Закон Кирхгофа для термодинамики
Кирхгоф показал, что соотношение излучательной и поглощательной способности твёрдого тела не зависит от вещества, но считается функцией частоты и температуры при термодинамическом равновесии. Особенно интересной абстракцией в этом плане стало абсолютно-чёрное тело. Это объект, поглощающий падающее на него излучение. Для него формула, представленная на рисунке упрощается. Излучающая способность абсолютно-чёрного тела описывает функцию формулы для прочих тел. Эта ипостась имеет максимум, определяемый законом смещения Вина и амплитуды, определяемую первым законом Вина (частным случаем считается формула Планка).
Отношение излучательной и поглощательной способности любого тела находится по формулам для любых температур и частот. При помощи спектрометра возможно оценить испускаемые волны. Это позволяют теоретически предсказать поглощательную способность любого предмета. На практике подобные исследования приводят к созданию объектов типа самолёт-невидимка, с трудом видимый локаторами.
Из закона сохранения энергии следует, что полное излучение равняется поглощению в термодинамическом равновесии. Значит, по всему спектру их соотношение равняется единице. До признания закона Кирхгофа уже установлено, что – чем лучше тело поглощает энергию, тем оно больше излучает
Обратите внимание, спектральные плотности поглощения и излучения имеют разную форму. В этом и заключается гениальное прозрение Кирхгофа
Взаимодействие определяется законом Вина и на графике выглядит подобно горе с вершиной, смещённой влево относительно центра фигуры.
Это позволяет понять, где находится максимум излучения (на макушке). Во всех участках графика, где линия находится ниже единицы, тело преимущественно поглощает энергию. Благодаря законам возможно предсказать температуру звёзд, к примеру, по цвету, а каждый кузнец знает, что деталь в горне дошла до кондиции лишь по характерному оттенку свечения. Это практические проявления законов Вина и Кирхгофа.
Вторым интересным наблюдением становится температура. Из графиков плотности излучения видно, чем показатель больше, тем активнее идёт излучение. В частности, звезды не поглощают энергию за малым исключением, но преимущественно излучают. У холодных планет преобладает противоположный процесс. Тело излучает, если его температура выше окружающей среды. В остальных ситуациях преобладает поглощение энергии.
Аналогия закона Кирхгофа
дальнейшее чтение
- Клаус Хентшель : Густав Роберт Кирхгоф и сеть Zusammenarbeit mit Роберт Вильгельм Бунзен, в: Karl von Meyenn (Hrsg.) Die Grossen Physiker , Мюнхен: Beck, vol. 1 (1997), стр. 416–430, 475–477, 532–534.
-
Тексты в Викиисточнике:
- « Кирхгоф, Густав Роберт ». Энциклопедия Американа . 1920 г.
- « Кирхгоф, Густав Роберт ». Справочная работа нового студента . 1914 г.
- « Кирхгоф, Густав Роберт ». Британская энциклопедия (11-е изд.). 1911 г.
- « Кирхгоф, Густав Роберт ». Новая международная энциклопедия . 1905 г.
- « Эскиз Густава Роберта Кирхгофа ». Ежемесячный научно-популярный журнал . Vol. 33. Май 1888 г.
- « Кирхгоф, Густав Роберт ». Американская циклопедия . 1879 г.
Использование закона Кирхгофа о напряжениях в сложной цепи
Закон Кирхгофа о напряжениях можно использовать для определения неизвестного напряжения в сложной цепи, где известны все другие напряжения вдоль определенного «контура». В качестве примера возьмем следующую сложную схему (на самом деле две последовательные цепи, соединенные одним проводом внизу):
Рисунок 10 – Правило напряжений Кирхгофа в сложной цепи
Чтобы упростить задачу, я опустил значения сопротивлений и просто указал падение напряжения на каждом резисторе. Две последовательные цепи имеют между собой общий провод (провод 7-8-9-10), что делает возможными измерения напряжения между этими двумя цепями. Если бы мы хотели определить напряжение между точками 4 и 3, мы могли бы составить уравнение правила напряжений Кирхгофа с напряжением между этими точками как неизвестным:
E4-3 + E9-4 + E8-9 + E3-8 = 0
E4-3 + 12 + 0 + 20 = 0
E4-3 + 32 = 0
E4-3 = -32 В
Рисунок 11 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 4 и 3
Рисунок 12 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 9 и 4
Рисунок 13 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 8 и 9
Рисунок 14 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 3 и 8
Обойдя контур 3-4-9-8-3, мы записываем значения падений напряжения так, как их регистрировал бы цифровой вольтметр, измеряя с красным измерительным проводом в точке впереди и черным измерительным проводом на точке позади, когда мы продвигаемся вперед по контуру. Следовательно, напряжение в точке 9 относительно точки 4 является положительным (+) 12 вольт, потому что «красный провод» находится в точке 9, а «черный провод» – в точке 4.
Напряжение в точке 3 относительно точки 8 составляет положительные (+) 20 вольт, потому что «красный провод» находится в точке 3, а «черный провод» – в точке 8. Напряжение в точке 8 относительно точки 9, конечно, равно нулю, потому что эти две точки электрически общие.
Наш окончательный ответ для напряжения в точке 4 относительно точки 3 – это отрицательные (-) 32 вольта, говорящие нам, что точка 3 на самом деле положительна относительно точки 4, именно это цифровой вольтметр показал бы при красном проводе в точке 4 и черном проводе в точке 3:
Рисунок 15 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 4 и 3
Другими словами, первоначальное размещение наших «измерительных щупов» в этой задаче правила напряжений Кирхгофа было «обратным». Если бы мы сформировали наше уравнение второго закона Кирхгофа, начиная с E3-4, вместо E4-3, обходя тот же контур с противоположной ориентацией измерительных проводов, окончательный ответ был бы E3-4 = +32 вольта:
Рисунок 16 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 3 и 4
Важно понимать, что ни один из подходов не является «неправильным». В обоих случаях мы приходим к правильной оценке напряжения между двумя точками 3 и 4: точка 3 положительна по отношению к точке 4, а напряжение между ними составляет 32 вольта
Использование закона Кирхгофа о напряжениях в сложной цепи
Закон Кирхгофа о напряжениях можно использовать для определения неизвестного напряжения в сложной цепи, где известны все другие напряжения вдоль определенного «контура». В качестве примера возьмем следующую сложную схему (на самом деле две последовательные цепи, соединенные одним проводом внизу):
Чтобы упростить задачу, я опустил значения сопротивлений и просто указал падение напряжения на каждом резисторе. Две последовательные цепи имеют между собой общий провод (провод 7-8-9-10), что делает возможными измерения напряжения между этими двумя цепями. Если бы мы хотели определить напряжение между точками 4 и 3, мы могли бы составить уравнение правила напряжений Кирхгофа с напряжением между этими точками как неизвестным:
E4-3 + E9-4 + E8-9 + E3-8 = 0
E4-3 + 12 + 0 + 20 = 0
E4-3 + 32 = 0
E4-3 = -32 В
Обойдя контур 3-4-9-8-3, мы записываем значения падений напряжения так, как их регистрировал бы цифровой вольтметр, измеряя с красным измерительным проводом в точке впереди и черным измерительным проводом на точке позади, когда мы продвигаемся вперед по контуру. Следовательно, напряжение в точке 9 относительно точки 4 является положительным (+) 12 вольт, потому что «красный провод» находится в точке 9, а «черный провод» – в точке 4.
Напряжение в точке 3 относительно точки 8 составляет положительные (+) 20 вольт, потому что «красный провод» находится в точке 3, а «черный провод» – в точке 8. Напряжение в точке 8 относительно точки 9, конечно, равно нулю, потому что эти две точки электрически общие.
Наш окончательный ответ для напряжения в точке 4 относительно точки 3 – это отрицательные (-) 32 вольта, говорящие нам, что точка 3 на самом деле положительна относительно точки 4, именно это цифровой вольтметр показал бы при красном проводе в точке 4 и черном проводе в точке 3:
Другими словами, первоначальное размещение наших «измерительных щупов» в этой задаче правила напряжений Кирхгофа было «обратным». Если бы мы сформировали наше уравнение второго закона Кирхгофа, начиная с E3-4, вместо E4-3, обходя тот же контур с противоположной ориентацией измерительных проводов, окончательный ответ был бы E3-4 = +32 вольта:
Важно понимать, что ни один из подходов не является «неправильным». В обоих случаях мы приходим к правильной оценке напряжения между двумя точками 3 и 4: точка 3 положительна по отношению к точке 4, а напряжение между ними составляет 32 вольта
Действующий закон Кирхгофа
Ток, входящий в любое соединение, равен току, выходящему из этого соединения. я2 + я3 = я1 + я4
Этот закон еще называют Первый закон Кирхгофа, Правило Кирхгофа, или же Правило соединения Кирхгофа (или же узловое правило).
Этот закон гласит, что для любого узла (стыка) в электрическая цепь, сумма токи втекающий в этот узел равен сумме токов, вытекающих из этого узла; или эквивалентно:
Вспоминая, что ток — это величина со знаком (положительная или отрицательная), отражающая направление к узлу или от него, этот принцип можно кратко сформулировать следующим образом:
- ∑k=1пяk={ displaystyle sum _ {k = 1} ^ {n} {I} _ {k} = 0}
куда п — общее количество ветвей с токами, текущими к узлу или от него.
Закон основан на сохранение заряда где обвинять (измеряется в кулонах) является произведением силы тока (в амперах) на время (в секундах). Если чистый заряд в области постоянен, текущий закон будет действовать на границах области. Это означает, что текущий закон основан на том факте, что чистый заряд в проводах и компонентах постоянен.
Использует
А матрица версия действующего закона Кирхгофа является основой большинства программное обеспечение для моделирования схем, Такие как СПЕЦИЯ. Действующий закон используется с Закон Ома выполнять узловой анализ.
Действующий закон применим к любой сосредоточенной сети независимо от ее характера; односторонние или двусторонние, активные или пассивные, линейные или нелинейные.
Первый закон Кирхгофа
Формулировка №1: Сумма всех токов, втекающих в узел, равна сумме всех токов, вытекающих из узла.
Формулировка №2: Алгебраическая сумма всех токов в узле равна нулю.
Поясню первый закон Кирхгофа на примере рисунка 2.
Рисунок 2. Узел электрической цепи.
Здесь ток I1— ток, втекающий в узел , а токи I2 и I3 — токи, вытекающие из узла. Тогда применяя формулировку №1, можно записать:
I1 = I2 + I3 (1)
Что бы подтвердить справедливость формулировки №2, перенесем токи I2 и I3 в левую часть выражения (1), тем самым получим:
I1 — I2 — I3 = 0 (2)
Знаки «минус» в выражении (2) и означают, что токи вытекают из узла.
Знаки для втекающих и вытекающих токов можно брать произвольно, однако в основном всегда втекающие токи берут со знаком «+», а вытекающие со знаком «-» (например как получилось в выражении (2)).
Можно посмотреть отдельный видеоурок по первому закону Кирхофа в разделе ВИДЕОУРОКИ.
Законы Кирхгофа в комплексной форме
Итак, для того, чтобы вывести математическую формулировку первого закона в комплексной формуле, необходимо представить все синусоидальные токи в комплексных значениях. Формула примет данный вид:
Комплексная форма первого закона Кирхгофа
Расшифровывая формулу получим, что алгебраическая сумма комплексных значений токов всех ветвей, которые сходятся в узле цепи, будет равняться нулю.
Закон №2 сформулирован не менее просто. Для контура замещения, который содержит лишь неактивные элементы и источники ЭДС, в каждую секунду алгебраическая сумма напряжений на данных элементах контура равняется числовой сумме ЭДС. Некоторым может показаться данная формулировка трудной, но при реальном разборе станет ясно, что все весьма просто и элементарно:
Комплексная форма второго закона Кирхгофа
Например, рассмотрим рисунок. Для выбранного на схеме замещения контура 1
u1-u2-u3+u4=0
Для второго контура:
ur-uL=e1-e2
В комплексной записи закон выглядит таким образом:
Контур 1
Контур 2
Закон излучения Кирхгофа
Закон излучения Кирхгофа гласит — отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты для равновесного излучения и не зависит от их формы, химического состава и проч.
В современной формулировке закон звучит следующим образом:
Известно, что при падении электромагнитного излучения на некоторое тело часть его отражается, часть поглощается и часть может пропускаться. Доля поглощаемого излучения на данной частоте называется поглощательной способностью тела . С другой стороны, каждое нагретое тело излучает энергию по некоторому закону, именуемому излучательной способностью тела .
Величины и могут сильно меняться при переходе от одного тела к другому, однако, согласно закону излучения Кирхгофа, отношение испускательной и поглощательной способностей не зависит от природы тела и является универсальной функцией частоты (длины волны) и температуры:
По определению, абсолютно черное тело поглощает все падающее на него излучение, то есть для него . Поэтому функция совпадает с излучательной способностью абсолютно черного тела, описываемой формулой Планка, вследствие чего излучательная способность любого тела может быть найдена, исходя лишь из его поглощательной способности.
Реальные тела имеют поглощательную способность меньше единицы, а значит, и меньшую, чем у абсолютно черного тела, излучательную способность. Тела, поглощательная способность которых не зависит от частоты, называются серыми. Их спектр имеет такой же вид, как и у абсолютно черного тела. В общем же случае поглощательная способность тел зависит от частоты и температуры, и их спектр может существенно отличаться от спектра абсолютно черного тела. Изучение излучательной способности разных поверхностей впервые было проведено шотландским ученым Лесли при помощи его же изобретения — куба Лесли.
В теоретических исследованиях для характеристики спектрального состава равновесного теплового излучения удобнее пользоваться функцией частоты . В экспериментальных работах удобнее пользоваться функцией длины волны . Обе функции связаны друг с другом формулой
В астрофизике закон Кирхгофа часто применяется в следующем виде:
,
где — коэффициент излучения (энергия, излучаемая единичным объемом в единичном интервале частот в единичный телесный за единицу времени); — коэффициент поглощения с учетом вынужденного испускания (, где — плотность вещества, а и — соответственно непрозрачность и эффективная длина пробега фотонов для частоты ); — интенсивность излучения абсолютно черного тела.
Закон Кирхгофа справедлив только для случаев теплового равновесия. Однако, его часто применяют и для неравновесных систем, когда излучение не находится в равновесии с веществом и его распределение по частотам существенно отличается от планковского. При этом часто (но не всегда) предположение о термодинамическом равновесии между частицами излучающего вещества оказывается хорошим приближением. Степень отклонения от закона Кирхгофа может служить мерой отличия излучения космических объектов от теплового.
Рекомендации
- Олдхэм, Калил Т. Суэйн (2008). Доктрина описания: Густав Кирхгоф, классическая физика и «цель всей науки» в Германии XIX века. (Кандидат наук.). Калифорнийский университет в Беркли. п. 52. Дело 3331743.
- ^
- ^ Ральф Моррисон, Методы заземления и экранирования в КИП Wiley-Interscience (1986) ISBN
- Пол, Клейтон Р. (2001). Основы анализа электрических цепей. Джон Вили и сыновья. ISBN 0-471-37195-5.
- Serway, Raymond A .; Джуэтт, Джон В. (2004). . Брукс / Коул. ISBN 0-534-40842-7.
- Типлер, Пол (2004). Физика для ученых и инженеров: электричество, магнетизм, свет и элементарная современная физика (5-е изд.). В. Х. Фриман. ISBN 0-7167-0810-8.
- Грэм, Говард Джонсон, Мартин (2002). Высокоскоростное распространение сигнала: передовая черная магия (10. полиграф. Ред.). Река Аппер Сэдл, Нью-Джерси: Prentice Hall PTR. ISBN 0-13-084408-X.
Алгебраическая сумма разностей потенциалов
Закон напряжения по Густаву Кирхгофу — второй закон этого автора, используемый для анализа электрической схемы. Вторым законом Кирхгофа утверждается, что для последовательного замкнутого контура алгебраическая сумма всех напряжений по кругу любой замкнутой цепи равна нулю. Утверждение обусловлено тем, что контур цепи является замкнутым проводящим путём, где потери энергии исключаются. Другими словами, алгебраическая сумма разностей потенциалов замкнутого контура теоретически равняется нулю:
ΣV = 0
Следует обратить внимание: под термином «алгебраическая сумма» имеется в виду учёт полярностей и признаков источников ЭДС, а также падения напряжений по кругу контура. Эта концепция закона Кирхгофа, известная как «сохранение энергии», как движение по кругу замкнутого контура или схемы, утверждает логику возврата к началу цепи и к первоначальному потенциалу без потери напряжения по всему контуру
Отсюда следует вывод: применяя Второй закон Кирхгофа к определенному элементу электрической схемы, важно обращать особое внимание на алгебраические знаки падений напряжения на элементах (источниках ЭДС), иначе вычисления оборачиваются ошибкой
Одиночный контурный элемент — резистор
Простым примером с резистором предположим — ток протекает в том же направлении, что и поток положительного заряда. В этом случае поток тока через резистор протекает от точки A до точки B. Фактически — от положительной клеммы до отрицательной клеммы. Таким образом, поскольку движение положительного заряда отмечается в направлении аналогичном направлению течения тока, на резистивном элементе зафиксируется падение потенциала, которое приведет к падению минусового потенциала на резисторе (— I * R).
Если же поток тока от точки B до точки A протекает в противоположном направлении относительно потока положительного заряда, тогда через резистивный элемент отметится рост потенциала, поскольку имеет место переход от минусового потенциала к потенциалу плюсовому, что даёт падение напряжения (+ I * R). Таким образом, чтобы правильно применить закон Кирхгофа по напряжению к электрической цепи, необходимо точно определить направление полярности. Очевидно, знак падения напряжения на резисторе зависит от направления тока, протекающего через резистор.
Направление потока тока по замкнутому контуру допустимо определять либо по часовой стрелке, либо против часовой стрелки, и любой вариант допустим к выбору. Если выбранное направление отличается от фактического направления тока, соответствие закону Кирхгофа получится корректным и действительным, но приведет к результату, когда алгебраический расчёт будет иметь знак минус. Чтобы лучше понять эту концепцию, логично рассмотреть ещё один пример с одним контуром цепи на соответствие Второму Закону Кирхгофа.
Одиночный контур электрической цепи
Второй закон Кирхгофа утверждает — алгебраическая сумма разностей потенциалов любого замкнутого контура равна нулю. Демонстрационная схема действия Второго закона Кирхгофа для замкнутого контура с двумя резисторами и одним источником ЭДС. Если принять условие, что два резистора R1 и R2 соединены последовательно, оба элемента являются частью одного контура. Соответственно, одинаковый ток протекает через каждый из резисторов.
Таким образом, падение напряжения на резисторе R1 = I * R1 и падение напряжения на резисторе R2 = I * R2, дают напряжение по Второму закону Кирхгофа:
V = I * Rs
где: Rs = R1 + R2.
Очевидно: применение Второго закона Кирхгофа к одиночному замкнутому контуру даёт формулу эквивалентного или полного сопротивления для последовательной цепи. Допустимо расширить эту формулу, чтобы найти значения падений потенциалов по кругу контура:
I = V / Rs
Vr1 = V * (R1 / R1 + R2)
Vr2 = V * (R2 / R1 + R2)
Есть три резистора номинальным сопротивлением 10, 20, 30 Ом, соответственно. Все три резистивных элемента соединены последовательно к 12-вольтовому аккумулятору.
Требуется рассчитать:
- общее сопротивление,
- ток цепи,
- ток через каждый резистор,
- падение напряжения на каждом резисторе.
Рассчитаем общее сопротивление:
Ro = R1 + R2 + R3 = 10Ω + 20Ω + 30Ω = 60Ω
Ток цепи:
I = V / Ro = 12 / 60 = 0,2A (200 мА)
Ток через каждый резистор:
I * R1 = I * R2 = I * R3 = 0,2A (200 мА)
Падение потенциала на каждом из резисторов:
VR1 = I * R1 = 0.2 * 10 = 2В
VR2 = I * R2 = 0.2 * 20 = 4В
VR3 = I * R3 = 0.2 * 30 = 6В
Таким образом, Второй закон Кирхгофа справедлив, учитывая что индивидуальные падения напряжения, отмеченные по кругу замкнутого контура, в итоге составляют сумму напряжений.
Закон кирхгофа расчет цепи
МЕТОД ЭКВИВАЛЕНТНОГО ГЕНЕРАТОРА
Метод эквивалентного генератора рационально применять в том случае, когда требуется определить ток (или найти его аналитическое выражение) лишь в одной ветви цепи, без нахождения токов в остальных ветвях.
В основе метода лежит замена части цепи, подключенной к зажимам заданной ветви, эквивалентным источником и определение параметров этого источника. В зависимости от выбора вида эквивалентного источника различают метод эквивалентного генератора напряжения (источник ЭДС) или эквивалентного генератора тока (источник тока).
Расчёт методом эквивалентного генератора напряжения заключается в определении ЭДС и внутреннего сопротивления эквивалентного источника и состоит в следующем.
Формулировка правил
сразу нужно уточнить. Хотя во многих технических текстах используется слово «закон», на самом деле это правило. В чем разница? Закон основан на фундаментальных истинах, фактах, правило приносит более абстрактное понимание. Чтобы лучше понять это, давайте взглянем на основы этого метода.
Из-за сложности расчетов лучше всего использовать его там, где схема имеет узлы и контуры. Узел – это место, где соединяются более двух цепей. Это как взять три или более общих ниток и связать их вместе. Цикл – это замкнутый цикл, который включает три или более таких узла.
Отдельная ветвь может содержать сколько угодно резисторов, что означает нагрузки с активным сопротивлением. Все они объединены в общий резистор, так как это упрощает задачу. Кроме того, в схеме могут присутствовать один или несколько источников питания, также объединенных в один элемент, или они могут не существовать. Таким образом, цепь будет состоять только из сопротивления.
Контур всегда начинается и заканчивается одним и тем же узлом. Поскольку узлы обозначаются латинскими или русскими буквами, в уравнении будет на одну букву больше, чем сами связи. Например, секция состоит из узлов A, B, C, D. Тогда обозначение этой петли будет следующим: A, B, C, D, A. Фактически отсчет можно начинать с любой буквы буквы цикл, например C, D, A, B, C, только в первой версии проще не запутаться.
Определения
Как уже было сказано, ветвь – это отрезок электрической цепи, в котором направление движения заряда происходит в одном направлении. Ветви, сходящиеся к узлу, имеют разные направления тока. Контур может состоять из нескольких внутренних контуров, ветви и узлы которых также принадлежат этому контуру. Сам закон Кирхгофа по существу содержит два правила, относящихся к узлу и границе. Самое главное и сложное – придумать уравнения, учитывающие все составляющие этой формулы.
Первый закон
Первое правило касается сохранения заряда. По его словам, натяжение в узле должно быть нулевым. Это возможно только в том случае, если все входящие токи входят в эту точку через одну ветвь и уходят через другие. Соотношение входящего и выходящего токов может быть различным, но общая составляющая положительного и отрицательного потенциалов всегда одинакова.
Предположим, токи входят в узел через три ветви и выходят через две. Сумма входящих токов будет в точности равна сумме исходящих. Если вы визуализируете это математически, сумма положительных векторов I1, I2 и I3 будет равна сумме отрицательных векторов I4 и I5.
Второй закон
Это правило связано с сохранением энергии в цепи. Другими словами, энергия ЭДС, включенных в рассматриваемую цепь или участок, равна падению напряжения на сопротивлениях этого участка. Если в выбранной области нет питания, общее падение напряжения на всех нагрузках будет равно нулю. Прежде чем приступить к расчетам, следует ознакомиться с некоторыми другими моментами.
Три закона спектроскопии Кирхгофа
Ученый разработал набор законов, описывающих, как ведет себя излучение света раскаленными объектами:
1- Горячий твердый объект излучает свет в непрерывном спектре.
2- Разрезанный газ излучает свет со спектральными линиями на дискретных длинах волн, которые зависят от химического состава газа.
3- Твердый объект при высокой температуре, окруженный разреженным газом при более низких температурах, излучает свет в непрерывном спектре с промежутками на дискретных длинах волн, положение которых зависит от химического состава газа.
Три закона спектрографии Кирхгофа позже стали основой возникновения квантовой механики.
Справедливость закона Кирхгофа о напряжениях независимо от топологии цепи
Тот факт, что эта цепь является параллельной, а не последовательной, не имеет ничего общего со справедливостью закона Кирхгофа о напряжениях. В этом отношении схема может быть «черным ящиком» (конфигурация ее компонентов полностью скрыта от нашего взгляда) с набором открытых клемм, между которыми мы можем измерить напряжение, – и правило напряжений Кирхгофа всё равно останется верным:
Рисунок 8 – Справедливость закона Кирхгофа напряжениях независимо от топологии схемы
Попробуйте на приведенной выше диаграмме выполнить обход в любом порядке, начиная с любого вывода, и вернувшись к исходному выводу, и вы обнаружите, что алгебраическая сумма напряжений всегда равна нулю.
Более того, «контур», который мы отслеживаем для второго закона Кирхгофа, даже не обязательно должен быть реальным путем протекания тока в прямом смысле этого слова. Всё, что нам нужно сделать, чтобы соответствовать правилу напряжений Кирхгофа, – это начинать и заканчивать в одной и той же точке цепи, подсчитывая падения напряжения и полярности при переходе между точками. Рассмотрим следующий абсурдный пример, проходя по «контуру» 2-3-6-3-2 в той же параллельной резисторной цепи:
Рисунок 9 – Параллельная схема из резисторов
\
Другие работы
Кирхгоф массу времени посвятил разным отраслям науки. К примеру, нашёл ошибку в постановке граничных условий для решения дифференциальных уравнений по колебаниям мембран, представленных на суд публики в 1811 году Софи Жермен. Не нужно думать, что словосочетание закон Кирхгофа узко ограничено двумя правилами, причём одно прямо приводит к сформулированному ранее закону Ома.
Учёный Г.Кирхгоф
Учёный представлен для получения звания члена-корреспондента Берлинской Академии наук в отделении математики, корреспондента Петербургской Академии наук. Если в первом случае заявители в основном указывали на дар в решении задач механики, наши соотечественники (Ленц и Якоби) немало отметили заслуги Кирхгофа в спектральном анализе.
Учёный преподавал, обладал феноменальной памятью, назубок читал длинные лекции без отступлений от формального текста. Чувство скрупулёзности помогало безукоризненно собирать материалы, и лишь недостаток технической оснастки помешал, вероятно, сделать новые открытия. К примеру, учёный отмечал, что одна из линий спектра кальция совпадает с железом, но не сумел достоверно сказать, кажущееся ли совпадение. Теперь известно, что длины волн отличаются на 5-6 ангстремов, но тогда на глаз сказать оказалось невозможно с полной уверенностью.
1.10. Правила Кирхгофа для разветвленных цепей
Для упрощения расчетов сложных электрических цепей, содержащих неоднородные участки, используются правила Кирхгофа, которые являются обобщением закона Ома на случай разветвленных цепей.
В разветвленных цепях можно выделить узловые точки (узлы), в которых сходятся не менее трех проводников (рис. 1.10.1). Токи, втекающие в узел, принято считать положительными; вытекающие из узла – отрицательными.
Рисунок 1.10.1. Узел электрической цепи. I1, I2 > 0; I3, I4 <� 0 |
В узлах цепи постоянного тока не может происходить накопление зарядов. Отсюда следует первое правило Кирхгофа:
Алгебраическая сумма сил токов для каждого узла в разветвленной цепи равна нулю:
I1 + I2 + I3 + … + In = 0. |
Первое правило Кирхгофа является следствием закона сохранения электрического заряда.
В разветвленной цепи всегда можно выделить некоторое количество замкнутых путей, состоящих из однородных и неоднородных участков. Такие замкнутые пути называются контурами. На разных участках выделенного контура могут протекать различные токи. На рис. 1.10.2 представлен простой пример разветвленной цепи. Цепь содержит два узла a и d, в которых сходятся одинаковые токи; поэтому только один из узлов является независимым (a или d).
Рисунок 1.10.2. Пример разветвленной электрической цепи. Цепь содержит один независимый узел (a или d) и два независимых контура (например, abcd и adef) |
В цепи можно выделить три контура abcd, adef и abcdef. Из них только два являются независимыми (например, abcd и adef), так как третий не содержит никаких новых участков.
Второе правило Кирхгофа является следствием обобщенного закона Ома.
Запишем обобщенный закон Ома для участков, составляющих один из контуров цепи, изображенной на рис. 1.10.2, например, abcd. Для этого на каждом участке нужно задать положительное направление тока и положительное направление обхода контура. При записи обобщенного закона Ома для каждого из участков необходимо соблюдать определенные «правила знаков», которые поясняются на рис. 1.10.3.
Рисунок 1.10.3. «Правила знаков» |
Для участков контура abcd обобщенный закон Ома записывается в виде:
Для участка bc: I1R1 = Δφbc – 1.
Для участка da: I2R2 = Δφda – 2.
Складывая левые и правые части этих равенств и принимая во внимание, что Δφbc = – Δφda , получим:
I1R1 + I2R2 = Δφbc + Δφda – 1 + 2 = –1 – 2. |
Аналогично, для контура adef можно записать:
– I2R2 + I3R3 = 2 + 3. |
Второе правило Кирхгофа можно сформулировать так: алгебраическая сумма произведений сопротивления каждого из участков любого замкнутого контура разветвленной цепи постоянного тока на силу тока на этом участке равна алгебраической сумме ЭДС вдоль этого контура.
Первое и второе правила Кирхгофа, записанные для всех независимых узлов и контуров разветвленной цепи, дают в совокупности необходимое и достаточное число алгебраических уравнений для расчета значений напряжений и сил токов в электрической цепи. Для цепи, изображенной на рис. 1.10.2, система уравнений для определения трех неизвестных токов I1, I2 и I3 имеет вид:
I1R1 + I2R2 = – 1 – 2, |
– I2R2 + I3R3 = 2 + 3, |
– I1 + I2 + I3 = 0. |
Таким образом, правила Кирхгофа сводят расчет разветвленной электрической цепи к решению системы линейных алгебраических уравнений. Это решение не вызывает принципиальных затруднений, однако, бывает весьма громоздким даже в случае достаточно простых цепей. Если в результате решения сила тока на каком-то участке оказывается отрицательной, то это означает, что ток на этом участке идет в направлении, противоположном выбранному положительному направлению.
Модель. Цепи постоянного тока |
Модель. Конденсаторы в цепях постоянного тока |
Формула первого закона Кирхгофа
Все расчеты в сетях постоянного тока можно выполнять, используя закон Ома и закон сохранения заряда. Однако если цепь является сложной, разветвленной, содержит несколько контуров и включает несколько источников ЭДС, то для упрощения расчетов используют правила (законы) Кирхгофа. Правила Кирхгофа применяют для составления системы линейных уравнений, из которых можно найти силы тока, текущие в разных элементах цепи.
Прежде чем записать формулу первого правила Кирхгофа определим, что такое узел в цепи, так как первый закон Кирхгофа называют правилом узлов.
Узлом разветвленной цепи называют точку, в которой сходятся три или более проводников с токами. На (рис.1) точка О является узлом. В нее входят два тока: и и выходят токи и .
Для правильной записи формулы первого правила Кирхгофа важно помнить, при составлении уравнения необходимо учитывать направления течения токов. Следует помнить, что токи, подходящие к узлу и токи, исходящие из узла имеют разные знаки
При решении задачи, для себя нужно решить, какие токи считать положительными, например, входящие в узел, и после этого все токи в данной задаче записывать со знаком плюс.
Теперь сама формула первого закона Кирхгофа:
Выражение (1) означает, что алгебраическая сумма токов (сумма с учетом знаков) в любом узле цепи постоянного тока равна нулю.
Для того чтобы не ошибаться со знаками при составлении уравнений на основе первого правила Кирхгофа на схемах направление силы тока изображают при помощи стрелок (см. рис.1).
Первый закон Кирхгофа – это следствие закона сохранения электрического заряда. Сумма токов (с учетом их знаков), которая сходится в узле, есть заряд, проходящий через данный узел в единицу времени. Если токи в узле не изменяются во времени, то сумма токов должна быть равна нулю, иначе потенциал узла был бы переменным, соответственно токи были бы переменными тоже. При постоянном токе ни какая из точек цепи не может накапливать заряд. В противном случае токи станут переменными.