Видео в помощь
Источники
- https://220v.guru/elementy-elektriki/dvigateli/magnitnyy-vechnyy-dvigatel-delaem-svoimi-rukami.html
- https://www.asutpp.ru/magnitnyj-dvigatel.html
- https://www.syl.ru/article/189970/new_kak-sdelat-vechnyiy-dvigatel-svoimi-rukami
- https://dic.academic.ru/dic.nsf/ruwiki/839655
- https://odinelectric.ru/knowledgebase/chto-takoe-magnitniy-dvigatel
- https://MirMagnitov.ru/blog/primenenie-magnitov/vechnyy-dvigatel-na-magnitakh/
- https://electricvdele.ru/elektrooborudovanie/elektrodvigateli/dvigatel-na-postoyannyh-magnitah.html
- https://220v.guru/elementy-elektriki/dvigateli/vechnyy-dvigatel-svoimi-rukami-ego-opisanie-i-vidy.html
- https://yourtutor.info/%D0%BF%D0%BE%D1%87%D0%B5%D0%BC%D1%83-%D0%B2%D0%B5%D1%87%D0%BD%D1%8B%D0%B9-%D0%B4%D0%B2%D0%B8%D0%B3%D0%B0%D1%82%D0%B5%D0%BB%D1%8C-%D0%BD%D0%B5%D0%B2%D0%BE%D0%B7%D0%BC%D0%BE%D0%B6%D0%B5%D0%BD
Плюсы и минусы магнитных двигателей
Плюсы:
- Экономия и полная автономия;
- Возможность собрать двигатель из подручных средств;
- Прибор на неодимовых магнитах достаточно мощный, чтобы обеспечить энергией 10 кВт и выше жилой дом;
- Способен на любой стадии износа выдавать максимальную мощность.
Минусы:
Магнитные линейные двигатели сегодня стали реальностью и имеют все шансы заменить привычные нам моторы других видов. Но сегодня это ещё не совсем доработанный и идеальный продукт, способный конкурировать на рынке, но имеющий довольно высокие тенденции.
Электродвигатели – это устройства, в которых электрическая энергия превращается в механическую. В основе принципа их действия лежит явление электромагнитной индукции.
Однако способы взаимодействия магнитных полей, заставляющих вращаться ротор двигателя, существенно различаются в зависимости от типа питающего напряжения – переменного или постоянного.
В основе принципа работы электродвигателя постоянного тока лежит эффект отталкивания одноименных полюсов постоянных магнитов и притягивания разноименных. Приоритет ее изобретения принадлежит русскому инженеру Б. С. Якоби. Первая промышленная модель двигателя постоянного тока была создана в 1838 году. С тех пор его конструкция не претерпела кардинальных изменений.
В двигателях постоянного тока небольшой мощности один из магнитов является физически существующим. Он закреплен непосредственно на корпусе машины. Второй создается в обмотке якоря после подключения к ней источника постоянного тока. Для этого используется специальное устройство – коллекторно-щеточный узел. Сам коллектор – это токопроводящее кольцо, закрепленное на валу двигателя. К нему подключены концы обмотки якоря.
Чтобы возник вращающий момент, необходимо непрерывно менять местами полюса постоянного магнита якоря. Происходить это должно в момент пересечения полюсом так называемой магнитной нейтрали. Конструктивно такая задача решается разделением кольца коллектора на секторы, разделенные диэлектрическими пластинами. Концы обмоток якоря присоединяются к ним поочередно.
Чтобы соединить коллектор с питающей сетью используются так называемые щетки – графитовые стержни, имеющие высокую электрическую проводимость и малый коэффициент трения скольжения.
Обмотки якоря не подключены к питающей сети, а посредством коллекторно-щеточного узла соединены с пусковым реостатом. Процесс включения такого двигателя состоит из соединения с питающей сетью и постепенного уменьшения до нуля активного сопротивления в цепи якоря. Электромотор включается плавно и без перегрузок.
Миф или реальность?
Вечный двигатель знаком практически каждому еще со школьной скамьи, только на уроках физики четко утверждалось, что добиться практической реализации невозможно из-за сил трения в движущихся элементах. Среди современных разработок магнитных моторов представлены самоподдерживающие модели, в которых магнитный поток самостоятельно создает вращательное усилие и продолжает себя поддерживать в течении всего процесса работы. Но основным камнем преткновения является КПД любого двигателя, включая магнитный, так как он никогда не достигает 100%. Со временем мотор все равно остановится.
Поэтому все практические модели требуют повторного вмешательства через определенное время или каких-либо сторонних элементов, работающих от независимого источника питания. Наиболее вероятным вариантом бестопливных двигателей и генераторов выступает магнитная машина. В которой основной движущей силой будет магнитное взаимодействие между постоянными магнитами, электромагнитными полями или ферромагнитными материалами.
Актуальным примером реализации являются декоративные украшения, выполненные в виде постоянно двигающихся шаров, рамочек или других конструкций. Но для их работы необходимо использовать батарейки, которые питают постоянным током электромагниты. Поэтому далее рассмотрим тот принцип действия, который подает самые обнадеживающие ожидания.
Шторочный двигатель Дудышева
На статоре установлен неподвижный кольцевой электромагнит, на котором имеется обмотка. Между магнитопроводом и ротором присутствует небольшой зазор. На роторе располагается постоянный магнит и шторки. Это магнитные экраны, они расположены с внешней стороны и вращаются независимо от ротора. На валу двигателя находится маховик и стартер-генератор. На электромагните статора располагается обмотка, которая соединяется посредством выпрямителя со стартер-генератором.
Запуск такой конструкции осуществляется при помощи стартера, который находится на одном валу с мотором. После того, как запустится электродвигатель и он выйдет в нормальный режим работы, стартер начинает работать как генератор, то есть, вырабатывает напряжение. Шторки перемещаются на диске при повороте ротора максимально синхронно. При этом обеспечивается циклическая экранировка одноименных полюсов электромагнита.
Другими словами, обязательно нужно обеспечить при помощи различных технических средств такое перемещение диска со шторками и ротора, чтобы экраны располагались между одноименными полюсами неподвижного электрического магнита и постоянного на роторе. Возможности работы электрического магнитного двигателя в установившемся режиме:
- Когда ротор вращается принудительно, имеется возможность вырабатывать электроэнергию при помощи генератора.
- Если присоединить к нему индуктивную обмотку, то машина переводится в режим мотор-генератора. При этом передается вращение на совмещённый вал, работа электромагнитного двигателя происходит в двух режимах.
Разновидности магнитных двигателей и их схемы
Сегодня существует много моделей бестопливных генераторов, электрических машин и моторов, чей принцип действия основан на природных свойствах постоянных магнитов. Некоторые варианты были спроектированы именитыми ученными, достижения которых стали основополагающим камнем в фундаменте науки. Поэтому далее мы рассмотрим самые популярные из них.
Николы Тесла
В данном примере мы рассмотрим одну из разработок известного ученого, конструкция которой приведена на рисунке ниже:
Магнитный двигатель Тесла
Конструктивно магнитный двигатель Тесла состоит из таких элементов:
- электрического генератора, который представлен двумя дисками из проводника, помещенными в униполярной магнитной среде;
- гибкого ремня, изготовленного из проводящего материала, расположенного по периферии дисков;
- независимых магнитов, сохраняющих униполярность полей при вращении дисков.
Такой двигатель, по словам изобретателя, может функционировать и в качестве генератора, вырабатывая электрическую энергию при вращении дисков.
Минато
Этот пример нельзя назвать самовращающимся двигателем, так как для его работы требуется постоянная подпитка электрической энергией. Но такой электромагнитный мотор позволяет получать значительную выгоду, затрачивая минимум электричества для выполнения физической работы.
Схема двигателя Минато
Как видите на схеме, особенностью этого вида является необычный подход к расположению магнитов на роторе. Для взаимодействия с ним на статоре возникают магнитные импульсы за счет кратковременной подачи электроэнергии через реле или полупроводниковый прибор.
При этом ротор будет вращаться, пока его элементы не размагнитятся. Сегодня все еще ведутся разработки по улучшению и повышению эффективности устройства, поэтому назвать его полностью завершенным нельзя.
Николая Лазарева
Это не только простейший гравитационный двигатель, но и одна из реально работающих моделей вечного двигателя. Пример приведен на рисунке ниже:
Двигатель Лазарева
Как видите, для изготовления такого двигателя или генератора вам потребуется:
- колба;
- жидкость;
- трубка;
- прокладка из пористого материала;
- крыльчатка и нагрузка на вал.
Принцип действия заключается в том, что вода по тонкой трубке из-за избытка давления будет подниматься вверх и скапывать на прокладку и вращать крыльчатку. Далее вода будет просачиваться сквозь губку и под воздействием магнитного поля Земли дальше стекать в нижний резервуар. Цикл будет повторяться до тех пор, пока жидкость не исчезнет, что в идеально герметичном контуре не произойдет никогда. Для усиления момента на вращаемый вал добавляют магнитные усилители.
Говарда Джонсона
В своих исследованиях Джонсон руководствовался теорией потока непарных электронов, действующих в любом магните. В его двигателе обмотки статора формируются из магнитных дорожек. На практике эти агрегаты получили реализацию в конструкции роторного и линейного двигателя. Пример такого устройства приведен на рисунке ниже:
Двигатель Джонсона
Как видите, на оси вращения в двигателе устанавливаются сразу и статор и ротор, поэтому классически вал вращаться здесь не будет. На статоре магниты повернуты одноименным полюсом к роторным, поэтому они взаимодействуют на силах отталкивания. Особенность работы ученого заключалась в длительном вычислении расстояний и зазоров между основными элементами мотора.
Перендева
Данный вид двигателя, как и предыдущий, представляет собой еще одну модель магнитного взаимодействия между статором и ротором, где обе части содержат постоянные магниты. Схема конструкции обоих представляет собой диск или кольцо, в котором точечно устанавливаются вектолиты.
Генератор Перендева
Генератор Перендева
Еще одним неоднозначным примером действия магнитных сил является самовращающийся магнитный двигатель Перендев. Его создатель Майк Брэди, до того, как в его отношении начали уголовное производство, даже успел обзавестись патентом, создать одноименную фирму (Перендев) и поставить дело на поток. Если анализировать представленную в патенте схему и принцип, или чертежи самодельных эл. двигателей, то ротор и статор имеют форму диска и внешнего кольца. На них по кольцевой траектории размещают отдельные магниты, соблюдая определенный угол относительно центральной оси. За счет взаимодействия поля отдельных магнитов статора и ротора Перендев, возникает момент и происходит их взаимное перемещение (вращение). Расчет цепи магнитов сводится к определению угла расхождения.
Вакуумный триодный усилитель Свита Флойда
Сложность воспроизведения устройства Свита Флойда заключается не в его конструкции, а в технологии изготовления магнитов. В основе этого двигателя используются два ферритовых магнита с габаритами 10х15х2,5 см, а также катушки без сердечников, из которых одна является рабочей с несколькими сотнями витков, а еще две – возбуждающие. Для запуска триодного усилителя необходима простая карманная батарейка 9В. После включения устройство может работать очень долго, самостоятельно питая себя по аналогии с автогенератором. По утверждениям Свита Флойда, от работающей установки удалось получить выходное напряжение в 120 вольт с частотой 60 Гц, мощность которого достигала 1 кВт.
Другие конструкции
Существует множество других конструкций, в том числе и работоспособных, но они построены по вышеприведенным схемам. Двигатель-генераторы электромагнитного типа получают огромную популярность среди энтузиастов, причём некоторые конструкции уже были внедрены в серийный выпуск. Но это, как правило, самые простые механизмы. На электровелосипедах в последнее время часто применяется мотор-колесо конструкции Шкондина. Но для нормальной работы любого электромагнитного мотора необходимо наличие источника энергии. Даже электромагнитный соленоидный двигатель не сможет работать без дополнительного питания.
Без аккумулятора обойтись не могут такие механизмы. Обязательно требуется запитать обмотку электромагнита для того, чтобы создать поле и раскрутить ротор до минимальной частоты. По сути, получается электромагнитный двигатель постоянного тока, который способен осуществлять рекуперацию энергии. Другими словами, мотор работает только при разгоне, а при торможении он переводится в режим генератора. Такими особенностями обладают любые электромобили, которые можно встретить в продаже. У некоторых попросту отсутствует система торможения как таковая, функции колодок выполняют двигатели, работающие в режиме генератора. Чем больше нагрузка на обмотке, тем сильнее будет сила противодействия.
Патенты на электромагнитные машины
Многие инженеры уже запатентовали свои конструкции двигателей. Но вот только реализовать работоспособный вечный двигатель ещё никто не смог. Такие устройства ещё не освоены, редко внедряются в технику, встретить в продаже их вряд ли получится. Намного чаще используются электромагнитные клапаны (дизельные двигатели работают под управлением электроники стабильнее и способны выдать большую мощность). Некоторые конструкторы уверены, что до серийного выпуска не доводятся электромагнитные двигатели, потому что все разработки засекречиваются. И большинство проблем в таких двигателях до сих пор не решены полностью.
Электронный коммутатор мостового типа
Самая простая конструкция электронного коммутатора выполняется на четырех силовых ключах. В каждом плече мостовой схемы присутствует по два мощных транзистора, столько же электронных ключей с односторонней проводимостью. Напротив ротора магнитного двигателя размещается два датчика, которые контролируют положение постоянного магнита на нем. Располагаются они как можно ближе от ротора. Функции этого датчика выполняет простейший прибор, который способен работать под воздействием магнитного поля — геркон.
Датчики, считывающие положение постоянного магнита на роторе, размещаются следующим образом:
- Первый находится у торца соленоида.
- Второй расположен со сдвигом в 90 градусов.
Выходы датчиков подключаются к логическому устройству, которое усиливает сигнал, а затем подает его на входы управления полупроводниковых транзисторов. С помощью подобных цепей работает и электромагнитный клапан остановки двигателя внутреннего сгорания.
На обмотках электрического генератора установлена нагрузка. В цепях питания катушки и коммутатора есть элементы, предназначенные для управления и защиты. При помощи автоматического переключателя можно произвести отключение аккумуляторной батареи, чтобы вся машина перешла на питание от электрического генератора (автономный режим).
История возникновения вечного двигателя
Первые упоминания о создании такого устройства возникли в Индии в VII веке, но первые практические пробы его создания возникли в VIII веке в Европе. Естественно, создание такого устройства позволило бы значительно ускорить развитие науки энергетики.
В те времена, такой силовой агрегат смог бы не только поднимать разные грузы, но и крутить мельницы, а также водяные насосы. В XX веке произошло знаменательное открытие, которое дало толчок к созданию силового агрегата – открытие постоянного магнита с последующим изучением его возможностей.
Модель мотора на его основе должна была работать неограниченное количество времени, из-за чего его назвали вечным. Но как бы там ни было, а вечного ничего нет, так как любая часть или деталь может прийти в неисправность, поэтому под словом «вечно» необходимо понимать только то, что он должен работать без перерывов, при этом не подразумевая каких-либо затрат, включая топливо.
Сейчас невозможно точно определить создателя первого вечного механизма, в основе которого, стоят магниты. Естественно, он сильно отличается от современного, но есть некоторые мнения на тот счет, что первые упоминания о силовом агрегате на магнитах, есть в трактате Бхскара Ачарья математика из Индии.
Первые сведения о появления такого устройства в Европе, появились в XIII веке. Информация поступила от Виллара д’Оннекура, выдающегося инженера и архитектора. После своей смерти, изобретатель оставил потомкам свой блокнот, в котором были разные чертежи не только сооружений, но и механизмов для поднятия грузов и собственно первым устройством на магнитах, что отдаленно напоминает вечный двигатель.
Что такое магнитный двигатель
В научном мире вечные двигатели разделяют на две группы: первого и второго вида. И если с первыми относительно всё ясно — это скорее элемент фантастических произведений, то второй очень даже реален. Начнём с того, что двигатель первого вида — это своего рода утопичная штука, способная извлекать энергию из ничего. А вот второй тип основан на вполне реальных вещах. Это попытка извлечения и использования энергии всего, что нас окружает: солнце, вода, ветер и, безусловно, магнитное поле. Многие учёные разных стран и в разные эпохи пытались не только объяснить возможности магнитных полей, но и реализовать некое подобие вечного двигателя, работающего за счёт этих самых полей. Интересно то, что многие из них добились вполне впечатляющих результатов в этой области. Такие имена, как Никола Тесла, Василий Шкондин, Николай Лазарев хорошо известны не только в узком кругу специалистов и приверженцев создания вечного двигателя.
Особый интерес для них составляли постоянные магниты, способные возобновлять энергию из мирового эфира. Безусловно, доказать что-либо значимое пока никому на Земле не удалось, но благодаря изучению природы постоянных магнитов человечество имеет реальный шанс приблизиться к использованию колоссального источника энергии в виде постоянных магнитов.
И хотя магнитная тема ещё далека от полного изучения, существует множество изобретений, теорий и научно обоснованных гипотез в отношении вечного двигателя. При этом есть немало впечатляющих устройств, выдаваемых за таковые. Сам же двигатель на магнитах уже вполне себе существует, хотя и не в том виде, в котором нам бы хотелось, ведь по прошествии некоторого времени магниты всё равно утрачивают свои магнитные свойства. Но, несмотря на законы физики, учёные мужи смогли-таки создать нечто надёжное, что работает за счёт энергии, вырабатываемой магнитными полями.
На сегодня существует несколько видов линейных двигателей, которые отличаются по своему строению и технологии, но работают на одних и тех же принципах. К ним относятся:
- Работающие исключительно за счёт действия магнитных полей, без устройств управления и без потребления энергии извне;
- Импульсного действия, которые уже имеют и устройства управления, и дополнительный источник питания;
- Устройства, объединяющие в себе принципы работы обоих двигателей.
Соленоидный двигатель
Современные инженеры регулярно проводят эксперименты по созданию устройств с нетрадиционной и нестандартной конструкцией, таких как, например, аппарат вращения на неодимовых магнитах.
Среди этих механизмов следует отметить и соленоидный двигатель, преобразующий энергию электрического тока в механическую энергию.
Соленоидные двигатели могут состоять из одной или нескольких катушек – соленоидов.
В первом случае задействована всего лишь одна катушка, при включении и выключении которой происходит механическое движение кривошипно-шатунного механизма.
Во втором варианте используется несколько катушек, включающихся поочередно с помощью вентилей, когда подача тока от источника питания осуществляется в один из полупериодов синусоидального напряжения.
Возвратно-поступательные движения сердечников приводят в движение колесо или коленчатый вал.
Соленоидный двигатель принцип работы
В соответствии с основной классификацией, соленоидные двигатели бывают резонансными и нерезонансными. В свою очередь, существует однокатушечная и многокатушечная конструкции нерезонансных двигателей.
Известны также параметрические двигатели, в которых сердечник втягивается в соленоид, но занимает нужное положение при достижении магнитного равновесия после нескольких колебаний.
При совпадении частоты сети с собственными колебаниями сердечника может произойти резонанс.
Соленоидные двигатели отличаются компактностью и простотой конструкции. Среди недостатков следует отметить низкий коэффициент полезного действия этих устройств и высокую скорость движения. До настоящего времени эти недостатки не удалось преодолеть, поэтому данные механизмы не нашли широкого применения на практике.
Рабочая катушка однокатушечных устройств включается и выключается с помощью механического выключателя, за счет действия тела сердечника или полупроводниковым вентилем. В обоих вариантах обратный ход обеспечивается пружиной, обладающей упругостью.
В двигателях с несколькими катушками рабочие органы включаются только вентилями, когда к каждой катушке по очереди подводится ток в промежутке одного из полупериодов синусоидального напряжения. Сердечники катушек начинают поочередно втягиваться, в результате, это приводит к совершению возвратно-поступательных движений.
Эти движения через приводы передаются на различные двигатели, выполняющие функцию исполнительных механизмов.
Устройство соленоидного двигателя
Существуют различные типы механических и электрических устройств, работа которых основывается на преобразовании одного вида энергии в другой. Их основные типы широко используются во всех машинах и механизмах, применяемых на производстве и в быту.
Существуют и нетрадиционные аппараты, работа над которыми осуществляется пока на уровне экспериментов. К ним можно отнести и соленоидные двигатели, работающие на основе магнитного действия тока.
Его основным преимуществом считается простота конструкции и доступность материалов для изготовления.
Основным элементом данного устройства является катушка, по которой пропускается электрический ток. Это приводит к образованию магнитного поля, втягивающего внутрь плунжер, выполненный в виде стального сердечника.
Далее, с помощью кривошипно-шатунного механизма, поступательные движения сердечника преобразуются во вращательное движение вала. Можно использовать любое количество катушек, однако, наиболее оптимальным считается вариант с двумя элементами.
Все эти факторы нужно обязательно учитывать при решении вопроса как сделать соленоидный двигатель своими руками из подручных материалов.
Реальные перспективы создания вечного двигателя на магнитах
Противники теории создания вечного двигателя говорят о невозможности нарушения закона о сохранении энергии. Действительно, нет совершенно никаких предпосылок к тому, чтобы получить энергию из ничего. С другой стороны, магнитное поле – это вовсе не пустота, а особый вид материи, плотность которого может достигать 280 кДж/м³. Именно это значение и является потенциальной энергией, которую теоретически может использовать вечный двигатель на постоянных магнитах. Несмотря на отсутствие готовых образцов в общем доступе, о возможности существования подобных устройств говорят многочисленные патенты, а также факт наличия перспективных разработок, которые остаются засекреченными еще с советских времен.
Норвежский художник Рейдар Финсруд создал свой вариант вечного двигателя на магнитах К созданию подобных электрогенераторов приложили силы знаменитые физики-ученые: Никола Тесла, Минато, Василий Шкондин, Говард Джонсон и Николай Лазарев. Следует сразу оговориться, что создаваемые с помощью магнитов двигатели называются «вечными» условно — магнит теряет свои свойства через пару сотен лет, а вместе с ним прекратит работу и генератор.
Как сделать соленоид Enginen Car
Шаг 1: Изготовление соленоидного цилиндра
- Прежде всего, нарежьте две одинаковые части ACP или лист волокна.
- И отметьте диаметр шприца на листе. Затем удалите ненужную часть.
- Теперь отрежьте 2 дюйма от цилиндрической части шприца. Зафиксируйте часть шприца на листе.
- Теперь настало время намотать медный провод 26 калибра на шприц.
- Ветер магнитный провод плотно. Минимум поворотов 60, максимум: максимально.
- Чем больше вы накручиваете магнитную проволоку, ваш двигатель будет работать быстрее и мощнее
- Сделайте необходимые отверстия. Смотреть видео.
Шаг 2: Изготовление поршня
Поршень состоит из трех частей. Головка поршня, шатун и кривошип.
Мы использовали цилиндрический магнит в качестве головки поршня,
устройство для крепления волоконного винта в качестве шатуна,
маленький кусочек еще глубже как рукоятка.
Шатун играет важную роль в легкой передаче мощности на коленчатый вал.
Я сделал это гибким
Обратите внимание.
Смотреть видео для более подробной информации
Расчет электромагнита
Чтобы провести примерный расчёт электрического магнита, необходимо задать тяговое усилие, которое требуется для мотора. Допустим, требуется произвести расчёт электрического магнита с тяговым усилием 100 Н (10 кг). Теперь после этого можно рассчитать параметры конструкции электромагнита, если зазор его составляет 10-20 мм. Тяговая сила, которая развивается электромагнитом, считается так:
- Перемножаются индукция в воздушном зазоре и площадь полюса. Индукция измеряется в Теслах, площадь – в квадратных метрах.
- Полученное значение необходимо разделить на значение магнитной проницаемости воздуха. Оно равно 1,256 х 10^-6 Гн/м.
Если задать индукцию 1,1 Тл, то можно вычислить площадь сечения магнитопровода:
- Тяговая сила умножается на магнитную проницаемость воздуха.
- Полученное значение необходимо разделить на квадрат индукции в зазоре.
Для трансформаторной стали, которая используется в магнитопроводах, индукция в среднем равна 1,1 Тл. Используя кривую намагничивания низкоуглеродистой стали, можно определить среднее значение напряженности магнитного поля. Если правильно сконструировать электрический магнит, то вы достигнете максимальной силы потока. Причём электропотребление обмотки будет минимальным.
Особенности конструкции магнитного двигателя
Если сравнивать с аналогичными устройствами, то вышеприведенная конструкция имеет следующие особенности:
- Используются очень экономичные электромагниты.
- На роторе располагается постоянный магнит, который вращается внутри дугового электромагнита.
В зазорах электромагнита постоянно изменяется полярность. Ротор изготавливается из немагнитных материалов, причём желательно, чтобы он был тяжёлым. Он выполняет функцию инерционного маховика. А вот в конструкции электромагнитного клапана остановки двигателя необходимо использовать сердечник из магнитных материалов.
Преимущества
Приборы приобретают в готовом виде или изготавливают самостоятельно. Купив ветрогенератор, его остается только установить. Все регулировки и центровки уже пройдены, проведены испытания при различных климатических условиях.
Неодимовые магниты, которые используются вместо редуктора и подшипников, позволяют достичь следующих результатов:
- сокращается трение, и повышается срок эксплуатации всех деталей;
- исчезает вибрация и шум прибора при работе;
- себестоимость уменьшается;
- экономится электроэнергия;
- исчезает необходимость регулярно обслуживать прибор.
Ветрогенератор можно приобрести со встроенным инвертором, который заряжает батарею, а также с контроллером.
Устройство и принцип работы
Сегодня существует достаточно большое количество магнитных двигателей, некоторые из них схожи, другие имеют принципиально отличительную конструкцию.
Для примера мы рассмотрим наиболее наглядный вариант:
Принцип действия магнитного двигателя
Как видите на рисунке, мотор состоит из следующих компонентов:
- Магнит статора здесь только один и расположен он на пружинном маятнике, но такое размещение требуется только в экспериментальных целях. Если вес ротора окажется достаточным, то инерции движения хватит для преодоления самого малого расстояния между магнитами и статор может иметь стационарный магнит без маятника.
- Ротор дискового типа из немагнитного материала.
- Постоянные магниты, установленные на роторе в форме улитки в одинаковое положение.
- Балласт — любой увесистый предмет, который даст нужную инерционность (в рабочих моделях эту функцию может выполнять нагрузка).
Все, что нужно для работы такого агрегата — это придвинуть магнит статора на достаточное расстояние к ротору в точке самого наибольшего удаления, как показано на рисунке. После этого магниты начнут притягиваться по мере приближения формы улитки по кругу, и начнется вращение ротора. Чем меньше размер магнитов и чем более плавная форма получится, тем легче произойдет движение. В месте максимального сближения на диске установлена «собачка», которая сместит маятник от нормального положения, чтобы магниты не притянулись в статическое положение.
Параметры постоянных магнитов
Чтобы изготовить электромагнитный двигатель своими руками, потребуется подобрать все компоненты. И самое главное — это постоянные магниты. У них имеется три основных характеристики:
- Остаточная магнитная индукция, которая позволяет определить величину потока. В том случае, когда на генераторе установлены постоянно магниты с очень большой индукцией, пропорционально будет увеличиваться напряжение на выходе обмоток. Следовательно, повышается мощность генераторной установки.
- Энергетическое произведение позволяет «пробивать» потоком воздушные зазоры. Чем больше величина энергетического произведения, тем меньше размеры всей системы.
- Коэрцитивная сила определяет значение магнитного напряжения. При использовании в генераторах магнитов с большой коэрцитивной силой поле без труда преодолеет любой воздушный зазор. Если витков в статоре очень много, то без лишних энергозатрат будет поддерживаться ток.