Назначение
Действующие электроустановки предназначены для передачи и перераспределения электрической энергии. Так как современные потребители электроэнергии характеризуются большим количеством чувствительных приборов с самым разнообразным принципом работы, электрические установки также должны обеспечивать и высокое качество поставляемой энергии. Если детально рассмотреть понятие электроустановки, то оно включает в себя не только устройства для передачи, и распределения, но также коммутационные и защитные аппараты. Поэтому еще одним назначением является своевременное отключение различных категорий потребителей и подача резервного или второго питания.
В зависимости от важности запитки электрической цепи выделяют три категории потребителей:
- для первой категории может допускаться перерыв не более времени, требуемого для автоматического переключения на второе или резервное питание;
- вторая допускает перерыв в питании не дольше чем на время выезда бригады или ввода второго источника вручную;
- третья допускает перерыв в питании не более суток, а для единичных квартир и домов двое суток, но не чаще трех раз в год.
В зависимости от категорийности, действующие электроустановки должны обеспечивать соответствующую надежность работы для каждой из категорий.
Итак, начнем с проводника
Проводник — это материя, которая состоит из свободных носителей заряженных частиц. При движении этих частиц возникает тепловая энергия, поэтому ему дали название — тепловое движение.
Есть два основных параметра проводника — сопротивление, обозначается буквой R или же проводимость, обозначается буквой G. Проводимость это показатель противоположный сопротивлению — G=1/R.
Что же является проводником. Металлы — лучшие проводники, особенно медь и алюминий. Также проводниками являются солевые растворы, влажный грунт, углерод. Последний нашел широкое применение в работе со скользящими связями.
Примером такого применения являются щетки в электрическом двигателе. Человеческое тело — тоже проводник электрического тока. Но электропроводные свойства у вышеперечисленных материалов все же ниже, чем в металлах.
Сама структура металлов предполагает в себе огромное количество свободных заряженных частиц, что и делает их лучшими проводниками.
Когда металл попадает под действие электрических полей, то происходит процесс так называемой электроиндукции. То есть заряженные частицы начинают активно двигаться и распределятся.
Классификация ↑
На расположение в помещении электрического оборудования и электрических установок в целом определяющее значение имеют несколько факторов:
- Узел ввода. Через него электрическая энергия поступает в помещение. В качестве узла ввода может использоваться электрический кабель высокого напряжения или проводка;
- Место расположения электрической установки. Нередко бывают случаи, когда электроустановка расположена не внутри помещения, а снаружи. В данном случае в качестве электроустановки выступает электрический распределительный щит, насос для функционирования водяных фонтанов или скважин, систем для поливки или бассейнов.
ЧИТАТЬ ДАЛЕЕ: Индивидуальные средства защиты в электроустановках
Электрические установки между собой подразделяются по мощности:
- До 1000 В. Используются для обеспечения функционирования оборудования, мощностью до 1000 В;
- От 1000 до 1500 В. Применяются для подачи постоянного тока от источника питания до его потребителей не больше 1500 В.
По типу использования эклектические установки подразделяются на такие виды:
- Электрические станции. Используются для обеспечения работы электрического промышленного оборудования и функционирования линий теплоснабжения;
- Высокомощные нагреватели воды. Предназначены для нагревания большого количества воды;
- Осветительные системы. Обеспечивают электрическое снабжение частных и загородных домов.
Стоит отдельно рассмотреть каждую электрическую систему, ведь установки достаточно разнообразны и каждая имеет свои конкретные характеристики, положительные и отрицательные стороны. В зависимости от определенных качеств меняется и назначение, и сам принцип работы.
- По уровню напряжения
Все машины отличаются уровнем мощности. Основная классификация подразумевает четкое разделение на напряжение до 1000в и после 1000в. Также встречаются совсем маломощные установки (в них обычно нет даже ватта).
Каждый из вариантов выполняет определенные функции: наиболее мощные отлично подходят для производства, а менее мощные прекрасно решают небольшие задачи и отлично экономят энергию (что в конечном итоге положительно сказывается на безопасности).
- По назначению
Классификация по назначению является самой простой и понятной. Можно выделить пять достаточно крупных групп.
- Силовые. Это максимально мощные и надежные установки, которые используются в основном на производстве. Они нужны, чтобы обеспечивать вентиляцию, регулировать насосную систему и т.п. Отличаются постоянством, работают стабильно практически в любых условиях.
- Преобразовательные. Основная функция их в том, чтобы преобразовывать переменный ток в постоянный. Характеристики таких машин меняются, если это необходимо для работ каких-либо приборов.
- Электрооперационные. Подобные электрические установки необходимы для того, чтобы совершать любые действия с электрическим током. Это может быть нагрев с помощью дуги, луча или индукции.
- Электросварочные. Они необходимы для соединения металлов.
- Осветительные. Они нужны для подачи электрического света, встречаются повсеместно как в частных домах, так и на производстве.
- По безопасности
По критерию безопасности расположения электроустановок выделяют следующие виды:
- открытые. Это те, которые могут располагаться не в помещении, при этом полностью защищены от осадков и перепадов температур;
- под навесом. Они имеют дополнительную защиту, но нет необходимости располагать их внутри здания;
- закрытые. Они тщательно монтируются внутри помещения.
ЧИТАТЬ ДАЛЕЕ: Сбор нагрузок на фундамент — пример
Ни в коем случае нельзя путать эти типы установок, иначе это может привести трагичным последствиям.
Инженерный имеет все необходимые инструменты для качественного проведения обслуживания электроустановок, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории «ПрофЭнергия» вы выбираете надежную и качествунную работу своего оборудования!
Если хотите заказать обслуживание электроустановок или задать вопрос, звоните по телефону.
Меры предосторожности при использовании электрических установок
Дабы избежать удара электрического тока необходимо соблюдать определенные меры безопасности при работе с электроустановками:
- Запрещается проводить ремонт или техническое обслуживание электрических установок, находящихся во включенном состоянии;
- При непосредственном контакте с электрическим оборудованием или проводами необходимо использовать специальные приспособления (резиновые перчатки, специальный инструмент с прорезиненными рукоятками, резиновые коврики и калоши);
- Для проведения работ с электрическими установками необходимо пройти специальный инструктаж и иметь допуск работ с ними.
Лучше всего не проводить работы самостоятельно, а обратиться за помощью специалиста.
Определение
В целом понятие электроустановки включает в себя всевозможные элементы, в которых может происходить передача, преобразование, распределение и последующее потребление электроэнергии. А под действующей электроустановкой следует понимать не только те устройства, линии или конструкции, через которые протекает электрический ток или в которые подано напряжение, но и все, которые в данный момент являются отключенными, но на них может возникнуть напряжение. При этом способ появления напряжения на электроустановке не имеет значения, это могут быть
:
- переключение коммутационных аппаратов;
- нахождение вблизи оборудования, создающего ;
- пересечение линий электропередач в вертикальной плоскости с другими линиями.
Поэтому для перевода действующей электроустановки в категорию недействующей недостаточно просто отключить рубильник или силовой выключатель. Для этого требуется сделать невозможным возникновение потенциала хоть с наличием, хоть без электрического соединения.
Что представляет собой электроустановка
Электроустановка — это группа электрического оборудования, которое взаимосвязано между собой и расположено на одной территории или площади. Электроустановкой по праву можно считать разного рода оборудование и инструменты, линии и машины при помощи которых выполняются такие виды операций:
- Преобразование;
- Трансформация;
- Распределение;
- Преобразование и пр.
С участием разного рода электрического оборудования и инструментов происходит преобразование одного вида электрической энергии в другую. Их функционирование невозможно без участия электрической энергии, которая подается в результате действия коммутационной аппаратуры.
Упражнения
Упражнение №1
Почему заряженный электроскоп разряжается, если его шарика коснуться рукой?
Наше тело является проводником электричества. Когда мы касаемся шарика заряженного электроскопа, заряд (свободные электроны) переходит в наше тело. При нашем соприкосновении с полом и землей, заряд уйдет туда. Так происходит, если электроскоп заряжен отрицательно.
Если же электроскоп заряжен положительно, то коснувшись его, мы нейтрализуем заряд, сообщив ему некоторое количество электронов. Ведь, являясь проводником, в нашем теле имеется большое количество свободных электронов.
Упражнение №2
Почему стержень электроскопа изготавливают из металла?
Металлы — хорошие проводники. Металлический стержень может передавать заряд от шара к лепесткам.
Если сделать стержень из диэлектрика, то заряд передаваться не будет, электроскоп окажется нерабочим.
Упражнение №3
К шарику незаряженного электроскопа подносят тело, заряженное положительно, не касаясь его. Какой заряд возникнет на листочках электроскопа?
Обратите внимание, что тело не касается электроскопа. При его приближении на шаре образуется отрицательный заряд, а на лепестках — положительный
Электрическое поле положительно заряженного тела будет действовать на электроскоп, свободные электроны придут в движение. Силы притяжения между разноименными зарядами заставят их собраться на шаре. В другой части электроскопа (на лепестках) образуется недостаток электронов, образуется положительный заряд.
Металлические проводники
Эта группа состоит из твердых металлов и их сплавов.
Металлические проводники обязаны своей высокой проводимостью облакам свободных электронов, которые способствуют циркуляции электрического тока через них. Металлы отдают электроны, находящиеся на последней орбите своих атомов, не вкладывая больших количеств энергии, что делает переход электронов от одного атома к другому благоприятным.
С другой стороны, сплавы характеризуются высоким удельным сопротивлением; то есть они имеют сопротивление, пропорциональное длине и диаметру проводника.
Наиболее широко используемые сплавы в электроустановках — это латунь, медно-цинковый сплав; белая жесть, сплав железа и олова; медно-никелевые сплавы; и хромоникелевые сплавы.
Вопросы и ответы для подготовки электротехнического персонала к проверке знаний по электробезопасности
Вопрос 1. Дайте определение термину «электробезопасность»
Ответ.
Электробезопасность – система организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного воздействия электрического тока, электрической дуги, электромагнитного поля и статического электричества.
Вопрос 2. Дайте определение термину «электроустановка».
Ответ.
Электроустановками называется совокупность машин, аппаратов, линий и вспомогательного оборудования (вместе с сооружениями и помещениями, в которых они установлены), предназначенных для производства, преобразования, трансформации, передачи, распределения электрической энергии и преобразования ее в другой вид энергии. Электроустановки по условиям электробезопасности подразделяются на электроустановки напряжением до 1000 В и электроустановки напряжением выше 1000В.
Электроустановка здания – совокупность взаимосвязанного электрооборудования в пределах здания или помещения.
Вопрос 3. Дайте определение термину «электрооборудование».
Ответ.
Электрооборудование – оборудование, предназначенное для производства, преобразования, передачи, распределения или потребления электрической энергии.
Вопрос 4.
Дайте определение термину «Потребитель электрической энергии».
Ответ.
Потребитель электрической энергии – предприятие, организация, учреждение, территориально обособленный цех, строительная площадка, квартира, у которых приемники электрической энергии присоединены к электрической сети и используют электрическую энергию.
Вопрос 5.
Дайте определение термину «Приемник электрической энергии».
Ответ.
Электроприемник – электрооборудование, преобразующее электрическую энергию в другой вид энергии для ее использования.
Вопрос
6.
Как делятся электроустановки в соответствии с защитой их от атмосферных воздействий.
Ответ.
Электроустановки могут быть отрытыми или наружными, не защищенными зданием от атмосферных воздействий.
Электроустановки, защищенные только навесами, сетчатыми ограждениями, рассматриваются как наружные.
Закрытые или внутренние — размещены внутри здания, защищающего их от атмосферных воздействий.
Вопрос
7. Дайте характеристику электропомещениям.
Ответ.
Электропомещениями называются помещения или отгороженные, например, сетками, части помещения, доступные только для квалифицированного обслуживающего персонала, в которых расположены электроустановки.
Сухими помещениями называются помещения, в которых относительная влажность воздуха не превышает 60%.
Влажные помещения — относительная влажность воздуха в них более 60%, но не превышает 75%.
Сырые помещения — относительная влажность воздуха в них длительно превышает 75%.
Особо сырые — относительная влажность воздуха близка к 100%;
Жаркие помещения, в них температура превышает постоянно или периодически (более 1 суток) +35°С.
В пыльных помещениях по условиям производства выделяется технологическая пыль в таком количестве, что она может оседать на проводах, проникать внутрь машин и аппаратов.
В помещениях с химически активной или органической средой постоянно или в течение длительного времени содержатся агрессивные пары, газы, жидкости, образуются отложения или плесень, разрушающие изоляцию электрооборудования.
Направление тока
Раньше в учебниках по физике писали так: когда-то давно решили, что ток направлен от плюса к минуса, а потом узнали, что по проводам текут электроны. Но электроны эти — отрицательные, а значит к минусу идти не могут. Но раз уже условились о направлении, поэтому оставим, как есть. Вопрос тогда возникал у всех: почему нельзя поменять направление тока? Но ответ так никто и не получил.
Сейчас пишут немного иначе: положительные частицы текут по проводнику от плюса к минусу, туда и направлен ток. Здесь вопросов ни у кого не возникает.
Так и какая версия верна?
На самом деле, обе. Носители заряда в каждом типе материала разные. В металлах — это электроны, в электролитах — ионы. У каждого типа частиц свои знаки и потребность в том, чтобы бежать к противоположно заряженному полюса источника тока.
Не будем же мы для каждого типа материала выбирать направление тока, чтобы решить задачу! Поэтому принято направлять ток от плюса к минусу. В большинстве задач школьного курса направление тока роли не играет, но есть то самое коварное меньшинство, где этот момент будет очень важным. Поэтому запомните — направляем ток от плюса к минусу.
Пробой диэлектрика
Помните мы в данной статье уже говорили о том, что у каждого диэлектрика есть свой предел и что нельзя однозначно называть вещество диэлектриком и нужно рассматривать его в динамике. Так вот, давайте вернемся к этой теме и немного углубимся в нее. Знаете ли вы, что происходит при поляризации?
Дело в том, что при этом явлении начинается такое состояние, называемое стационарным или же квазистанционырным, если воздействие напряжения извне переменное. Такое состояние отличается от обычного тем, что значения поляризации могут очень долго держаться на одном уровне. Вместе с ними стабилизируется и электропроводность.
Если сразу же начать увеличивать напряженность в таком поле, то можно будет очень точно определить тот предел, при котором эта самая стабильность будет резко нарушаться. Сразу же увеличиться ток, электропроводность, а это уже прямой путь из диэлектрика в проводники. Действительно, после этого вещество уже нельзя охарактеризовать, как диэлектрик. Такой процесс перехода диэлектрика в проводники называется пробоем диэлектрика.
Когда мы поняли, что такое пробой, давайте теперь поймем, как можно легко определить, в какой момент пробой диэлектрика происходит
Как мы можем понять, временной порог пробоя может зависеть от температуры, агрегатного состояния вещества и многих других факторов, тут важно другое. Давайте разберем основные случаи пробоя, их всего лишь два, поэтому не пугайтесь:
- тепловые явления, при которых возрастающая электропроводность обуславливается тем, что диэлектрик очень быстро нагревается, из-за чего стационарным тепловое состояние уже быть не может
- электрические явления, которые происходят из-за увеличения количества свободных электронов и ионов. Это тоже происходит в двух случаях. Либо появление свободных зарядов обусловлено сбитием их другими движущимися зарядами, либо сбитием полем.
Электроустановка: меры предосторожности при использовании
При работе с действующей электроустановкой необходимо учитывать меры безопасности. Лучше всего не работать самостоятельно с электрическим оборудованием, а если возникла какая-то проблема, то обратиться к специалисту. Должны осуществляться строгие меры при работе с электрическими установками:
- До проведения различных операций с источниками электроэнергии могут быть допущены только те, у кого есть специальное разрешение. Работники с электрическими установками проходят полный инструктаж и получают допуск на официальной основе.
- Обязательны специальные приспособления для защиты, при контакте с электрическими установками или непосредственно проводами. Такие как резиновые перчатки, резиновая обувь, резиновый коврик и инструменты с прорезиненными рукоятками.
- Запрещено проводить какие-либо работы над электрическими установками, если они включены и действуют.
Учитывайте также то, что сферы и места применения таких электрических установок различны. Меры безопасности также, помимо общих базовых, для каждой отрасли будут свои. Их необходимо соблюдать при каждом этапе работ – от начальных, до окончательных. Помимо этого, постоянные плановые осмотры съем энергоснабжения и контроль над сотрудниками объект – как они соблюдают меры, проводится ли инструктаж и пр. Это делается для того, чтобы избежать перебоев в работе и минимизировать риски в работе на таких объектах.
Каждая электроустановка требует как технических, так и организационных мероприятий по безопасному использованию. Как уже сказано ранее, каждый работник обязан пройти полный инструктаж и получить специальный допуск. За каждую работу назначаются ответственные лица на объекте. Место работ оформляется и подготавливается в соответствии с требованиями, а также обрисовывается весь проект целиком – как он работает, какие потребители энергии, какие источники питания. Каждый режим работы и этап должны быть закреплены юридически. Это обязательные требования по технике безопасности работ с электрическими установками. Далее – об обслуживании этих конструкций.
Что такое проводник?
Проводник – это вещество или материал, которое отлично проводит электрический ток. Как вы все знаете, любое вещество состоит из атомов. Атомы в свою очередь состоят из электронов и ядер
Давайте для понимания рассмотрим вот такую картинку. Предположим, что пастух – это ядро, а овцы вокруг него – это электроны.
Те овцы, которые находятся рядом с пастухом, не могут от него просто так взять и убежать, так как он присматривает за ними. Иначе останется без мяса и шерсти к осени. Но вот те овцы, которые находятся поодаль от пастуха, имеют все шансы от него убежать.
То же самое можно сказать и про атомы и электроны. Электроны, которые находятся на самой дальней орбите от ядра менее зависимы, чем те, которые расположены ближе к ядру.
В результате, такие электроны могут “оторваться” от ядра и начать самостоятельное путешествие по веществу. Такие электроны называются свободными электронами.
Чем больше свободных электронов, тем лучше проводимость вещества.
Полупроводниковые материалы
Это элементы, которые имеют значение удельной проводимости, находящееся в промежутке этого показателя для проводников и диэлектриков. Проводимость этих материалов напрямую зависит от проявления примесей в массе, внешних направлений воздействия и внутренних дефектов.
Характеристика электротехнических материалов группы полупроводников говорит о существенном отличии элементов друг от друга по структурной решетке, составу, свойствам. В зависимости от указанных параметров, материалы подразделяют на 4 вида:
- Элементы, содержащие в себе атомы одного вида: кремний, фосфор, бор, селен, индий, германий, галлий и др.
- Материалы, содержащие в составе металлические окислы – медь, окись кадмия, цинка и др.
- Материалы, объединенные в группу антимонид.
- Материалы органики – нафталин, антрацен и др.
В зависимости от кристаллической решетки, полупроводники подразделяют на поликристаллические материалы и монокристаллические элементы. Характеристика электротехнических материалов позволяет разделять их на немагнитные и слабомагнитные. Среди магнетических компонентов различают полупроводники, проводники и непроводящие элементы. Четкое распределение выполнить затруднительно, так как многие материалы по-разному ведут себя в изменяющихся условиях. Например, работу некоторых полупроводников при пониженных температурах можно сравнить с действием изоляторов. Те же диэлектрики при нагревании работают, как полупроводники.
Классификация
Постоянный и переменный ток
Если заряженные частицы движутся внутри макроскопических тел относительно той или иной среды, то такой ток называют электрический »ток проводимости». Если движутся макроскопические заряженные тела (например, заряженные капли дождя), то этот ток называют »конвекционным».
Токи различают на постоянный и переменный. Также существуют всевозможные разновидности переменного тока. При определении видов тока слово «электрический» опускают.
- Постоянный ток — ток, направление и величина которого не меняются во времени. Может быть пульсирующий, например выпрямленный переменный, который является однонаправленным.
- Переменный ток — электрический ток, изменяющийся во времени. Под переменным током понимают любой ток, не являющийся постоянным.
- Периодический ток — электрический ток, мгновенные значения которого повторяются через равные интервалы времени в неизменной последовательности.
- Синусоидальный ток — периодический электрический ток, являющийся синусоидальной функцией времени. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону. Любой периодический несинусоидальный ток может быть представлен в виде комбинации синусоидальных гармонических составляющих (гармоник), имеющих соответствующие амплитуды, часто́ты и начальные фазы. В этом случае Электростатический потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал). В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.
- Квазистационарный ток — относительно медленно изменяющийся переменный ток, для мгновенных значений которого с достаточной точностью выполняются законы постоянных токов. Этими законами являются закон Ома, правила Кирхгофа и другие. Квазистационарный ток, так же как и постоянный ток, имеет одинаковую силу тока во всех сечениях неразветвлённой цепи. При расчёте цепей квазистационарного тока из-за возникающей э. д. с. индукции ёмкости и индуктивности учитываются как сосредоточенные параметры. Квазистационарными являются обычные промышленные токи, кроме токов в линиях дальних передач, в которых условие квазистационарности вдоль линии не выполняется.
- Ток высокой частоты — переменный ток, (начиная с частоты приблизительно в десятки кГц), для которого становятся значимыми такие явления, которые являются либо полезными, определяющими его применение, либо вредными, против которых принимаются необходимые меры, как излучение электромагнитных волн и скин-эффект. Кроме того, если длина волны излучения переменного тока становится сравнимой с размерами элементов электрической цепи, то нарушается условие квазистационарности, что требует особых подходов к расчёту и проектированию таких цепей.
- Пульсирующий ток — это периодический электрический ток, среднее значение которого за период отлично от нуля.
- Однонаправленный ток — это электрический ток, не изменяющий своего направления.
Вихревые токи
Вихревые токи Фуко
Вихревые токи ( или токи Фуко) — замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитный поток, поэтому вихревые токи являются индукционными токами. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи. Вихревые токи не текут по определённым путям в проводах, а замыкаясь в проводнике образуют вихреобразные контуры.
Существование вихревых токов приводит к скин-эффекту, то есть к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника. Нагрев вихревыми токами проводников приводит к потерям энергии, особенно в сердечниках катушек переменного тока. Для уменьшения потерь энергии на вихревые токи применяют деление магнитопроводов переменного тока на отдельные пластины, изолированные друг от друга и расположенные перпендикулярно направлению вихревых токов, что ограничивает возможные контуры их путей и сильно уменьшает величину этих токов. При очень высоких частотах вместо ферромагнетиков для магнитопроводов применяют магнитодиэлектрики, в которых из-за очень большого сопротивления вихревые токи практически не возникают.
Проводники
К ним относят электротехнические материалы, основным показателем которых является выраженная проводимость электрического тока. Это происходит потому, что в массе вещества постоянно присутствуют электроны, слабо связанные с ядром и являющиеся свободными носителями заряда. Они перемещаются с орбиты одной молекулы на другую и создают ток. Основными проводниковыми материалами считают медь, алюминий.
К проводникам относятся элементы, которые имеют удельное электрическое сопротивление ρ < 10-5, при этом отличным проводником является материал с показателем 10-8 Ом*м. Все металлы хорошо проводят ток, из 105 элементов таблицы только 25 не являются металлами, причем из этой разнородной группы 12 материалов проводят электрический ток и считаются полупроводниками.
Физика электротехнических материалов позволяет использование их в качестве проводников в газообразном и жидком состоянии. В качестве жидкого металла с нормальной температурой применяется только ртуть, для которой это естественное состояние. Остальные металлы используются как жидкие проводники только в разогретом состоянии. Для проводников применяют и токопроводящие жидкости, например электролит. Важными свойствами проводников, позволяющими различать их по степени электропроводности, считаются характеристики теплопроводности и способности к термальной генерации.
Проводники на печатных платах
Как вы знаете, все схемы состоят из проводов или печатных дорожек, которые соединяют различные радиоэлементы в единое целое. Например, в статье “самый простой усилитель звука“, я с помощью проводов соединял различные радиоэлементы, и у меня получилась схема, которая усиливала звуковые частоты.
Для того, чтобы все было красиво, эстетично и занимало мало пространства, прямо на платах создают “проводки”, которые уже называются “печатными дорожками”.
В домашних условиях все это делается с помощью технологии ЛУТ (Лазерно-Утюжная-Технология).
На другой стороне печатной платы уже располагаются радиоэлементы
Так как радиолюбители стараются делать свои устройства как можно меньше по габаритам, то и плотность монтажа возрастает. Поэтому, в некоторых случаях радиоэлементы и печатные дорожки располагают по обе стороны платы.
Промышленные печатные платы уже делают многослойными. Они состоят из слоев, как торт из коржей:
Бум SMD технологий вызвал в свою очередь нужду в многослойных печатных платах.
Заключение
Мы провели познавательные эксперименты с электричеством и узнали об этом явлении много нового. Мы на практике разобрались в его свойствах и теперь у вас должно сложиться четкое понимание, как правильно с ним обращаться. Если это направление заинтересовало вас, попробуйте расширить свои исследования и изучить такую важную тему, как потребление энергии.
В
наше время с каждым днем становится
актуальнее вопрос о том, как
правильно рассчитать
расход электроэнергии.
Поскольку ее затруднительно хранить в
больших количествах, необходимо соблюдать
баланс: генерировать ее ровно столько,
сколько потребляется пользователями.
Для этого необходимо уметь точно
рассчитать
потребление электроэнергии
и тщательно прогнозировать нагрузку
на производственные мощности. Поэтому
результаты такого исследования будут
иметь большое значение!