§ 3.10. производство и использование электрической энергии

ФИЗИКА

Производство электрической энергии

В настоящее время в нашей стране большая часть электроэнергии производится на мощных электростанциях, на которых в электрическую энергию преобразуется какой-либо другой вид энергии.

В зависимости от вида энергии, которая преобразуется в электрическую, различают три основных типа электростанций: тепловые, гидро- и атомные электростанции.

На тепловых электростанциях источником энергии служит топливо: уголь, газ, нефть, мазут, горючие сланцы. Роторы электрических генераторов приводятся во вращение паровыми и газовыми турбинами или двигателями внутреннего сгорания. Наиболее экономичными являются крупные тепловые паротурбинные электростанции (ТЭС).

На тепловых паротурбинных электростанциях (рис. 3.35) в паровых котлах 1 химическая энергия топлива превращается в энергию пара 2. В турбинах 3 энергия пара преобразуется в механическую, а затем в генераторе 4, имеющем общий вал с турбиной, превращается в электрическую. От генератора энергия направляется на шины распределительного устройства станции. Отработанный пар из турбины поступает в конденсатор 5, который охлаждается проточной водой 6, и конденсат 7 в виде горячей дистиллированной воды возвращается в котел. Такие станции принято называть тепловыми конденсационными станциями.

Рис. 3.35

Тепловые конденсационные электростанции большой мощности обычно располагаются недалеко от источников топлива и крупных водоемов.

Коэффициент полезного действия ТЭС достигает 40%. Причем большая часть энергии теряется вместе с горячим отработанным паром. Специальные тепловые электростанции, так называемые теплоэлектроцентрали (ТЭЦ), позволяют значительную часть энергии отработавшего пара использовать для отопления и технологических процессов в промышленных предприятиях, а также для бытовых нужд (отопление, горячее водоснабжение). В результате КПД ТЭЦ достигает 60—70%. В настояш;ее время в нашей стране ТЭЦ дают около 40% всей производимой электроэнергии.

На гидроэлектростанциях (ГЭС) энергия движущейся воды в гидротурбине превращается в механическую, а затем в генераторе преобразуется в электрическую (рис. 3.36. Цифрами обозначены: 1 — генератор; 2 — трансформатор; 3 — турбина; 4 — лопатки направляющего аппарата). Мощность станции зависит от создаваемой плотиной разности уровней воды (напора) и от массы воды, проходящей через турбины в секунду (расхода воды). Гидроэлектростанции дают около 20% всей вырабатываемой в нашей стране электроэнергии.

Рис. 3.36

На атомных электростанциях (АЭС) технология производства электрической энергии почти такая же, как и на ТЭС. Разница состоит в том, что на АЭС энергию для преобразования воды в пар дает ядерный реактор.

Кроме мощных электростанций, находящихся в районах сосредоточения энергетических ресурсов (полноводные реки, природные запасы энергии в виде дешевых углей, торфа и т. д.), имеется группа станций местного значения. Они располагаются в непосредственной близости к потребителям. К ним относятся ТЭЦ, станции промышленных предприятий, городские, сельскохозяйственные, ветровые, передвижные и т. д.

Использование электроэнергии

Главным потребителем электроэнергии в нашей стране является промышленность, на долю которой приходится около 70% производимой электроэнергии. На фабриках и заводах, в шахтах и рудниках электродвигатели приводят в движение станки и различные механизмы. Около трети электроэнергии, потребляемой промышленностью, используется для технологических целей (электросварка, электрический нагрев и плавление металлов, электролиз и т. п.).

Исключительно важное значение имеет применение электрической энергии в сельском хозяйстве. Здесь электроэнергия используется для освещения, приведения в действие различных машин, а также аппаратов, применяемых для механической дойки, стрижки овец, пастеризации молока, приготовления кормов, на птицеводческих фермах и т

д. и т. п.

Современное строительство немыслимо без использования электроэнергии, прежде всего, для приведения в действие подъемных механизмов и для электросварки.

Крупным потребителем электрической энергии является транспорт: железнодорожный и городской (метро, троллейбус, трамвай).

Без электроэнергии не будет работать телефонная и телеграфная связь, радио,телевидение.

Электрическая энергия используется в автоматике и вычислительной технике. О применении электроэнергии для освещения жилищ, предприятий, учреждений, уличного освещения, а также в быту (электроплиты, холодильники, стиральные машины, пылесосы, электробритвы и другие электробытовые приборы) знает каждый.

Газовые турбины и станции на биомассе

Передача электроэнергии на расстояние

Некоторые агрегаты на природном газе могут производить электроэнергию без пара. Они используют турбины, очень похожие на турбины реактивных самолетов. Однако вместо авиационного керосина они сжигают природный газ, приводя в действие генератор. Такие установки удобны, потому что их можно быстро запускать в ответ на временные скачки спроса на электроэнергию.

Газовая турбина

Существуют агрегаты, работа которых основана на сжигании биомассы. Этот термин применяется к древесным отходам или другим возобновляемым растительным материалам. Например, станция Okeelanta во Флориде сжигает отходы травы, образовавшиеся в процессе переработки сахарного тростника, в одну часть года и древесные отходы – в оставшееся время.

Топливная энергетика

Отрасль тяжёлой промышленности, занимающаяся добычей, обогащением, переработкой и потреблением нефти, газа, угля, торфа и сланцев с целью их дальнейшего потребления. В структуре энергетического баланса России:

  • На первом месте находится газ – 55%.
  • На втором – нефть 21%.
  • На третьем – уголь 17%.
  • На долю ядерной энергетики и возобновляемых ресурсов приходится 7%.

Нефтегазовая отрасль

Ведущая среди отраслей российской промышленности, обеспечивающая почти половину экспорта в финансовом выражении. За 2019 год в стране было добыто:

  • Нефти – 560,2 млн. т.
  • Газа – 737,59 млрд. м3.

Разведанные запасы нефти на территории России составляют 109,5 баррелей, что равняется 6,4% общемировых запасов. Доказанные газовые (природный + сланцевый газ) запасы оцениваются в 47,8 трлн. м3. Что показывает 24,23% в общемировом балансе.

Нефтегазовая отрасль

Нефтегазовая отрасль России сегодня представлена 11 крупнейших вертикально-интегрированных компаний. На их долю приходится более 95% добычи этого важнейшего энергоресурса. В семёрку крупнейших фирм по размеру прибыли, входят:

  • Газпром.
  • Роснефть.
  • Сургутнефтегаз.
  • Лукойл.
  • Татнефть.
  • Руснефть.
  • НОВАТЭК.

Основные нефтяные ресурсы страны сосредоточены в Западной Сибири. Кроме того, имеются богатые месторождения в Татарстане, Башкирии, на Северном Кавказе, в Прикаспийской низменности, на острове Сахалин и в шельфах ряда морей.

Там же располагаются значительные запасы газа, к которым можно добавить: Оренбургское, Северное (Республика Коми), Астраханское месторождения. Очень перспективными запасами газа обладают морские шельфы в Баренцевом, Карском и Охотском морях.

Добыча угля и других горючих ископаемых

Старейшая отрасль, начало становления, которой относится к первым десятилетиям XIX века, не утратила своих позиций и к настоящему времени. Уровень добычи угля в 2019 году равнялся 440,65 млн. т, что на 0,2% выше показателя 2018 года.

На территории нашей страны расположены 12 крупнейших каменноугольных и 4 буроугольных бассейнов. По уровню добычи этого природного ископаемого Россия занимает шестое место в мире, экспортируя его в десятки стран Европы и Азии. Качественные характеристики угля подразделяются его на антрацит, каменный и бурый уголь, являющиеся ещё и сырьём для химической промышленности.

Экономическая мощь России в этой области представлена:

  • 50 компаниями, среди которых лидирующие позиции занимают: «Сибирская угольная энергетическая компания», «Кузбасразрезуголь», «СДС-Уголь» и другие.
  • 161 предприятием, включающим в себя 50 шахт и 108 разрезов.

К другим горючим ископаемым, традиционно используемым на территории России, относятся:

  • Торф. Его запасы на территории 46 тыс. месторождений России оцениваются в 160 млрд. т. Используется в качестве топлива, удобрения и теплоизоляционного материала.
  • Горючие сланцы. 37 млрд. т составляют его разведанные запасы, при ресурсах, оцениваемых в 850 млрд. т. В основном они находят применение в качестве топлива для ТЭС, химического сырья, а также исходного материала в строительной индустрии (зола) и медицине (получаемая из сланцев смола).

Полезные ссылки

Березовская ГРЭС-1

Состояние:
в эксплуатации

Тип электростанции:
Тепловые электростанции

Электрическая мощность:
2 400 МВт

Каширская ГРЭС

Состояние:
в эксплуатации

Тип электростанции:
Тепловые электростанции

Электрическая мощность:
1 910 МВт

Пермская ГРЭС

Состояние:
в эксплуатации

Тип электростанции:
Тепловые электростанции

Электрическая мощность:
3 363 МВт

Троицкая ГРЭС

Состояние:
в эксплуатации

Тип электростанции:
Тепловые электростанции

Электрическая мощность:
2 234 МВт

Основные составные части электрической сети

Электроэнергетической сетью (Рис. 5) называется совокупность электроустановок для передачи и распределения электрической энергии, состоящая из подстанций, распределительных устройств, токопроводов, воздушных и кабельных линий электропередачи, работающих на определенной территории.

Рисунок 5 — Электрическая сеть, и электроустановки для передачи и распределения электрической энергии

Все встречающиеся на практике схемы представляют собой сочетания отдельных элементов — фидеров, магистралей и ответвлений.

Электрические сети, в свою очередь, подразделяются на магистральные электрические сети и распределительные электрические сети.

К магистральным сетям относятся все высоковольтные линии электропередач (ЛЭП), к распределительным – ЛЭП мощностью ниже 110 кВ. Виды электрических сетей представлены на рисунке 6.

Рисунок 6 — Виды электрических сетей

Сети связаны между собой трансформаторными и распределительными подстанциями. Для обеспечения установленных требований, энергосистемы оборудуют специальными диспетчерскими пунктами, оснащёнными средствами контроля, управления, связи и специальными схемами расположения электростанций, линий передач и понижающих подстанций.

Электрические сети делятся по:

  • напряжению;
  • степени подвижности;
  • назначению;
  • роду тока и числу проводов;
  • схеме электрических соединений:

а) разомкнутые (нерезервированные). Схемы разомкнутых сетей представлена на рисунке 7.

Рисунок 7 — Схемы разомкнутых сетей: а — радиальные (нагрузка только на конце линии); б — магистральные (нагрузка присоединена к линии в разных местах)

б) замкнутые (резервированные) (Рис. 8).

Рисунок 8 — Схемы замкнутых сетей: а — сеть с двухсторонним питанием; б — кольцевая сеть; в — двойная магистральная линия; г сложнозамкнутая сеть (для питания ответственных потребителей по двум и более направлениям)

Магистральные схемы электроснабжения применяются в следующих случаях:

  • а) когда нагрузка имеет сосредоточенный характер, но отдельные узлы ее оказываются расположенными в одном и том же направлении по отношению к подстанции и на сравнительно незначительных расстояниях друг от друга, причем абсолютные величины нагрузок отдельных узлов недостаточны для рационального применения радиальной схемы;
  • б) когда нагрузка имеет распределенный характер с той или иной степенью равномерности.

По конструкции: электропроводки (силовые и осветительные), токопроводы — для передачи электроэнергии в больших количествах на небольшие расстояния, воздушные линии — для передачи электроэнергии на большие расстояния, кабельные линии — для передачи электроэнергии на далекие расстояния в случаях, когда сооружение ВЛ невозможно.

Наибольшее распространение для местных распределительных сетей получили радиальные, магистральные, смешанные (радиальномагистральные) и петлевые схемы.

При радиальной схеме электроснабжения каждая линия является как бы лучом, соединяющим узел сети (подстанцию, распределительный пункт) с единственным потребителем.

При магистральной схеме электроснабжения одна линия — магистраль — обслуживает, как указано, несколько распределительных пунктов или приемников, присоединенных к ней в различных ее точках.

Смешанные схемы распределительных местных сетей применяются при различном расположении потребителей относительно ЦП и сочетаются принципы построения как радиальной, так и магистральных схем.

К электрическим сетям предъявляются следующие требования: надежность, живучесть и экономичность.

Надежность — основное техническое требование, под которым понимается свойство сети выполнять свое назначение в пределах заданного времени и условий работы, обеспечивая электроприемники электроэнергией в необходимом количестве и надлежащего качества.

Живучесть электрической сети — это свойство выполнять свое назначение в условиях разрушающих воздействий в том числе и в боевой обстановке при воздействиях средств поражения противника.

Экономичность — это минимум затрат на сооружение и эксплуатацию сети при условии выполнения требований надежности и живучести.

Передача и распределение электроэнергии

За процесс передачи и распределения электрической энергии отвечают несколько основных типов систем, работающих в связке, которые образуют электроэнергетическую сеть:

  • подстанция;
  • распределительное устройство;
  • ЛЭП или линии электропередачи.

Электроэнергетическая сеть — это комплекс электрических установок, предназначенных для передачи и распределения полученной энергии. Она состоит и токопровода, распределителя, кабельных и воздушных ЛЭП, действующих в определенной локации.

Подстанция служит для трансформации и распределения электрической энергии. Она состоит из трансформаторов (либо иных преобразователей энергии) и оборудования для распределения, мощного аккумулятора, других дополнительных устройств и сооружений.

Распределительное оборудование представляет собой установку, которая служит для приема и распределения энергии. Она состоит из следующих коммутационных устройств:

  • Сборные/соединительные шины.
  • Компрессоры.
  • Аккумуляторы.
  • Защитные устройства.
  • Средства автоматизации.
  • Измерительные приборы.

ЛЭП или линии электропередач воздушных и кабельных видов напряжения. Они представляют собой электрическую установку, которая служит для транспортировки электроэнергии на дальние расстояния, с одним и тем же напряжением, без дополнительного преобразования.


Для всех видов электроэнергии существуют индивидуальные методы монтажа, подключения, эксплуатации и расчета, в зависимости от признаков и источников энергии.

Что такое электростанция

Любая электростанция представляет собой целый энергетический комплекс, включающий в себя различные установки, аппаратуру и оборудование, необходимые для получения, преобразования и транспортировки электроэнергии. Все эти компоненты размещаются в специальных зданиях и сооружениях, расположенных компактно на общей территории. Независимо от типа, они входят в состав Единой энергосистемы, созданной с целью эффективно использовать мощность электростанции, обеспечивая бесперебойное энергоснабжение потребителей. Принцип работы электростанций и их сопутствующих объектов основан на вращении вала генератора, который является основным элементом системы. Его основные функции заключаются в следующем:

  • Обеспечение стабильной продолжительной работы параллельно с другими энергетическими системами, снабжение энергией собственных автономных нагрузок.
  • Возможность мгновенного реагирование на наличие или отсутствие нагрузки, соответствующей его номиналу.
  • Выполняет запуск двигателя, обеспечивающего работу всей станции.
  • Вместе со специальными устройствами осуществляет функцию защиты.

Отличительными чертами каждого генератора являются формы и размеры, а также источник энергии, используемый для вращения вала. Кроме генератора, электростанция состоит из турбин и котлов, трансформаторов и распределительных устройств, средств коммутации, автоматики и релейной защиты.

В настоящее время получило развитие направления в области компактных установок. Они позволяют обеспечить энергией не только отдельные объекты, но и целые поселки, находящиеся на значительном удалении от стационарных линий электропередачи. В основном, это полярные станции и предприятия по добыче полезных ископаемых. Теперь рассмотрим какие типы установок используются в российской энергетике.

Электричество из возобновляемых ресурсов

Электроэнергия, полученная с помощью ГЭС, является важнейшим элементом стабильности единой энергосистемы государства. Именно гидроэлектростанции могут за считаные часы увеличить объемы производства электроэнергии.

Большой потенциал российской гидроэнергетики заключается в том, что на территории страны расположено почти 9% мировых запасов воды. Это второе место в мире по наличию гидроресурсов. Такие страны, как Бразилия, Канада и США, остались позади. Производство электроэнергии в мире за счет ГЭС несколько осложняется тем, что наиболее благоприятные места для их строительства существенно удалены от населенных пунктов или промышленных предприятий.

Тем не менее, благодаря электроэнергии, произведенной на ГЭС, стране удается сэкономить около 50 млн тонн топлива. Если бы удалось освоить весь потенциал гидроэнергетики, Россия могла бы экономить до 250 млн тонн. А это уже серьезная инвестиция в экологию страны и гибкую мощность энергетической системы.

Мифы и реальность

В специальной литературе и на просторах интернета ведутся оживленные дискуссии, возможна ли однопроводная передача электричества к потребителю. Мнения разделились на два противоположных лагеря.

Разберемся, где мифы и реальность. Изобретение Тесла доказывает возможность передачи электричества по одному проводнику. Однако, достоверных данных, подтверждающих это, нет. Поэтому вокруг изобретения существуют многочисленные догадки и слухи.

Опыты нашего соотечественника доказывают, что однопроводная передача энергии возможна. При этом Авраменко не только доказал такую возможность, он создал установку, которая позволяет передавать электричество по одному проводу.

Свое изобретение он открыл случайно, когда снимал нейлоновую рубашку возле выключенной настольной лампы. После случайного касания рубашкой лампы, она начала светиться.

Длительные эксперименты позволили изобрести «вилку Авраменко». Она представляет собой два диода и конденсатор. Как показано на схеме:

С ее помощью удавалось по одному проводу заряжать конденсатор, который питает нагрузку. В данном случае лампочку. Изначально применялся разрядник, в котором появлялись искры.

Частота разряда зависела от номинала конденсатора. На основании своего изобретения, Авраменко собирает схему и демонстрирует передачу электричества по одному проводу.

На рисунке снизу представлена схема однопроводной передачи электроэнергии:

Она состоит из генератора частотой 8 кГц, катушки, провода. Причем в опытах применялся не медный, а вольфрамовый провод. Во время опыта он не нагревался и не светился. Приемным элементом выступала «вилка Авраменко», к которой подсоединена нагрузка.

В этом случае электричество передается не по проводнику, а по поверхности провода. Поэтому он может быть очень тонким. Ограничение заключается в механической прочности. Он должен выдерживать атмосферные осадки и порывы ветра.

При такой подаче напряжения, провода не нагреваются. А это значит, что потери на большие расстояния будут незначительными. А поражение электрическим током человека, если он прикоснется к оголенному проводу, исключено. Т.к. в проводе отсутствует ток.

Кроме того, проводились опыты с перегоревшими лампами накаливания. При включении в сеть они загорались.

Использование схемы Авраменко позволяет исключить потери на нагрев проводов, что составляет 10-15%. При передаче электроэнергии традиционным способом, плотность тока составляет всего 6-7 А/мм2, а передача энергии по однопроводной линии позволяет увеличить этот показатель до 428 А/мм2 и это при мощности 10 кВт.

По схеме Авраменко были созданы многочисленные схемы с применением трансформатора. Например, как показано на рисунке снизу:

Где генератор ВЧ собран на транзисторе. Это открытие должно было перевернуть всю электро индустрию. Несмотря на высокий КПД установки и очевидные выгоды, этого не произошло.

Кроме этого Авраменко доказал, что для однопроводной передачи напряжения, совершенно не обязательно применять металлические провода. В качестве волновода можно использовать луч лазера, оптоволокно, электронные лучи, трубопроводы и т.д.

Т.е. для передачи энергии можно использовать любую изолированную токопроводящую среду. А это в свою очередь дает возможность изобрести многочисленные машины, где применяется этот эффект. Но это будущее.

Исключаем муки подключения к электросети и платежи по высоким тарифам – строим собственную электростанцию!

Исключить проблемы электросетевого энергоснабжения можно пойдя более современным путем решения вопроса электроснабжения предприятия — а именно,построив собственный энергоцентр требуемой мощности. Что может стать определяющими факторами, влияющими на принятие решения о строительстве автономной электростанции?

Как правило, отношение к строительству собственной газовой электростанции со стороны бизнеса весьма настороженное. Сказывается и новизна проектов автономного электроснабжения, и нежелание организаций заниматься непрофильным делом, и отсутствие возможности реализации избытков произведенной электроэнергии.

За рубежом автономные энергоцентры работают по следующей схеме: мини-ТЭЦ покрывает базовую нагрузку объекта, а пики потребления берутся из внешней электросети. Если же произведенная энергоцентром мощность больше нагрузки собственного потребителя, то излишки электрической энергии по установленному тарифу продаются (!) другим потребителям через внешние сети. К сожалению, в России эта схема не работает, так как излишки производимой таким образом электроэнергии малы, и «не интересны» для покупки внешней электросетью.

Кстати, надо отметить, что для подключения автономной электростанции к внешней электросети необходимо, прежде всего, получить согласие самой сетевой компании. С технической же стороны эта задача разрешима и не затратна с финансовой точки зрения.

Предприниматель, как правило, не всегда хорошо себе представляет, из чего должна состоять электростанция, какое основное и дополнительное оборудование должно быть установлено, кто и как должен создавать, согласовывать и утверждать этот проект, а затем и строить энергоцентр. А после сдачи в эксплуатацию – как все это эксплуатировать и снабжать запасными частями.

Между тем количество автономных электростанций малой и средней мощности в мире исчисляется тысячами. Подавляющее большинство таких электростанций работает на природном газе – на сегодняшний день, самом экономически оправданном виде топлива. Основным генерирующим оборудованием автономной электростанции, как правило, являются микротурбины, газопоршневые или газотурбинные установки.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector