9 класс

Магнетизм соленоида

Магнитное поле может быть создано различными предметами, например, соленоидом. Соленоид, по своей сути, является электромагнитом, то есть катушкой индуктивности. Чтобы создать соленоид, требуется цилиндрическая поверхность (сердцевина) и изолированный проводник под напряжением (провод), который наматывают на сердцевину. Проходящий по проводу ток и создает этот вид материи вокруг соленоида. В этот момент он превращается в магнит. Если же выключить электричество, все особые свойства соленоида исчезают, а при обратном включении вновь возобновляются. Чем больше повода намотано вокруг сердцевины и чем больше подается тока, тем сильнее будет притягательность соленоида.

Магнитное поле прямолинейного тока

Линии магнитной индукции представляют собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику. Центр окружностей совпадает с осью проводника.

Вид сверху:

Если ток идет вверх, то силовые линии направлены против часовой стрелки. Если вниз, то они направлены по часовой стрелке. Их направление можно определить с помощью правила буравчика или правила правой руки:

Правило буравчика (правой руки)

Если большой палец правой руки, отклоненный на 90 градусов, направить в сторону тока в проводнике, то остальные 4 пальца покажут направление линий магнитной индукции.

Модуль вектора магнитной индукции на расстоянии r от оси проводника:

B=μμ0I2πr..

Модуль напряженности:

H=I2πr.

Магнитное поле кругового тока

Силовые линии представляют собой окружности, опоясывающие круговой ток. Вектор магнитной индукции в центре витка направлен вверх, если ток идет против часовой стрелки, и вниз, если по часовой стрелке.

Определить направление силовых линий магнитного поля витка с током можно также с помощью правила правой руки:

Если расположить четыре пальца правой руки по направлению тока в витке, то отклоненный на 90 градусов большой палец, покажет направление вектора магнитной индукции.

Модуль вектора магнитной индукции в центре витка, радиус которого равен R:

B=μμ0I2R..

Модуль напряженности в центре витка:

H=I2R..

Пример №2. На рисунке изображен проволочный виток, по которому течет электрический ток в направлении, указанном стрелкой. Виток расположен в вертикальной плоскости. Точка А находится на горизонтальной прямой, проходящей через центр витка. Как направлен (вверх, вниз, влево, вправо) вектор магнитной индукции магнитного поля в точке А?

Если мысленно обхватить виток так, чтобы четыре пальца правой руки были бы направлены в сторону тока, то отклоненный на 90 градусов большой палец правой руки показал бы, что вектор магнитной индукции в точке А направлен вправо.

Направление вектора магнитной индукции и способы его определения

Чтобы определить направление вектора магнитной индукции, нужно:

  1. Расположить в магнитном поле компас.
  2. Дождаться, когда магнитная стрелка займет устойчивое положение.
  3. Принять за направление вектора магнитной индукции направление стрелки компаса «север».

В пространстве между полюсами постоянного магнита вектор магнитной индукции выходит из северного полюса:

При определении направления вектора магнитной индукции с помощью витка с током следует применять правило буравчика:

При вкручивании острия буравчика вдоль направления тока рукоятка будет вращаться по направлению вектора →B магнитной индукции.

Отсюда следует, что:

Если по витку ток идет против часовой стрелки, то вектор магнитной индукции →B направлен вверх.

Если по витку ток идет по часовой стрелке, то вектор магнитной индукции →B направлен вниз.

Способы обозначения направлений векторов:

Вверх
Вниз
Влево
Вправо
На нас перпендикулярно плоскости чертежа
От нас перпендикулярно плоскости чертежа

Пример №1. На рисунке изображен проводник, по которому течет электрический ток. Направление тока указано стрелкой. Как направлен (вверх, вниз, влево, вправо, от наблюдателя, к наблюдателю) вектор магнитной индукции в точке С?

Если мысленно начать вкручивать острие буравчика по направлению тока, то окажется, что вектор магнитной индукции в точке С будет направлен к нам — к наблюдателю.

Направление вектора МИ

Направление магнитных полей может указать стрелка магнита, помещаемая в эти поля. Она будет крутиться до тех пор, пока не остановится. Северный конец стрелки покажет, куда ориентирован B→ орт того или иного поля.

Линии магнитной индукции

Таким же образом ведёт себя рамка с током, имеющая возможность без помех ориентироваться в МП. Направленность вектора индукции указывает ориентацию нормали к такому замкнутому электромагнитному контуру.

Внимание! Здесь используют правило буравчика (правого винта). Если винт вращать так, как направлен ток в рамке, то поступательное продвижение винта совпадёт с направлением положительной нормали. В некоторых случаях, чтобы найти направление, применяют правило правой руки

В некоторых случаях, чтобы найти направление, применяют правило правой руки.

Наглядное отображение линий МИ

Линию, к которой можно провести касательную, совпадающую с B→, называют линией магнитной индукции (МИ). С помощью таких линий можно визуально отобразить магнитное поле. Это сомкнутые контурные чёрточки, которые охватывают токи. Их густота всегда пропорциональна величине B→ в конкретной точке МП.

Информация. Когда имеют дело с МП прямого движения заряженных частиц, то эти линии изображаются в виде концентрических окружностей. Они имеют свой центр, расположенный на прямой линии с током, и находятся в плоскостях, расположенных под прямым углом к нему.

С направлением магнитных линий также можно определиться, пользуясь правилом буравчика.

Понятие магнитного поля

Заряженные электроны вращаются вокруг собственной оси и вращаются по орбите вокруг ядра атома. Такое движение создает электрический ток, создающий, в свою очередь, магнитное поле. Вращение электронов в одну сторону создает магнитный момент.

Все атомы разделены на домены (группы). В каждом домене более миллиарда атомов, которые имеют общее направление и в сумме дают значительный магнитный момент.

В теле или предметах домены расположены не упорядоченно, поэтому тело может не иметь магнитного момента. Если тело поместить в магнитное поле, все домены выстраиваются в одном направлении, при этом их магнитные моменты суммируются.

Притяжение намагниченных предметов объясняется тем, что любое тело или система всегда пытаются занять положение, когда энергия (потенциальная) будет стремиться к нулю. Если магниты касаются друг друга, их энергия меньше, чем у расположенных на расстоянии.

Сила, ориентирующая стрелку компаса в пространстве, называется магнитной. Тело или предмет, имеющие собственное магнитное поле, называют постоянным магнитом.

Первым описал внутренние процессы электромагнитного поля Джеймс Клерк Максвелл. Изменения поля создают электромагнитную волну. Волна распространяется в диэлектрической среде (в пустоте тоже). Скорость распространения зависит напрямую от магнитной проницаемости диэлектрической среды. В вакууме скорость волны равна скорости распространения света.

Движущиеся электрические заряды являются источником магнитного поля, которое возникает в пространстве около проводника с током. Это доказал Эрстед в 1820 году с помощью опыта, при котором магнитная стрелка компаса отклонялась под действием электричества.

Магнитное поле проводника с током

Электрический ток, протекающий по проводнику с током, создает в окружающем его пространстве магнитное поле. Чем больше ток, проходящий по проводнику, тем сильнее возникающее вокруг него магнитное поле.

Магнитные силовые линии этого поля располагаются по концентрическим окружностям, в центре которых находится проводник с током.

Направление линий магнитного поля вокруг проводника с током всегда находится в строгом соответствии с направлением тока, проходящего по проводнику.

Направление магнитных силовых линий можно определить по правилу буравчика: если поступательное движение буравчика (1) совпадает с направлением тока (2) в проводнике, то вращение его рукоятки укажет направление силовых линий (4) магнитного поля вокруг проводника.

При изменении направления тока линии магнитного поля также изменяют свое направление.

По мере удаления от проводника магнитные силовые линии располагаются реже. Следовательно, индукция магнитного поля уменьшается.

Направление тока в проводнике принято изображать точкой, если ток идет к нам, и крестиком, если ток направлен от нас.

Для получения сильных магнитных полей при небольших токах обычно увеличивают число проводников с током и выполняют их в виде ряда витков; такое устройство называют катушкой.

В проводнике, согнутом в виде витка, магнитные поля, образованные всеми участками этого проводника, будут внутри витка иметь одинаковое направление. Поэтому интенсивность магнитного поля внутри витка будет больше, чем вокруг прямолинейного проводника. При объединении витков в катушку магнитные поля, созданные отдельными витками, складываются. При этом концентрация силовых линий внутри катушки возрастает, т. е. магнитное поле внутри нее усиливается.

Чем больше ток, проходящий через катушку, и чем больше в ней витков, тем сильнее создаваемое катушкой магнитное поле. Магнитное поле снаружи катушки также складывается из магнитных полей отдельных витков, однако магнитные силовые линии располагаются не так густо, вследствие чего интенсивность магнитного поля там не столь велика, как внутри катушки.

Магнитное поле катушки с током имеет такую же форму, как и поле прямолинейного постоянного магнита: силовые магнитные линии выходят из одного конца катушки и входят в другой ее конец. Поэтому катушка с током представляет собой искусственный электрический магнит. Обычно для усиления магнитного поля внутрь катушки вставляют стальной сердечник; такую катушку называют электромагнитом.

Направление линий магнитной индукции катушки с током находят по правилу правой руки:

если мысленно обхватить катушку с током ладонью правой руки так, чтобы четыре пальца указывали направление тока в ее витках, тогда большой палец укажет направление вектора магнитной индукции.

Для определения направления линий магнитного поля, создаваемого витком или катушкой, можно использовать также правило буравчика:

если вращать ручку буравчика по направлению тока в витке или катушке, то поступательное движение буравчика укажет направление вектора магнитной индукции.

Электромагниты нашли чрезвычайно широкое применение в технике. Полярность электромагнита (направление магнитного поля) можно определить и с помощью правила правой руки.

Изменения в магнитосфере Земли

После открытия магнитного поля Земли многие ученые-физики решили заняться этой проблемой. В 1635 году Г. Геллибранд выяснил, что этот слой земного шара находится в постоянных изменениях. Эти изменения делятся на два типа: постоянные и недолгосрочные. Постоянные возникают из-за залежей рудных полезных ископаемых, которые дают искажения из-за собственных сильных потоков энергии. Виновником же недолгосрочных изменений является так называемый «солнечный ветер». Это поток электрических частиц, которые извергаются с поверхности Солнца. Взаимодействие этих двух явлений приводит к «магнитным бурям». Если такая буря сильная, она даже может привести к потере радиосвязи или неопределенности стрелки компаса. Одним из красивейших последствий подобных бурь является северное сияние, так как полюса особенно сильно подвержены их влиянию.

Таким образом, магнетизм присутствует в жизни каждого человека. Он влияет на нас, хоть мы этого и не ощущаем. Благодаря этому явлению наша планета не подвергается отрицательным влияниям извне, и у нас есть возможность понаблюдать за разноцветными переливами Авроры.

Расчет магнитных цепей

Теперь внимание. Мы можем провести прямую аналогию и рассматривать магнитный поток в цепи, как характеристику электрической цепи — силу тока

Рассмотренное второе следствие означает, что для магнитной цепи, также как и для электрической, справедливо первое правило Кирхгофа. Отсюда можно лаконично перейти к закону полного тока, который в рамках классического магнетизма будет выглядеть следующим образом (приготовьтесь, немного математики):

Также мы помним, что напряженность магнитного поля связана с магнитным потоком следующим образом:

Руководствуясь приведенным законом полного тока и определением напряженности через магнитный поток, мы можем переписать закон полного тока относительно магнитного потока.

Откуда в уравнении появился и что символизирует аргумент l? Все просто. Так как мы рассматриваем контур L, то логично предположить, что на разных его участках наши показатели могут принимать разные значения: площадь сечения может изменяться, как и магнитная проницаемость или магнитный поток.

Полученное уравнение можно рассматривать как второй закон Кирхгофа, который, напомню, звучит следующим образом:

Для полной ясности, проведем аналогию между электрическими и магнитными цепями, а также их величинами.

Именно проведя аналогичное представление для электрической цепи, мы можем рассчитывать магнитные цепи. Для того, чтобы это сделать, следует:

  • Мысленно разбить сердечник на отдельные однородные участки (непрерывные, с постоянным сечением) без разветвлений и определить их магнитные сопротивления;

  • Построить эквивалентную электрическую цепь, последовательно заменяя участки магнитной цепи участками электрической с электрическими сопротивлениями, а также заменяя индуктивности (катушки) на источники ЭДС;

  • После обозначения заданных сопротивлений и ЭДС, можем вычислить в общем токи в элементах электрической цепи;

  • Произвести замену полученных величин согласно таблице (токи в потоки, ЭДС в МДС [Магнитодвижущую силу / Ампер-витки], а электрическое сопротивление в магнитное сопротивление).

Именно таким образом, мы можем рассчитать характеристики магнитной цепи. Полученные результаты позволяют, например, вычислить индуктивности.

Соленоид

Соленоид отличается от обычной катушки по двум признакам:

  • Длина обмотки превышает диаметр в несколько раз;
  • Толщина обмотки меньше диаметра катушки также в несколько раз.

Соленоидальный тип катушки

Параметры соленоида можно узнать из такого выражения:

L=µ0N2S/l,

где:

  • µ0 – магнитная постоянная;
  • N – количество витков;
  • S – площадь поперечного сечения обмотки;
  • l – длина обмотки.

Важно! Приведенное выражение справедливо для соленоида без сердечника. В противном случае необходимо дополнительно внести множитель µ, который равен магнитной проницаемости сердечника

Чем большую магнитную проницаемость будет иметь сердечник, тем больше увеличится итоговое значение.

Вектор магнитной индукции

ОпределениеВектор магнитной индукции — силовая характеристика магнитного поля. Она определяет, с какой силой магнитное поле действует на заряд, движущийся в поле с определенной скоростью. Обозначается как→B. Единица измерения — Тесла (Тл).

За единицу магнитной индукции можно принять магнитную индукцию однородного поля, котором на участок проводника длиной 1 м при силе тока в нем 1 А действует со стороны поля максимальная сила, равна 1 Н. 1 Н/(А∙м) = 1 Тл.

Модуль вектора магнитной индукции — физическая величина, равная отношению максимальной силы, действующей со стороны магнитного поля на отрезок проводника с током, к произведению силы тока и длины проводника:

B=FAmaxIl..

За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле.

Наглядную картину магнитного поля можно получить, если построить так называемые линии магнитной индукции. Линиями магнитной индукции называют линии, касательные к которым направлены так же, как и вектор магнитной индукции в данной точке поля.

Особенность линий магнитной индукции состоит в том, что они не имеют ни начала, ни конца. Они всегда замкнуты. Поля с замкнутыми силовыми линиями называют вихревыми. Поэтому магнитное поле — вихревое поле.

Замкнутость линий магнитной индукции представляет собой фундаментальное свойство магнитного поля. Оно заключается в том, что магнитное поле не имеет источников. Магнитных зарядов, подобным электрическим, в природе нет.

Что влияет на индуктивность?

От каких факторов зависит индуктивность катушки? Давайте проведем несколько опытов.  Я намотал катушку с немагнитным сердечником. Ее индуктивность настолько мала, что LC — метр мне показывает ноль.

Имеется ферритовый сердечник

Начинаю вводить катушку в сердечник на самый край

LC-метр  показывает 21 микрогенри.

Ввожу катушку на середину феррита

35 микрогенри. Уже лучше.

Продолжаю вводить катушку на правый край феррита

20 микрогенри. Делаем вывод, самая большая индуктивность на цилиндрическом феррите возникает в его середине.  Поэтому, если будете мотать на цилиндрике, старайтесь мотать в середине феррита. Это свойство используется для плавного изменения индуктивности  в переменных катушках индуктивности:

где

1 — это каркас катушки

2 — это витки катушки

3 — сердечник, у которого сверху пазик под маленькую отвертку. Вкручивая или выкручивая сердечник, мы тем самым изменяем индуктивность катушки.

Экспериментируем дальше. Давайте попробуем сжимать и разжимать витки катушки. Для начала ставим ее в середину и начинаем сжимать витки

Индуктивность стала почти 50 микрогенри!

А давайте-ка попробуем расправим витки по всему ферриту

13 микрогенри. Делаем вывод: для максимальной индуктивности мотать катушку надо «виток к витку».

Убавим витки катушки в два раза. Было 24 витка, стало 12.

Совсем маленькая индуктивность. Убавил количество витков в 2 раза, индуктивность уменьшилась в 10 раз.  Вывод: чем меньше количество витков — тем меньше индуктивность и наоборот. Индуктивность меняется не прямолинейно виткам.

Давайте поэкспериментируем с ферритовым кольцом.

Замеряем индуктивность

15 микрогенри

Отдалим витки катушки друг от друга

Замеряем снова

Хм, также 15 микрогенри. Делаем вывод: расстояние от витка до витка  не играет никакой роли в катушке индуктивности тороидального исполнения.

Мотнем побольше витков. Было 3 витка, стало 9.

Замеряем

Офигеть! Увеличил количество витков  в 3 раза, а индуктивность увеличилась в 12 раз! Вывод: индуктивность меняется не прямолинейно виткам.

Если верить формулам для расчета индуктивностей, индуктивность зависит от «витков в квадрате». Эти формулы я здесь выкладывать не буду, потому как не вижу надобности. Скажу только, что индуктивность зависит еще от таких параметров, как сердечник (из какого материала он сделан), площадь поперечного сечения сердечника, длина катушки.

Из истории исследований

В области северного магнитного экватора, отличного от географического, северный конец отходит вниз, а в южном, наоборот, — вверх. В 1600 году английским врачом Уильямом Гильбертом впервые были сделаны предположения о наличии магнитного поля Земли, вызывающего определённое поведение предметов, предварительно намагниченных. В своей книге он описал опыт с шаром, снабжённым железной стрелкой. В результате исследований он пришёл к выводу о том, что Земля представляет собой большой магнит. Эксперименты проводил и английский астроном Генри Геллибрант. В результате своих наблюдений он пришёл к выводу о том, что магнитное поле Земли подвержено медленным изменениям.

Советуем изучить — Искусственные механические характеристики асинхронного двигателя

Хосе де Акоста описал возможность использования компаса. Он также установил, чем отличаются Магнитный и Северный полюсы, а в его знаменитой Истории (1590) была обоснована теория о линиях без магнитного отклонения. Значительный вклад в изучение рассматриваемого вопроса внес и Христофор Колумб. Ему принадлежит открытие непостоянства магнитного склонения. Трансформации поставлены в зависимость от изменения географических координат. Магнитное склонение — это угол отклонения стрелки от направления Север-Юг. В связи с открытием Колумба активизировалось исследование. Сведения о том, что собой представляет магнитное поле Земли, крайне необходимы были мореплавателям. Работал над этой проблемой и М. В. Ломоносов. Он для изучения земного магнетизма рекомендовал вести системные наблюдения, используя для этого постоянные пункты (подобие обсерваторий)

Также очень важно было, по мнению Ломоносова, это осуществлять и на море. Эта мысль великого учёного была реализована в России спустя шестьдесят лет. Открытие Магнитного полюса на Канадском архипелаге принадлежит полярному исследователю англичанину Джону Россу (1831 год)

А в 1841 он же открыл другой полюс планеты, но уже в Антарктиде. Гипотезу о происхождении магнитного поля Земли выдвинул Карл Гаусс. Вскоре он же доказал, что большая часть его питается из источника внутри планеты, но причина его незначительных отклонений находится во внешней среде

Открытие Магнитного полюса на Канадском архипелаге принадлежит полярному исследователю англичанину Джону Россу (1831 год). А в 1841 он же открыл другой полюс планеты, но уже в Антарктиде. Гипотезу о происхождении магнитного поля Земли выдвинул Карл Гаусс. Вскоре он же доказал, что большая часть его питается из источника внутри планеты, но причина его незначительных отклонений находится во внешней среде.

Замкнутый контур с током в магнитном поле

Чтобы изучить особенности магнитного поля, возьмём небольшую проволочную прямоугольную рамку. Расположим проводники так, чтобы они находились максимально близко друг к другу. Это нужно для того, чтобы минимизировать результирующую силу, действующую со стороны магнитного поля на эти проводники. Тогда на первый план исследования «выйдут» силы, действующие на проводники, образующие контур.

Теперь подвесим обмотанную проволокой рамку на тонких гибких проводниках, соединённых вместе. На большом расстоянии от рамки (по сравнению с её размерами) вертикально установим провод. Зафиксируем, что при пропускании тока через рамку, провод повернется таким образом, что окажется в плоскости рамки. Изменим направление заряженных частиц и установим, что рамка повернётся на 180 градусов.

Магнитное поле создают и постоянные магниты. Возьмём ту же рамку с током, подвешенную на гибких проводах, и поместим её между полюсами магнита. Подадим ток и убедимся, что рамка будет двигаться вокруг своей оси до тех пор, пока не установится вдоль линии, которая соединяет полюсы магнита. Получается, что однородное магнитное поле ориентирует рамку в пространстве. В неоднородном же поле рамка помимо вращения будет приближаться или отдаляться от проводника с током.

Итак, на основе проведённых экспериментов, было продемонстрировано, что магнитное поле обладает следующими свойствами:

  1. Источниками магнитного поля являются направленные электрические заряды (ток) и постоянные магниты;
  2. Обнаружить магнитное поле можно с помощью действия электрического тока на движущиеся заряды или на магнитную стрелку.

Для описания магнитного поля вводят векторную характеристику – вектор магнитной индукции (B), за направление которого принимают направление, установленное северным полюсом «N» магнитной стрелки. Как распознать это направление? Очень просто. Достаточно установить ориентацию положительной нормали. Для того чтобы это сделать, необходимо вспомнить буравчика и «провернуть» его по направлению тока в рамке. Положительная нормаль будет совпадать с вектором магнитной индукции в центре рамки.

Если нет рамки – не беда. В магнитном поле прямолинейного проводника с током можно воспользоваться магнитной стрелкой, которая в каждой точке пространства установится по касательной к окружности. Таким образом, в центре кругового тока магнитная стрелка располагается перпендикулярно плоскости, которая и генерирует направленное движение электрических частиц.

Самый простой способ определить направление вектора магнитной индукции – воспользоваться правилом буравчика. Если направление поступательного движения буравчика и направление тока совпадают, то «ручка буравчика» сонаправлена с вектором магнитной индукции B.

Если магнитное поле создано сразу несколькими источниками, то актуален принцип суперпозиций полей. То есть индукция магнитного поля в некоторой точке пространства – есть векторная сумма магнитных полей, созданных каждым отдельным источником. Стоит оговориться, что каждый источник рассматривается изолировано, то есть без учёта воздействия на него других магнитных полей.

Магнитное поле: все формулы

В однородное поле помещают плоские контуры – изготовленные из точнейшей проволоки замкнутые проводники – с током. Измерения пикового вращающего момента показывает, что он:

  1. прямо пропорционален силе протекающего через контур электрического тока I;
  2. зависит от площади контура S;
  3. не зависит от формы замкнутого проводника при равной площади.

Магнитный момент контура с током равен:

pm = IS.

Рассмотрим остальные формулы, позволяющие рассчитать электромагнитное поле.

Вращающий и магнитный моменты характеризуют электромагнитную индукцию, по модулю она равняется:

B= Mmax : pm.

Измеряется в теслах (Тл), названа в честь величайшего сербского учёного XX века Николы Теслы.

При расчётах неоднородных полей в них помещают маленькие контуры, по габаритам сравнимые с расстояниями, на которых наблюдаются изменения.

Магнитное полевое образование характеризуется напряжённостью H, пропорциональной индукции в вакууме:

B = μ0H,

μ0 = 4π*10-7 Гн/м или Тл*м/А.

При вычислениях для вещества добавляется коэффициент магнитной проницаемости μ, для вакуума он равен единице.

B = μ μ0H.

Магнитная индукция соленоида:

B = μ0nI, здесь:

  • n = N : l, N – число витков катушки, l – её длина;
  • I – сила протекающего тока.

Формула энергии W магнитного поля для соленоида:

W = LI2 : 2 = ФI : 2

  • L – индуктивность катушки;
  • I – сила тока;
  • Ф – магнитный поток.

Сила взаимодействия между проводниками с электрическим током:

F = μ μ0I1I2l : 2πr, здесь:

  • I1, I2 – сила тока в обоих проводниках;
  • l – их длина;
  • r – расстояние между проводами с током.

Наибольший момент:

Mmax= BIS;

S – площадь контура.

Электромагнитное поле образуется вокруг намагниченных тел и проводников с током.

Индуктивность

Индуктивность — это способность накапливать магнитное поле. Она характеризует способность проводника сопротивляться электрическому току. Проще всего это делать с помощью катушки, потому что катушка состоит из витков, которые представляют собой контуры. Вспомните про магнитный поток и обруч под дождем — в контуре создается магнитный поток. Где поток, там и электромагнитная индукция.

Индуктивность контура зависит от его формы и размеров, от магнитных свойств окружающей среды и не зависит от силы тока в контуре.

Как работает катушка

Вокруг каждого проводника, по которому протекает ток, образуется магнитное поле. Если поместить проводник в переменное поле — в нем возникнет ток.

Магнитные поля каждого витка катушки складываются. Поэтому вокруг катушки, по которой протекает ток, возникает сильное магнитное поле. При изменении силы тока в катушке будет изменяться и магнитный поток вокруг нее.

Задачка раз

На рисунке приведен график зависимости силы тока от времени в электрической цепи, индуктивность которой 1 мГн. Определите модуль ЭДС самоиндукции в интервале времени от 15 до 20 с. Ответ выразите в мкВ.

Решение

За время от 15 до 20 с сила тока изменилась от 20 до 0 мА. Модуль ЭДС самоиндукции равен:

Ответ: модуль ЭДС самоиндукции с 15 до 20 секунд равен 4 мкВ.

Задачка два

По проволочной катушке протекает постоянный электрический ток силой 2 А. При этом поток вектора магнитной индукции через контур, ограниченный витками катушки, равен 4 мВб. Электрический ток какой силы должен протекать по катушке для того, чтобы поток вектора магнитной индукции через указанный контур был равен 6 мВб?

Решение

При протекании тока через катушку индуктивности возникает магнитный поток, численно равный Ф = LI.

Отсюда индуктивность катушки равна:

Тогда для достижения значений потока вектора магнитной индукции в 6 мВб ток будет равен:

Ответ: для достижения значений потока вектора магнитной индукции в 6 мВб необходим ток в 3 А.

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C.344- 351.
  2. Жилко В.В. Физика: учеб. пособие для 11-го кл. общеобразоват. учрежде-ний с рус. яз. Обучения с 12-летним сроком обучения (базовый и повышенный уровни) / В.В. Жилко, Л.Г. Маркович. — Мн.: Нар. асвета, 2008. — С. 170-182.
  3. Мякишев, Г.Я. Физика: Электродинамика. 10-11 кл.: учеб. для углубленного изучения физики / Г.Я. Мякишев, А.3. Синяков, В.А. Слободсков. — М.: Дрофа, 2005. — С. 399-408, 412-414.

Магнитный поток

Магнитный поток – это скалярная величина, которая характеризует влияние магнитной индукции на данный металлический контур.

Магнитная индукция определяется количеством силовых линий, пересекающих 1 см2 металлического сечения.

Магнитометры, используемые для его измерения, называются теслометрами.

После прекращения движения электронов в катушке сердечник, если он сделан из мягкого железа, теряет свои магнитные свойства. Если он изготовлен из стали, он может некоторое время сохранять свои магнитные свойства.

Взаимодействие магнитов

Постоянный магнит (или магнитная стрелка) ориентирован по магнитному меридиану Земли. Конец, указывающий на север, называется северным полюсом (N), а противоположный конец – южным полюсом (S). Поднося два магнита ближе, мы замечаем, что одноименные полюса отталкиваются друг от друга, а противоположные – притягиваются (рис. 1).

Если мы разделим полюса, разрезав постоянный магнит на две части, мы обнаружим, что каждая из них также будет иметь по два полюса, то есть это будет постоянный магнит (рис. 2). Оба полюса – север и юг – неотделимы друг от друга, равны.

Магнитное поле, создаваемое Землей или постоянными магнитами, представлено, как электрическое поле, магнитными силовыми линиями. Изображение силовых линий магнитного поля магнита можно получить, положив поверх него лист бумаги, на который ровным слоем насыпают железные опилки. Попадая в магнитное поле, опилки намагничиваются: у каждого из них есть северный и южный полюс. Противоположные полюса имеют тенденцию сближаться, но этому препятствует трение опилок о бумагу. Если вы коснетесь бумаги пальцем, трение уменьшится, и опилки будут притягиваться друг к другу, образуя цепочки, которые представляют собой силовые линии магнитного поля.

На рис. 3 показано положение в поле прямого магнита из опилок и маленькие магнитные стрелки, указывающие направление силовых линий магнитного поля. Это направление принимается за направление северного полюса магнитной стрелки.

Основные формулы и методические рекомендации по решению задач на электромагнитную индукцию

«Превратить магнетизм в электричество…»

Майкл Фарадей

Данная тема будет посвящена рассмотрению основных формул и методических рекомендаций по решению задач на электромагнитную индукцию

Рассмотрим основные понятия электромагнитной индукции. Магнитныйпоток – это скалярная физическая величина, численно равная произведению модуля вектора магнитной индукции на площадь поверхности, ограниченной контуром, и на косинус угла между нормалью к поверхности и направлением линий магнитной индукцией.

Изменение магнитного потока влечет за собой такое явление, как электромагнитнаяиндукция . Чем быстрее изменяется магнитный поток, тем большая сила тока возникает в замкнутом контуре.

В результате явления электромагнитной индукции, в контуре возникает электродвижущая сила – она так и называется ЭДСиндукции .

Поскольку сила тока связана с индукцией порождаемого им магнитного поля, а магнитная индукция, в свою очередь, связана с магнитным потоком, возникает явление самоиндукции. Самоиндукция

– это явление возникновения ЭДС индукции в проводящем контуре при изменении протекающего через контур тока. То есть, при изменении силы тока, в цепи возникает индукционный ток, который стремится препятствовать этому изменению. В связи с этим, вводится такая величина, какиндуктивность – коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность, краем которой является этот контур. Иными словами, индуктивность характеризует способность проводника влиять на быстроту установления тока в цепи. Она, конечно, обнаруживает себя только при изменении силы тока в цепи.

Сведём в таблицу основные формулы по рассматриваемой теме.

Формула Описание формулы
Магнитный поток через контур площадью S

, гдеB – модуль вектора магнитной индукции,a – угол между направлением вектора магнитной индукции и нормалью к плоскости контура.

ЭДС индукции, возникающая в контуре при изменении магнитного потока на величину DF за промежуток времени Dt
ЭДС индукции, возникающая в движущемся со скоростью проводнике длиной , где a

– угол между направлением вектора магнитной индукции и направлением вектора скорости.

Коэффициент самоиндукции (индуктивность) контура.
ЭДС самоиндукции, возникающая в контуре при изменении силы тока на величину DI

за промежуток времени Dt .

Индуктивность соленоида объёмом V

, гдеm – магнитная проницаемость среды,m 0 – магнитная постоянная Гн/м,n – число витков на единицу длины.

Энергия магнитного поля катушки с индуктивностью L

, гдеI – сила тока, F – магнитный поток.

Энергия магнитного поля соленоида объёмом V

, гдеB — модуль вектора магнитной индукции.

Методические рекомендации по решению задач на электромагнитную индукцию

1. Установить причину изменения магнитного потока через контур. Исходя из формулы, причиной может стать либо изменение магнитной индукции поля, либо изменение площади контура, а также угла между направлением линий магнитной индукции и нормалью к плоскости контура (чаще всего, это поворот рамки с током).

2. Записать закон электромагнитной индукции (закон Фарадея).

3. Если речь идет о поступательном движении проводника, применить формулу, по которой вычисляется ЭДС индукции в движущемся проводнике.

4. Определить изменение магнитного потока, рассматривая его в выбранные моменты времени t

1 иt 2 (как правило, это должны быть те моменты времени, которые описываются в задаче).

5. Подставить найденное выражение для изменения магнитного потока в закон Фарадея. При необходимости, используя дополнительные уравнения, составить систему и решить её относительно искомых величин.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: