преобразуем полученное значение в уровень PWM-сигнала. Чем меньше значение освещенности, тем меньше мощности мы должны подавать на светодиод через ШИМ.

  analogWrite(PIN_LED, ledPower); // Меняем яркость

}

В случае другого способа подключения, при котором сигнал с аналогового порта пропорционален степени освещенности, надо будет дополнительно «обратить» значение, вычитая его из максимального:

int val = 1023 – analogRead(PIN_PHOTO_RESISTOR);

Преимущества и недостатки

У этих элементов есть существенный недостаток — граничная частота. Она задает максимальную частоту синусоидального сигнала, которым регулируется световой поток.

В результате существенным образом снижается чувствительность прибора. Соответственно снижается и быстродействие приборов, где требуется на реагирование порядка десятка микросекунд — 10^(−5) с.

Также проявляется некоторая инерционность датчиков на базе фоторезисторов. Происходит запаздывание сигнала, а это негативным образом влияет на быстродействие устройств.

Но есть и положительные стороны.

При низком пороге чувствительности фоторезистор недорогой и его подключение оправдано высокой надежностью. Зачастую, даже полезно, что срабатывание фотоэлемента происходит не мгновенно, а по нарастающей, постепенно. Эта особенность дает возможность применения этих деталей в приборах аналогово типа — разнообразные датчики и измерители освещенности.

Устройство

Конструкция разных моделей фоторезисторов может отличаться по форме материалу корпуса. Но в основе каждого такого прибора лежит подложка, чаще всего керамическая, покрытая слоем полупроводникового материала. Поверх этого полупроводника наносятся змейкой тонкий слой золота, платины или другого коррозиестойкого металла. (см. рис. 1). Слои наносятся методом напыления.


Рис. 1. Устройство фоторезисторов

Напиленные слои соединяют с электродами, на которые поступает электрический ток. Всю эту конструкцию часто покрывают прозрачным пластиком и помещают в корпус с окошком для попадания световых лучей (см. рис. 2).


Рис. 2. Конструкция фоторезистора

Форма корпуса, его размеры и материал зависит от модели фоторезистора, определяемой технологией производителя. Примеры моделей показаны на рисунках 3 и 4.


Рис. 3. Датчик на основе фоторезистора


Рис. 4. Фотоприемник

Сегодня в продаже можно увидеть детали в металлическом корпусе, часто в пластике или модели открытого типа. Некоторые модели изготавливают без метода напыления, а вырезают тонкий резистивный слой непосредственно из полупроводника. Существуют также технологии изготовления пленочных фотодатчиков (см. рис. 5).


Рис. 5. Конструкция пленочного фоторезистора

Для напыления слоя полупроводника используют различные фоторезистивные материалы. Для фиксации видимого спектра света применяют селенид кадмия и сульфид кадмия.

Более широкий спектр материалов восприимчив к инфракрасному излучению:

  • германий чистый либо легированный примесями золота, меди, цинка;
  • кремний;
  • сульфид свинца и другие химические соединения на его основе;
  • антимонид или арсенид индия;
  • прочие химические соединения чувствительные к инфракрасным лучам.

Чистый германий или кремний применяют при изготовлении фоторезисторов с внутренним фотоэффектом, а вещества легированные примесями – для конструкций с внешним фотоэффектом. Независимо от вида применяемого фоторезистивного материала, оба типа фоторезисторов обладают одинаковыми свойствами – обратной, нелинейной зависимостью сопротивления от силы светового потока.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector