В чем состоит опыт эрстеда

Линии магнитного поля

Электрическое поле, напомним, исследуется с помощью маленьких пробных зарядов, по действию на которые можно судить о величине и направлении поля. Аналогом пробного заряда в случае магнитного поля является маленькая магнитная стрелка.

Например, можно получить некоторое геометрическое представление о магнитном поле, если разместить в разных точках пространства очень маленькие стрелки компаса. Опыт показывает, что стрелки выстроятся вдоль определённых линий —так называемых линий магнитного поля

. Дадим определение этого понятия в виде следующих трёх пунктов.

1. Линии магнитного поля, или магнитные силовые линии — это направленные линии в пространстве, обладающие следующим свойством: маленькая стрелка компаса, помещённая в каждой точке такой линии, ориентируется по касательной к этой линии

2. Направлением линии магнитного поля считается направление северных концов стрелок компаса, расположенных в точках данной линии

3. Чем гуще идут линии, тем сильнее магнитное поле в данной области пространства

Роль стрелок компаса с успехом могут выполнять железные опилки: в магнитном поле маленькие опилки намагничиваются и ведут себя в точности как магнитные стрелки.

Так, насыпав железных опилок вокруг постоянного магнита, мы увидим примерно следующую картину линий магнитного поля (рис. 1).

Рис. 1. Поле постоянного магнита

Северный полюс магнита обозначается синим цветом и буквой ; южный полюс — красным цветом и буквой

Обратите внимание, что линии поля выходят из северного полюса магнита и входят в южный полюс: ведь именно к южному полюсу магнита будет направлен северный конец стрелки компаса

Открытия Лоренца

Выделим основные открытия Лоренца.

Лоренц установил, что магнитное поле действует на движущуюся в нём частицу, заставляя её двигаться по дуге окружности:

   (1.3.)

Поскольку сила Лоренца – центростремительная сила, перпендикулярная направлению скорости. Прежде всего, открытый Лоренцем закон, позволяет определять такую важнейшую характеристику как отношение заряда к массе – удельный заряд.

  (1.4.)

Значение удельного заряда – величина уникальная для каждой заряженной частицы, что позволяет их идентифицировать, будь-то электрон, протон или любая другая частица. Таким образом, учёные получили мощный инструмент для исследования. Например, Резерфорд сумел провести анализ радиоактивного излучения и выявил его компоненты, среди которых присутствуют альфа-частицы – ядра атома гелия и бета-частицы – электроны. В ХХ веке появились ускорители, работа которых основана на том, что заряженные частицы ускоряются в магнитном поле. На этом принципе разработан Большой адронный коллайдер. Благодаря открытиям Лоренца наука получила принципиально новый инструмент для физических исследований, открывая дорогу в мир элементарных частиц.

Для того чтобы охарактеризовать влияние учёного на технический прогресс вспомним о том, что из выражения для силы Лоренца вытекает возможность рассчитать радиус кривизны траектории частицы, которая движется в постоянном магнитном поле. При неизменных внешних условиях этот радиус зависит от массы частицы, её скорости и заряда. Таким образом, получаем возможность классифицировать заряжённые частицы по этим параметрам и, следовательно, можем проводить анализ какой-либо смеси. Если смесь веществ в газообразном состоянии ионизировать, разогнать и направить в магнитное поле, то частицы начнут двигаться по дугам окружностей с различными радиусами – частицы будут покидать поле в разных точках и остаётся только зафиксировать эти точки вылета, что реализуется при помощи экрана, покрытого люминофором, который светится при попадании на него заряжённых частиц. Именно по такой схеме работает масс-анализатор. Масс-анализаторы широко применяют в физике и химии для анализа состава смесей.

Это ещё не все технические устройства, которые работают на основе разработок и открытий Ампера и Лоренца, ведь научное знание рано или поздно перестает быть исключительной собственностью учёных и становится достоянием цивилизации, при этом оно воплощается в различных технических устройствах, которые делают нашу жизнь более комфортной.

Домашняя работа.

Задание 1. Ответь на вопросы.

  1. Какие явления наблюдаются в цепи, в которой существует электрический ток?
  2. Какие магнитные явления вам известны?
  3. В чём состоит опыт Эрстеда?
  4. Какая связь существует между электрическим током и магнитным полем?
  5. Почему для изучения магнитного поля можно использовать железные опилки?
  6. Как располагаются железные опилки в магнитном поле прямого тока?
  7. Что называют магнитной линией магнитного поля?
  8. Для чего вводят понятие магнитной линии поля?
  9. Как на опыте показать, что направление магнитных линий связано с направлением тока

Задание 2. Проведите опыт.

ОПЫТЫ
С ЖЕЛЕЗНЫМИ ОПИЛКАМИ

Возьмите магнит любой формы, накройте его куском тонкого картона,
посыпьте сверху железными опилками и разровняйте их.
Так интересно наблюдать магнитные поля!
Ведь каждая «опилочка», словно магнитная стрелка, располагается вдоль магнитных линий.
Таким образом становятся «видимыми» магнитные линии магнитного поля вашего магнита.
При передвижении картона над магнитом (или наоборот магнита под картоном)
опилки начинают шевелиться, меняя узоры магнитного поля.

  • https://www.kursoteka.ru/catalog/school/5
  • http://www.umnik-umnica.com/ru/school/physics/11-klass/
  • http://class-fizika.narod.ru
  • https://www.youtube.com/watch?v=aGIWuE1iL28
  • https://www.youtube.com/watch?v=Tt7hXaukl9U
     

Примеры использования ЭМ

В качестве примеров применения электромагнитов можно привести следующие приборы:

  • телевизоры;
  • трансформаторы;
  • пусковые устройства автомобилей.

Телевизоры

Современные жилища, как правило, заполнены различными электроприборами. Находясь вблизи телеприёмника, они могут воздействовать магнитной индукцией на экран телевизора (ТВ). В ТВ уже существует встроенная защита от намагничивания экрана. Если на поле дисплея появились разноцветные пятна, то надо выключить прибор на 10-20 минут. Встроенная защита уберёт намагниченность экрана.

В некоторых случаях этот способ не оказывает нужную помощь. Тогда применяют специальный электромагнит, который называют дросселем. Это своеобразная катушка индукции. Прибор подключают к розетке бытовой электросети и проводят им вдоль и поперёк экрана. В результате наведённые магнитные поля поглощаются дросселем.

Трансформаторы

Конструкция трансформаторов очень схожа со строением электромагнитов. И там, и там есть обмотки и сердечники. Отличие трансформатора от ЭМ состоит в том, что у первого магнитопровод имеет замкнутую форму. Поэтому суммированная магнитная сила обнуляется встречными магнитными потоками.

Пусковое устройство автомобиля

Стартер автомобиля работает как пусковое устройство двигателя. Он включается на время заводки мотора. Временная передача стартового усилия на коленвал двигателя обеспечивается втягивающим электромагнитом.

При повороте ключа в замке зажигания ЭМ втягивает шестерню в зубцы коленвала. Во время контакта электродвигатель стартера проворачивает мотор до возникновения цикла сгорания топлива в цилиндрах мотора. Затем тяговое реле отключает электромагнит, и шестерня стартера возвращается в исходное положение. После чего автомобиль может двигаться.

Стартер с тяговым реле

Электромагниты настолько плотно вошли в сферу деятельности человека, что существование без них немыслимо. Нехитрые устройства можно встретить повсеместно. Знание принципа их действия позволит домашнему мастеру справляться с мелким ремонтом бытовых электротехнических устройств.

Линии магнитного поля

Электрическое поле можно исследовать с помощью элементарных зарядов, по поведению которых удобно судить о значении и направлении материи. Аналогом такой энергии является пробная частица, которую можно представить в виде стрелки, точнее компаса. Например, если взять много устройств, указывающих на магнитные полюса Земли, и разместить их в некотором геометрическом пространстве, то можно будет визуализировать силы, характеризующие электромагнитное поле.

Но определить направление материи вокруг проводников с током различной формы или так называемый магнитный спектр можно и практически. Для этого используются различные установки. Простейшей из них является комплекс, включающий в свой состав:

  • источник питания;
  • диэлектрическую рамку;
  • толстый медный провод способный пропустить ток порядка 20 ампер;
  • железные опилки.

В рамке через просверленное отверстие продевают провод, который подключают к источнику питания. Сверху на проволоку насыпают стружки. После подачи тока можно будет наблюдать, как образуются цепочки, повторяющие форму распространения силы поля. Например, вокруг прямого провода, расположенного перпендикулярно пластинке, можно будет увидеть кольцевые силовые линии.

Проведя эксперимент, можно узнать в чём состоит особенность линий магнитной индукции. Во-первых, их распространение неравномерное. В некоторых местах они гуще. Во-вторых, эти линии никогда не пересекаются и всегда замкнутые. С точки зрения физики, можно добавить, что направление магнитного поля возможно выяснить по правилу буравчика. При этом вектор индукции касателен к каждой точке отрезка.

Для эксперимента нужно высыпать опилки на лист бумаги, а рядом с ними положить компас. Затем снизу медленно поднести магнит, желательно через деревянную прослойку. Тогда можно будет не только увидеть рисунок поля, но и заметить, что стрелка компаса показывает в ту же сторону, куда направлены железные опилки.

«Опыты Эрстеда. Магнитное поле прямого проводника с током. Электромагнит»

Тема конспекта: Опыт Эрстеда. Магнитное поле прямого проводника с током. Линии магнитной индукции. Электромагнит.

Опыты Эрстеда

Опыт Эрстеда заключается в следующем. На столе располагают магнитную стрелку, которая ориентируется с севера на юг в магнитном поле Земли, и параллельно ей сверху проводник, соединённый с источником тока. При замыкании цепи стрелка повернётся на 90° и встанет перпендикулярно проводнику.

При размыкании цепи стрелка вернётся в первоначальное положение. Если изменить направление тока на противоположное, то стрелка повернётся в обратную сторону. Опыт Эрстеда доказывает, что вокруг проводника, по которому течёт электрический ток, существует магнитное поле, которое действует на магнитную стрелку.

Опыт Эрстеда показал существование взаимосвязи между электрическими и магнитными явлениями. Магнитное поле действует на движущиеся заряды. На неподвижные заряды магнитное поле не действует.

Линии магнитной индукции

Силовой характеристикой магнитного поля является величина, называемая магнитной индукцией. Обозначается магнитная индукция буквой В. Магнитная индукция является векторной величиной, т.е. имеет определённое направление. Это наглядно проявляется в опыте со взаимодействием параллельных проводников с током. Направление вектора магнитной индукции совпадает с направлением северного полюса магнитной стрелки в данной точке поля.

Линии, вдоль которых располагаются в магнитном поле магнитные стрелки или железные опилки, называют линиями магнитной индукции. Направление, которое указывает северный полюс магнитной стрелки, принято за направление линий магнитной индукции. Вектор магнитной индукции направлен по касательной к линии магнитной индукции в каждой точке поля.

Как следует из результатов опыта Эрстеда и опыта по взаимодействию параллельных проводников с током, направление линий вектора магнитной индукции (и линий магнитной индукции) зависит от направления тока в проводнике. Направление линий магнитной индукции можно определить с помощью правила буравчика. Для линейного проводника оно следующее: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитной индукции.

Электромагнит

Электромагнит — устройство, создающее магнитное поле при прохождении электрического тока через него. Обычно электромагнит состоит из обмотки и ферромагнитного сердечника, который приобретает свойства магнита при прохождении по обмотке электрического тока. В электромагнитах, предназначенных, прежде всего, для создания механического усилия также присутствует якорь (подвижная часть магнитопровода), передающий усилие.

Движение проводника с током в магнитном поле лежит в основе работы электрического двигателя. Если поместить прямоугольную рамку в магнитное поле и пропустить по ней электрический ток, то рамка повернётся, потому, что на стороны рамки действует сила Ампера.

Для того чтобы рамка не остановилась в тот момент, когда её плоскость перпендикулярна линиям магнитной индукции, и продолжала вращаться, изменяют направление тока в проводнике. В электрическом двигателе энергия электрического и магнитного полей превращается в механическую энергию.

Конспект урока «Опыты Эрстеда. Магнитное поле. Электромагнит».

Следующая тема: «Магнитное поле постоянного тока».

Способы обнаружения магнитного поля

Схема опыта для обнаружения магнитного поля:

  1. Закрепить параллельно и вертикально два гибких проводника. Для опыта можно взять проводники, состоящие из проволоки различной толщины и изготовленных из разных видов метала. Можно применить стальную, медную, алюминиевую, нихромовую проволоку.
  2. Присоединить полюса источников тока к их нижним концам. Проводники при этом не должны отталкиваться или приближаться друг к другу, поскольку кулоновские силы не проявляются при незначительной разности потенциалов зарядов проводников.
  3. Необходимо соединить проводники так, чтобы по ним пошел электрический ток.
  4. В первом варианте необходимо замкнуть концы проводников для возникновения в них токов противоположного направления. Проводники должны отталкиваться друг от друга.
  5. Во втором варианте необходимо замкнуть концы проводников для создания токов одного направления. Они должны притягиваться друг к другу.

Опыт позволяет обнаружить магнитное взаимодействие, то есть взаимодействие между электрическими зарядами, движущимися направленно.

Магнитное поле можно обнаружить по действию на электрический ток, то есть по действию на движущиеся заряды.

Опыт для определения характера действия магнитного поля на контур с током:

  1. Подвесить маленькую плоскую рамку, состоящую из нескольких витков проволоки, на сплетенные друг с другом тонкие гибкие проводники.
  2. Расположить вертикально провод на значительно большем расстоянии, чем размеры рамки.
  3. Рамку необходимо расположить так, чтобы при пропускании электрического тока через нее провод оказался в плоскости рамки.
  4. При изменении направления тока рамка должна поворачиваться на 180⁰.

Опыт показывает, что магнитное поле создается не только токами в проводниках, но так же его создает и любое направленное движение электрических зарядов.

Магнитное поле можно обнаружить по отклонению рядом находящейся магнитной стрелки на компасе, при пропускании через проводник электрического тока.

Магнитное поле также создается постоянными магнитами. Для его обнаружения необходимо на гибких проводниках подвесить между полюсами магнита плоскую рамку с током. Рамка должна поворачиваться до тех пор, пока ее плоскость не станет перпендикулярной линии, соединяющей полюсы магнита. Опыты позволяют увидеть ориентирующее действие магнитного поля на рамку с током.

Электромагниты

В 1269 г. французский естествоиспытатель Пьер Мари Кур написал труд под названием «Письмо о магните». Основной целью Пьера Мари Кура было создание вечного двигателя,  в котором он собирался использовать удивительные свойства магнитов. Насколько успешными были его попытки не известно, но достоверно то, что Якоби  использовал свой электродвигатель для того, чтобы привести в движение лодку, при этом ему удалось её разогнать до скорости 4,5 км/ч.

Необходимо упомянуть ещё об одном устройстве, работающем на основе законов Ампера. Ампер показал, что катушка с током ведёт себя подобно постоянному магниту, а это значит – можно сконструировать электромагнит – устройство, мощность которого можно регулировать.

Закон действия магнитного поля на проводник с током

Закон действия магнитного поля на проводник с током выражается, прежде всего, в действии магнитного поля на виток или рамку с током. Так, на виток с током в магнитном поле действует момент силы, которая стремится развернуть этот виток таким образом, чтобы его плоскость стала перпендикулярна линиям магнитного поля. Угол поворота витка прямопропорционален величине тока в витке. Если внешнее магнитное поле в витке постоянно, то значение модуля магнитной индукции также величина постоянная. Площадь витка при не очень больших токах также можно считать постоянной, следовательно, справедливо то, что сила тока равна произведению момента сил, разворачивающих виток с током на некоторую постоянную, при неизменных условиях, величину.

  (1.2.)

I – сила тока,

М – момент сил, разворачивающих виток с током.

Следовательно, появляется возможность измерять силу тока по величине угла поворота рамки, которая реализована в измерительном приборе – амперметре (рис.1).

Рис. 1. Амперметр

Проверка гипотезы Лоренца – принцип работы электронно-лучевой трубки

Открытие катодных лучей, а также радиоактивности позволили проверить экспериментально гипотезу Лоренца. Воспользуемся электронно-лучевой трубкой (рис. 5)

Рис. 5. Электронно-лучевая трубкой

В вакуумной трубке размещены две пластины: анод и катод. На катод подаётся отрицательный потенциал, на анод – положительный. Для того чтобы в трубке возникли свободные электроны, катод нагревается нитью накала. Свободные электроны металлического катода вблизи его поверхности могут покидать эту поверхность, обладая высокой кинетической энергией за счёт нагревания – явление термоэлектронной эмиссии. Свободные электроны, покинувшие поверхность катода, попадают в зону действия электрического поля между анодом и катодом. Линии напряжённости этого поля направлены от анода к катоду. Электроны, будучи отрицательно заряженными частицами, движутся от катода к аноду – против линии напряжённости поля. Так в трубке возникает электрический ток, направленный от анода к катоду. Если использовать анод, покрытый специальным материалом, который светится при попадании на него заряжённых частиц, можно пронаблюдать место попадания электронов по световому пятну. Именно так и работает электронно-лучевая трубка. При подаче напряжения на анод и катод мы видим небольшое зелёное пятно на аноде – это место бомбардировки экрана электронами.

Опыт — эрстед

Опыты Эрстеда и Фарадея создали основу, на которой построены законы Максвелла. Все наши так далеко идущие выводы основывались на внимательном изучении этих законов, выраженных на языке поля. Теоретическое открытие электромагнитной волны, распространяющейся со скоростью света, является одним из величайших достижений в истории науки.

Опыты Эрстеда доказали, что вокруг проводника с током возникает магнитное поле. Фарадей ставит обратную задачу: нельзя ли с помощью магнитного поля получить электрический ток. В 1831 г. он экспериментально решил эту задачу.

Опыты Эрстеда доказали, что вокруг проводника с током возникает магнитное поле. Фарадей ставит обратную задачу: нельзя ли с помощью магнитного поля получить электрический ток.

Опыты Эрстеда показывают, что движущийся электрический заряд создает магнитное поле. Следовательно, электрический заряд является источником не только электростатического, но и магнитного и, как выяснится в дальнейшем, электромагнитного полей. Есть основание считать все эти поля проявлением одного электромагнитного поля. Различие в проявлениях связано со скоростью движения заряда в данной системе отсчета.

Опыт Эрстеда, опыты Ампера и других исследователей показали, что магнитное поле возникает вокруг любых движущихся электрических зарядов. Вспоследствии, когда было установлено, что любое вещество состоит из атомов, в которых электроны движутся вокруг ядра, образуя круговые токи, стало ясно, что магнетизм, обнаруживающийся у ряда веществ, тоже обусловлен движущимися электрическими зарядами.

Опыты Эрстеда показали, что магнитное поле проводника с током имеет такую же природу, что и поле магнита.

Опыт Эрстеда показал, что электрические токи могут действовать на магниты, однако природа магнита в то время была совершенно таинственной. Ампер и другие вскоре открыли взаимодействие электрических токов друг с другом, проявляющееся, в частности, как притяжение между двумя параллельными проводами, по которым текут одинаково направленные токи. Это привело Ампера к гипотезе, что в магнитном веществе имеются постоянно циркулирующие электрические токи. Если такая гипотеза справедлива, то результат опыта Эрстеда можно объяснить взаимодействием гальванического тока в проволоке с микроскопическими токами, которые сообщают стрелке компаса особые свойства.

Сенсационность опытов Эрстеда состояла в том, что, во-первых, магнитная сила, как оказалось, обнаруживается не только вблизи постоянного магнита, но и вблизи движущихся электрических зарядов ( вблизи электрического тока), и во-вторых, сила оказалась не отталкивающей и не притягивающей, а поворачивающей. Магнитная сила, обнаруживаемая током, поворачивала магнитную стрелку поперек, ориентируя ее всякий раз перпендикулярно к направлению тока.

После опытов Эрстеда стало ясно, что между электрическими и магнитными явлениями существует взаимосвязь.

Из опыта Эрстеда следует, что магнитное поле имеет направленный характер и должно характеризоваться векторной величиной. Эту неличину принято обозначать буквой В. Логично было бы по аналогии с напряженностью электрического поля Е назвать В напряженностью магнитного поля.

Из опыта Эрстеда следует, что магнитное поле имеет направленный характер и должно характеризоваться векторной величиной. Эту величину принято обозначать буквой В. Логично было бы по аналогии с напряженностью электрического поля Е назвать В напряженностью магнитного поля.

Опыт, обратный опыту Эрстеда. а ток выключен. б при включении тока проводник / стремится установиться перпендикулярно.

В опыте Эрстеда мы видели, что ток действует на магнит. Существует ли обратное действие магнита на проводник с током.

Обобщением экспериментальных данных ( опыты Эрстеда, сила Ампера, закон Био — Савара, закон электромагнитной индукции) является предположение о взаимной перпендикулярности электрического и магнитного полей. Мы знаем, что направление электрической напряженности связано с изменением наводящего магнитного поля правилом левого винта.

Мы уже видели из опыта Эрстеда, как силовые линии магнитного поля закручиваются вокруг изменяющегося электрического поля. А из опыта Фарадея мы видели, как силовые линии электрического поля закручиваются вокруг изменяющегося магнитного поля.

Магнитное взаимодействие параллельных токов

Пример 6

Важный пример магнитного взаимодействия – это взаимодействие параллельных токов. Закономерности данного явления экспериментально установил Ампер. Если по 2-м параллельным проводникам электрические токи протекают в одну сторону, то происходит взаимное притяжение проводников. Если электрические токи протекают в противоположных направлениях, то в таком случае проводники отталкиваются друг от друга.

Определение 9

Взаимодействие токов вызвано их магнитными полями: магнитное поле 1-го тока действует силой Ампера на 2-ой ток и наоборот.

Как демонстрируют опыты, модуль силы, которая действует на отрезок длиной Δl каждого из проводников, прямо пропорционален силе тока I1 и I2 в проводниках, длине отрезка Δl и обратно пропорционален расстоянию R между ними:

F=kI1I2∆tR

Определение 10

В Международной системе единиц измерения коэффициент пропорциональности k записывают следующим образом:

k=μ2π,

где μ – это постоянная величина, которая называется магнитной постоянной.

Введение магнитной постоянной в систему измерения упрощает запись нескольких формул. Ее числовое значение равняется:

μ=4π·10–7 HA2≈ 1,26·10–6 HA2.

Определение 11

Формула, которая выражает закон магнитного взаимодействия параллельных токов, имеет вид: F=μI1I2∆l2πR

Из нее легко вывести формулу для определения индукции магнитного поля каждого из прямолинейных проводников. Магнитное поле прямолинейного проводника с током обладает осевой симметрией и, значит, замкнутые линии магнитной индукции могут выступать лишь в качестве концентрических окружностей, располагающихся в плоскостях, перпендикулярных проводнику. Данный факт означает, векторы B1→ и B2→ магнитной индукции параллельных токов I1 и I2 располагаются в плоскости, перпендикулярной 2-м токам. Потому при исчислении сил Ампера, действующих на проводники с током, в законе Ампера предполагаем sin α=1. По закону магнитного взаимодействия параллельных токов выходит, что модуль индукции B магнитного поля прямолинейного проводника с током I на расстоянии R равен соотношению

B=μI2πR

Чтобы добиться притяжения параллельных токов при магнитном взаимодействии и отталкивания антипараллельных токов, необходимо расположить линии магнитной индукции по направлению часовой стрелки, если смотреть вдоль проводника по направлению тока. Для выявления направления вектора B→ магнитного поля прямолинейного проводника тоже используется правило буравчика: направление вращения рукоятки буравчика совпадает с направлением вектора B→ если при поворотах буравчик перемещается в направлении тока (рисунок 1.16.3).

Рисунок 1.16.3. Магнитное поле прямолинейного проводника с током.

Рисунок 1.16.4. Магнитное взаимодействие параллельных и антипараллельных токов.

Рисунок 1.16.4 наглядно объясняет закономерность взаимодействия параллельных токов.

Магнитное взаимодействие параллельных проводников с током применяется в СИ для вычисления единицы силы тока – ампера.

Определение 12

Ампер – это сила неизменяющегося тока, который при протекании по 2-м параллельным проводникам бесконечной длины и очень маленького кругового сечения, расположенным на одном метре друг от друга в вакууме, вызвал бы между данными проводниками силу магнитного взаимодействия величиной 2·10–7 Н на каждый метр длины.

Рисунок 1.16.5. Модель взаимодействия параллельных токов.

Рисунок 1.16.6. Модель рамки с током в магнитном поле.

Всё ещё сложно?
Наши эксперты помогут разобраться

Все услуги

Решение задач

от 1 дня / от 150 р.

Курсовая работа

от 5 дней / от 1800 р.

Реферат

от 1 дня / от 700 р.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: