Частотный регулятор для регулировки скорости вращения асинхронного двигателя

Дополнительные преимущества

Помимо функции энергосбережения большинство ЧРП позволяют оператору устанавливать различные параметры для ограничения крутящего момента. Это делается путем ограничения выходного тока на двигателе. Необходимо защитить все элементы приводного механизма, так как они имеют механические ограничения. Превышение этих ограничений из-за чрезмерного затягивания пуска может привести к серьезным повреждениям или дорогостоящей неисправности.

Большинство ЧРП чрезвычайно гибки в настройке и имеют встроенные входы и выходы (I/O). Эти входы/выходы могут использоваться для настройки различных функций, включая функции пуска/останова, изменения направления вращения, выбора постоянной скорости, регулировки скорости и т.д. Кроме того, аналоговые выходы ЧРП могут быть сконфигурированы для обеспечения обратной связи с системой управления предприятия, включая энергопотребление, фактическую скорость, частоту, крутящий момент и т.д. При изменении технологического процесса, например, при необходимости изменить скорость, система управления установкой сама может передать сигнал в соответствии с назначенной уставкой.

На сегодняшний день частотные преобразователи развились до такой степени, что для управления расходом многие из них могут быть совмещены с насосом или вентилятором прямо «из коробки», используя предопределенный макрос. В этом случае расходомер будет подключаться непосредственно к аналоговому входу привода. Оператор может задать желаемый поток дистанционно, и ЧРП будет поддерживать этот поток, выполняя внутренний цикл ПИД. Некоторые приводы позволяют оператору настраивать почасовые графики расхода, а также могут подключать дополнительные насосы по мере необходимости в режиме онлайн.

Встроенный вход/выход ЧРП – не единственный способ управления приводом. Многие из них позволяют использовать различные протоколы связи, которые могут управлять ЧРП с контроллеров большинства производителей. Все стандартные протоколы доступны для большинства ЧРП, что позволяет оператору иметь двунаправленную связь одним кабелем.

Почему это важно? Благодаря использованию одного кабеля, в отличие от прокладывания нескольких проводов, затраты на установку ЧРП сводятся к минимуму, и по этому кабелю может передаваться гораздо больший объем данных. Эти данные относятся не только к расширенному управлению, но и к мониторингу

Обычно операторы следят за скоростью, крутящим моментом, током и температурой привода.

Наконец, расходы на техническое обслуживание могут быть значительно снижены из-за уменьшения износа оборудования благодаря контролируемому пуску. Кроме того, в случаях, когда применение ЧРП устраняет необходимость в использовании заслонок и клапанов, затраты на техническое обслуживание этих элементов системы также могут быть исключены.

Частотные преобразователи продолжают набирать популярность в разных отраслях промышленности по мере роста преимуществ их внедрения, большинство из которых так или иначе связаны с уменьшением затрат и экономией электроэнергии.

Виды и критерии выбора

Для выбора регулятора нужно руководствоваться определенными характеристиками для конкретного случая. Среди всех критериев можно выбрать следующие:

  1. По типу управления. Для двигателей коллекторного типа применяются регуляторы с векторной или скалярной системой управления.
  2. Мощность является основным параметром, от которого нужно отталкиваться.
  3. По диапазону U.
  4. По диапазону частот. Нужно выбирать модель, которая соответствует требованиям пользователя для конкретного случая.
  5. Прочие характеристики, в которые включены гарантия, габариты, комплектация.

Устройство на тиристорах

В этой модели, представленной на схеме 1, применяются 2 тиристора, включенных встречно-параллельно, хотя их можно заменить одним симистором.

Схема 1 — Тиристорная регулировка оборотов коллекторного двигателя без потери мощности.

Эта схема производит регулирование с помощью открытия или закрытия тиристоров (симистора) при фазовом переходе через нейтраль. Для корректного управления коллекторным двигателем применяют следующие способы модификации схемы 1:

  1. Установка защитных LRC-цепей, состоящих из конденсаторов, резисторов и дросселей.
  2. Добавление на входе емкости.
  3. Использование тиристоров или симистора, ток которых превышает номинальное значение силы тока двигателя в диапазоне от 3..8 раз.

Этот тип регуляторов имеет достоинства и недостатки. К первым относятся низкая стоимость, маленький вес и габариты. Ко вторым следует отнести следующие:

  • применение для моторов небольшой мощности;
  • происходит шум и рывки мотора;
  • при использовании схемы на симисторах происходит попадание постоянного U на двигатель.

Этот тип регулятора ставится в вентиляторы, кондиционеры, стиральные машины и электродрели . Отлично выполняет свои функции, несмотря на недостатки.

Транзисторный тип

Еще одним названием регулятора транзисторного типа является автотрансформатор или ШИМ-регулятор (схема 2). Он изменяет номинал U по принципу широтно-импульсной модуляции (ШИМ) при помощи выходного каскада, в котором применяются транзисторы типа IGBT.

Схема 2 — Транзисторный ШИМ-регулятор оборотов.

Коммутация транзисторов происходит с высокой частотой и благодаря этому можно изменить ширину импульсов. Следовательно, при этом изменится и значение U. Чем длиннее импульс и короче паузы, тем выше значение U и наоборот. Положительные аспекты применения этой разновидности следующие:

  1. Незначительный вес прибора при низких габаритах.
  2. Довольно низкая стоимость.
  3. При низких оборотах отсутствие шума.
  4. Управление за счет низких значений U (0..12 В).

Основной недостаток применения заключается в том, что расстояние до электромотора должно быть не более 4 метров.

Регулирование за счет частоты

Регулирование оборотов моторов различных типов за счет частоты получило широкое применение. Частотное преобразование занимает лидирующую позицию на рынке сбыта устройств-регуляторов оборотов и осуществления плавного пуска. Благодаря своей универсальности возможно влиять на мощность, производительность и скорость любого устройства с электродвигателем. Эти устройства применяются для однофазных и трехфазных двигателей. Применяются такие виды частотных преобразователей:

  1. Специализированные однофазные.
  2. Трехфазные без конденсатора.

Для регулирования оборотов используется конденсатор, включенный с обмотками однофазного двигателя (схема 3). Этот преобразователь частоты (ПЧ) имеет емкостное R, которое зависит от частоты протекающего переменного тока. Выходной каскад такого ПЧ выполнен на IGBT-транзисторах.

Схема 3 — Частотный регулятор оборотов.

У специализированного ПЧ есть свои преимущества и недостатки. Преимуществами являются следующие:

  1. Управление АД без участия человека.
  2. Стабильность.
  3. Дополнительные возможности.

Существует возможность управлять работой электромотора при определенных условиях, а также защита от перегрузок и токов КЗ. Кроме того, возможно расширять функционал при помощи подключения цифровых датчиков, мониторинга параметров работы и использования PID-регулятора. К минусам можно отнести ограничения при управлении частотой и довольно высокую стоимость.

Для трехфазных АД применяются также устройства регулирования частоты (схема 4). Регулятор имеет на выходе три фазы для подключения электромотора.

Схема 4 — ПЧ для трехфазного двигателя.

У этого варианта тоже есть свои сильные и слабые стороны. К первым можно отнести следующие: низкую стоимость, выбор мощности, широкий диапазон частотной регуляции, а также все преимущества однофазных преобразователей частоты. Среди всех отрицательных сторон можно выделить основные: предварительный подбор и нагрев при пуске.

Lenze smd параллельное подключение двух электродвигателей

Если включить два электродвигателя параллельно к преобразователю частоты ESMD402L4TXA 4, то рекомендуется ставить тепловые реле для защищенности от токовых перегрузок. Для контролирования температуры необходимо поставить термодатчики.

Информация от инженеров: можно ли подключить два двигателя одновременно к частотнику?

1) Рекомендовано применять тепловые реле частотного преобразователя видов ТРП, РТТ, ТРН. Контакты, размыкающие эти реле, подсоединяются последовательным соединением к дискретному входу частотного преобразователя ESMD. Вход дискретный программируется функцией отключения из-за наружной поломки. Параметр имеет значение равное 10.

2) К таким частотникам допускается подключение тепловых реле. Они будут размыкать контакт при высокой температуре. При соединении двух датчиков контакты соединяются по последовательной схеме. Терморезисторы, термопары, датчики температуры не рекомендуются для применения.

Чаще всего при подключении двух электродвигателей к одному частотному преобразователю используют РТЛ тепловые реле, укомплектованные адаптером КРЛ, чтобы устанавливать их самому. Постоянно замкнутые контакты РТЛ теплового реле включены в цепь частотника Lenze. Постоянно разомкнутый контакт был подключен лампе сигнала при аварии электромотора.

Чтобы можно было соединить два электродвигателя параллельно, должны быть соблюдены законы:

  • частота – напряжение, квадратичный закон;
  • закон частота – напряжение с IR–компенсацией в автоматическом режиме.

Электрический ток частотника должен быть не менее суммы токов обоих электромоторов. Для этого используют наружную защиту тепловую для обоих двигателей с применением термореле или терморезисторов. Лучше между моторами и частотником установить фильтр выхода с функцией отсечки излишнего напряжения.

Наиболее применимы два варианта:

  1. Моторы с одинаковой мощностью. После настраивания частотника характеристика крутящего момента не изменяется.
  2. Электродвигатели с неодинаковой мощностью. Данные крутящего момента не оптимальные для двигателей.

Устройство системы

Коллекторный тип двигателя состоит главным образом из ротора, статора, а также щёток и тахогенератора.

  1. Ротор — это часть вращения, статор — это внешний по типу магнит.
  2. Щётки, которые произведены из графита — это главная часть скользящего контакта, через которую на вращающийся якорь и стоит подавать напряжение.
  3. Тахогенератор —это устройство, которое производит слежку за характеристикой вращения прибора. Если происходит нарушение в размеренности процесса вращения, то он корректирует поступающий в двигатель уровень напряжения, тем самым делая его наиболее плавным и медленным.
  4. Статор. Такая деталь может включать в себя не один магнит, а, к примеру, две пары полюсов. Вместе с этим на месте статических магнитов здесь будут находиться катушки электромагнитов. Совершать работу такое устройство способно как от постоянного тока, так и от переменного.

Схема регулятора оборотов коллекторного двигателя

В виде регуляторов оборотов электродвигателей 220 В и 380 В применяются особые частотные преобразователи. Такие устройства относят к высокотехнологическим, они и помогают совершить кардинальное преобразование характеристики тока (форму сигнала, а также частоту). В их комплектации имеются мощные полупроводниковые транзисторы, а также широтно-импульсный модулятор. Весь процесс осуществления работы устройства происходит с помощью управления специальным блоком на микроконтроллере. Изменение скорости во вращении ротора двигателей происходит довольно медленно.

Именно по этой причине частотные преобразователи применяются в нагруженных устройствах. Чем медленнее будет происходить процесс разгона, тем меньшая нагрузка будет совершена на редуктор, а также конвейер. Во всех частотниках можно найти несколько степеней защиты: по нагрузке, току, напряжению и другим показателям.

Некоторые модели частотных преобразователей совершают питание от однофазового напряжения (оно будет доходить до 220 Вольт), создают из него трехфазовое. Это помогает совершить подключение асинхронного мотора в домашних условиях без применения особо сложных схем и конструкций. При этом потребитель сможет не потерять мощность во время работы с таким прибором.

Зачем используют такой прибор-регулятор

Если говорить про двигатели регуляторов, то обороты нужны:

  1. Для существенной экономии электроэнергии. Так, не любому механизму нужно много энергии для выполнения работы вращения мотора, в некоторых случаях можно уменьшить вращение на 20−30 процентов, что поможет значительно сократить расходы на электроэнергию сразу в несколько раз.
  2. Для защиты всех механизмов, а также электронных типов цепей. При помощи преобразовательной частоты можно осуществлять определённый контроль за общей температурой, давлением, а также другими показателями прибора. В случае когда двигатель работает в виде определённого насоса, то в ёмкости, в которую совершается накачка воздуха либо жидкости, стоит вводить определённый датчик давления. Во время достижения максимальной отметки мотор попросту автоматически закончит свою работу.
  3. Для процесса плавного запуска. Нет особой необходимости применять дополнительные электронные виды оборудования — все можно осуществить при помощи изменения в настройках частотного преобразователя.
  4. Для снижения уровня расходов на обслуживание устройств. С помощью таких регуляторов оборотов в двигателях 220 В можно значительно уменьшить возможность выхода из строя приборов, а также отдельных типов механизмов.

ГОСТы и ТУ для частотных преобразователей

Собственно, как и любые технические средства, используемые на производственных предприятиях и в оборудовании, частотные преобразователи и требования к ним регламентируются определенной технической базой, а именно следующими документами:

  • Правила устройства электроустановок 7-е издание.
  • ГОСТ 24607-88 Преобразователи частоты.
  • ГОСТ 13109-97 Совместимость технических средств электромагнитная.
  • ГОСТ Р 51137-98 Электроприводы регулируемые асинхронные.
  • ФЗ 261 Федеральный закон об энергосбережении и энергоэффективности.
  • ТР ТС 00_2011 Электромагнитная совместимость технических средств.
  • ГОСТ26284-84 — Преобразователи электроэнергии полупроводниковые. Условные обозначения.
  • ГОСТ23414-84 — Преобразователи электроэнергии полупроводниковые. Термины и определения.
  • ГОСТ 4.139-85 Система показателей качества продукции. Преобразователи электроэнергии полупроводниковые. Номенклатура показателей.

В соответствии с описанными в этих документах требованиями должен осуществлять выбор конкретной модели устройства, а также ее установка и отладка.

Основные показатели преобразователей

К основным характеристикам этих устройств можно отнести следующее:

  • рабочее напряжение в пределах от 220 до 480 В;
  • все модели обладают защитой lP54;
  • температурный режим, требуемый для нормальной эксплуатации, в пределах от +10 до +40 градусов по Цельсию;
  • мощность для большинства покупных моделей — от 1 кВт.

Кроме того, существуют такие модели, как двухзвенные частотные преобразователи, а также такие разновидности, как матричные и векторные устройства. К примеру, векторный тип — это ЧП переменного тока и напряжение, которое подается на него, необходимое для создания нужной амплитуды. Этот тип прибора обеспечивает включение в работу двигателя спустя 2 секунды после запуска ЧП. Однако недостатком стало то, что он довольно дорогой, а потому его популярность стремительно падает.

Очень важно заметить, что подбирать просто мощный прибор — это неправильно. Выбор должен осуществляться в соответствии с рабочими параметрами сети

Если купить слишком мощный частотный преобразователь для электродвигателя, то получится, что будет переплата за то оборудование, которое будет представлять угрозу, а не регулировать работу агрегата.

Промежуточная цепь

Промежуточная цепь выполняет роль своеобразного хранилища, из которого электродвигатель получает энергию через инвертор. В зависимости от комбинации инвертора и выпрямителя промежуточная цепь может иметь одну из следующих формаций:

  1. Инвертор-источник питания. В данном случае промежуточная цепь имеет в составе мощную индуктивную катушку, которая преобразует напряжение выпрямителя в изменяющийся постоянный ток. Само напряжение двигателя определяется по нагрузке. Такой тип цепей может работать только с управляемыми выпрямителями.
  2. Инверторы — источники напряжения. В данном случае в промежуточной цепи используется фильтр, в состав которого входит конденсатор. Он сглаживает напряжение, поступающее от выпрямителя. Такие цепи способны работать с любыми типами выпрямителей.
  3. Цепь изменяющегося постоянного напряжения. В данном случае перед фильтром устанавливается прерыватель, в котором имеется транзисторы, выключающий и включающий подачу напряжения от выпрямителя. В данном случае фильтр обеспечивает сглаживает прямоугольные напряжения после прерывателя, а также поддерживает постоянное напряжение на заданной частоте.

Подключение

Собрать ЧП — это лишь половина дела. Вторая половина — это правильное подключение преобразователя к двигателю. Частотный преобразователь для насоса, работающего посредством использования асинхронного двигателя, может подключаться по двум методам. Выбор метода зависит от напряжения сети.

Если она обладает напряжением в 220 В и всего одной фазой, то наиболее выгодная схема подключения — это треугольник

Тут важно запомнить одну вещь. Выходной ток не может превышать номинальный более чем на 50 %

Если подключать частотный преобразователь на 380 В и трех фазах, то для подсоединения к двигателю лучше всего прибегнуть к такой схеме, как звезда. Для того чтобы максимально упростить этот процесс, на покупных ЧП имеются специальные клеммы, которые обладают нужной маркировкой. На самодельном придется обойтись без этого.

Важно не забыть, что в любой системе, самодельной или покупной, должна быть схема, имеющая клемму для заземления

Виды преобразователей частоты

Существует несколько типов частотников, которые на данный момент являются самыми распространенными для производства и использования:

Электромашинные (электроиндукционные) преобразователи: используются в тех случаях, когда невозможно или нецелесообразно применение электронных ПЧ. Конструктивно такие устройства являются асинхронными двигателями с фазным ротором, которые работают в режиме генератора-преобразователя.

Данные устройства являются преобразователями со скалярным управлением. На выходе из данного аппарата создается напряжение заданной амплитуды и частоты для поддержания определенного магнитного потока в обмотках статора. Они применяются в тех случаях, когда не требуется поддерживать скорость вращения ротора в зависимости от нагрузки (насосы, вентиляторы и прочее оборудование).

Электронные преобразователи: широко применяется в любых условиях работы для различного оборудования. Такие устройства являются векторными, они автоматически вычисляют взаимодействие магнитных полей статора и ротора и обеспечивают постоянное значение частоты вращения ротора вне зависимости от нагрузки.

  1. Циклоконверторы;
  2. Циклоинверторы;
  3. ПЧ с промежуточным звеном постоянного тока:
  • Частотный преобразователь источника тока;
  • Частотный преобразователь источника напряжения (с амплитудно- или широтно- импульсной модуляцией).

По сфере применения оборудование может быть:

  • для оборудования мощностью до 315 кВт;
  • векторные преобразователи для мощности до 500 кВт;
  • взрывозащищённые устройства для применения во взрывоопасных и запыленных условиях;
  • частотные преобразователи, монтируемые на электродвигатели;

Каждый тип частотного преобразователя имеет определенные преимущества и недостатки и применим для различного оборудования и нагрузок, а также условий работы.

Управление частотным преобразователем может быть ручным или внешним. Ручное управление осуществляется с пульта управления ПЧ, которым можно отрегулировать частоту вращения или остановить работу. Внешнее управление выполняется при помощи автоматических систем управления (АСУТП), которые могут контролировать все параметры устройства и позволяют переключать схему или режим работы (через ПЧ или байпас). Также внешнее управление позволяет программировать работу преобразователя в зависимости от условий работы, нагрузки, времени, что позволяет работать в автоматическом режиме.

Прямой пуск, устройства плавного пуска или частотные преобразователи

Электромагнитный пускатель

Есть несколько способов запустить и управлять электродвигателем. В основном запуск двигателя происходит прямым пуском через электромагнитный пускатель. При таком подходе на двигатель подается полное напряжение, и он максимально быстро развивает номинальную скорость.

Проблема с которой сталкиваются операторы при прямом пуске заключается в том, что импульс пускового тока может в 7 раз превышать ток полной нагрузки двигателя. В течение очень короткого периода времени на двигатель и его элементы подается очень сильный импульс тока. Если мощный двигатель будет часто запускаться и останавливаться, то он быстрее износится и выйдет из строя, а также может вывести из строя исполнительный механизм работающий от него.

Устройство плавного пуска

Напротив, устройство плавного пуска сокращает пусковые токи до 2-4 крат, уменьшая нагрузку и крутящий момент, прилагаемый к двигателю. Такой подход позволяет двигателю разгоняться со скоростью, которая определяется настройкой самого устройства плавного пуска. Оператор может установить конкретное время разгона, и с момента запуска до назначенного времени двигатель будет плавно разгоняться. Такой подход позволяет снизить пусковой ток, снизить риск преждевременного выхода из строя оборудования и сэкономить немного электроэнергии. Устройства плавного пуска идеально подходят в тех случаях, где линейное изменение скорости и управление крутящим моментом являются критически важными компонентами, а также в системах трубопроводов, чтобы избежать гидроударов при пуске и останове насосов.

Частотный преобразователь

ЧРП продвигает эту концепцию на шаг вперед, позволяя оператору всегда контролировать пусковой ток и скорость вращения электродвигателя. ЧРП может управлять двигателем как во время цикла пуска/останова, так и в течение всего времени его работы. ЧРП необходим там, где требуется полный контроль скорости, а основной проблемой является повышенное потребление энергии.

По первоначальным вложениям средств устройство плавного пуска является менее дорогим вариантом, но экономический эффект от внедрения преобразователя частоты может в разы окупить его стоимость.

Плюсы использования частотных преобразователей

Недаром человек стал активно применять частотные преобразователи на всех видах предприятий и даже в быту, потому что они намного более экономичны, чем коллекторные двигатели и могут работать в таких условиях, в которых двигатель со щетками быстро выйдет из строя. Кроме всего этого, использование частотного преобразователя дало возможность заменить механические вариаторы с приводными системами, что позволило намного упростить конструкцию оборудования. А учитывая, что ДПТ при работе практически не требует ремонт, то использование ПЧ является просто идеальным решением.

Но следует понимать, что есть пределы регулирования, при которых принцип управления асинхронным двигателем также будет изменяться:

  • При регулировании скорости в диапазоне 16:1 и менее, необходимо применять использовать ПЧ, работающий по вольт — частотной характеристике.
  • Для регулирования в диапазоне 50:1 необходимо использовать бессенсорное векторное регулирование.
  • В больших диапазонах следует применять обратную связь с использованием датчиков или встроенного в ПЧ пид-регулятора.

В любом случае, когда двигатель планируется применять в тяжелых условиях работы, что обычно и бывает, то лучше использовать именно векторное регулирование.

Как выбрать частотный преобразователь?

Следует выделить несколько основных параметров, на которые нужно обращать внимание  при выборе частотного преобразователя:

Мощность. Данный параметр частотного преобразователя должен соответствовать мощности двигателя, с которым он будет использоваться. Следует выбирать устройство, мощность которого будет соответствовать номинальному току. Покупать частотный преобразователь с очень завышенными характеристиками попросту бессмысленно, ведь он обойдется намного дороже, да и с наладкой могут возникнуть проблемы.
Тип нагрузки. Тут все зависит от того, как осуществляется работа агрегата, к которому будет подключен частотный преобразователь. Например, при вентиляторных нагрузках не бывает перегрузок, а в случае с работой пресса – ток может превышать номинальные значения  на 60 и более процентов. Соответственно, необходимо учитывать это при выборе и оставлять определенный запас «хода».
Тип охлаждения двигателя. Двигатели могут оснащаться принудительными системами охлаждения либо иметь самообдув. Во втором случае к крыльчатке ротора прикрепляются специальные лопасти, которые вращаются вместе с ним и обдувают двигатель. Соответственно, нормальная степень обдува в данном случае напрямую зависит от частоты вращения. Если двигатель продолжительное время будет работать на пониженной частоте, то это может привести к перегреву. Соответственно, лучше позаботиться о дополнительном охлаждении, если изменение частоты будет больше 10% от номинального значения.
Входное напряжение. Данный показатель определяет, при каком напряжении способен работать преобразователь частот. Тут мало знать, что в сети напряжение обычно составляет около 380 В. Часто происходят скачки в диапазоне +-30%. Кроме того, в сетях, куда подключено большое количество силового оборудования, часто случаются выбросы в 1 кВ. Соответственно, чем шире диапазон рабочих напряжений у преобразователя частот, тем надежнее он будет работать.
Способ торможения. Остановка двигателя может осуществляться либо инверторным мостом, либо электродинамическим способом. Первый метод больше подходит для точного и быстрого торможения, а второй – в механизмах с частым торможением либо при необходимости постепенной остановки

На это обязательно следует обратить внимание.
Окружающая среда и защита. Обычно в паспорте преобразователя частоты указаны условия, при которых должно использоваться устройство. Например, влагозащищенные модели соответствуют стандарту IP 54 – они устойчивы к воздействию влаги и могут использоваться в помещениях с паровыми испарениями и повышенной влажностью.
Тип управления и интерфейсы

Обязательно необходимо обратить внимание на наличие подходящих для подключения разъемов, а также возможностей правления – некоторые модели предназначены для монтажа на месте, а другие – в отдельной рубке управления.

Например, влагозащищенные модели соответствуют стандарту IP 54 – они устойчивы к воздействию влаги и могут использоваться в помещениях с паровыми испарениями и повышенной влажностью.
Тип управления и интерфейсы

Обязательно необходимо обратить внимание на наличие подходящих для подключения разъемов, а также возможностей правления – некоторые модели предназначены для монтажа на месте, а другие – в отдельной рубке управления.. Если вы никогда не работали с преобразователями частоты, лучше обратиться за консультацией к специалисту.

Если вы никогда не работали с преобразователями частоты, лучше обратиться за консультацией к специалисту.

Способы подключения

     Выбор варианта подключения преобразователя частоты для асинхронных двигателей зависит от цели его применения, например, необходимости обеспечения более легкого пуска или необходимости регулировки частоты вращения двигателя.

     Наиболее простой схемой подключения является установка автомата отключения перед частотником. При этом автомат должен быть рассчитан на номинальную величину напряжения, потребляемого электродвигателем.

     Поскольку большинство двигателей питаются от трехфазной сети, то можно выбрать трехфазный автомат, который обеспечивает отключение двух фаз в случае, когда происходит короткое замыкание в одной из фаз.

     При использовании однофазного частотного преобразователя для асинхронных двигателей, следует установить автомат, рассчитанный на утроенный ток в одной фазе.

     После установки автомата, следует осуществить подключение фазных проводов к клеммам двигателя, а также подключить в цепь тормозной ресивер. После частотного преобразователя в цепь устанавливается вольтметр, который измеряет напряжение на выходе.

На что обратить внимание при выборе модели?

     При выборе модели частотника необходимо уделить внимание некоторым нюансам, которые окажут влияние на правильность выбора:

  • Метод управления — скалярный или векторный. Большинство моделей имеют векторный метод управления, однако при некоторых режимах работы их можно переключить на скалярный метод управления. Новые частотники без векторного метода управления не производятся.
        
  • Мощность потребляемой электроэнергии — это важный показатель, который необходимо учитывать при выборе модели частотного преобразователя.
        
  • Входное напряжение — это показатель, указывающий на то, при каком напряжении преобразователь частоты способен работать без сбоев. Следует понимать, что входное напряжение должно быть постоянным, в противном случае, при его падении, частотник остановится, а при повышении — выйдет из строя вся система оборудования.
        
  • Диапазон регулировки является тем показателем, который важен для двигателей, работающих при высоких показателях номинальной частоты.
        
  • Наличие пульта управления, который позволяет вводить необходимые значения.
        
  • Гарантийный срок. Это показатель, который косвенно указывает на надежность техники. Если модель имеет значительный срок гарантии, то можно быть уверенным, что производитель позаботился о высоком качестве. Однако следует помнить, что гарантийным случаем не является выход из строя преобразователя, который был использован при подаче тока с неправильным номинальным показателем.

     Все перечисленные нюансы необходимо учитывать при выборе частотного преобразователя для асинхронных двигателей.

     Сегодня на рынке представлено большое количество http://www.techtrends.ru/catalogs/common/privodnaya_tehnika/preobrazovateli_chastoty/»>преобразователей частоты, среди них можно выделить ряд моделей высокого качества, которые имеют привлекательную стоимость.

     Это модель Omron MX2, оснащенная встроенным блоком управления.

     Модель Vacon NXL,

     Модель ESQ 2000.

     Они отличаются высокой номинальной мощностью, компактными габаритами и небольшим весом, а также достойными эксплуатационными характеристиками.

Мы также являемся сертифицированным сервисным центром по преобразователям частоты компании Omron.

Принцип работы

В основе принципа лежит правило вычисления скорости углового вращения коленчатого вала двигателя. Скорость потока магнитаобусловлена угловой скоростью коленчатого вала. Изменяется частота питания обмоток, скорость моторного вращения тоже переменяется. Мощность устройства снижается. Поэтому для сохранения КПД прибора необходимо изменение величины напряжения на обмотках.

Название инвертор частотные преобразователи получили из-за процесса инвертирования элементами мощности входного переменного тока в постоянный. Величина напряжения и частота импульсов на выходе регулируется. Выходные сигналы управляются широтным импульсным регулированием, выходным каскадом в элементах полупроводников. Электродвигатель получает пачки импульсов, фазное напряжение.

Принцип работы однофазной асинхронной машины

При однофазном питании асинхронника в нем вместо вращающегося магнитного поля возникает пульсирующее, которое можно разложить на два магнитных поля, которые будут вращаться в разные стороны с одинаковой частотой и амплитудой. При остановленном роторе электродвигателя данные поля создадут моменты одинаковой величины, но различного знака. В итоге результирующий пусковой момент будет равен нулю, что не позволит двигателю запустится. По своим свойствам однофазный электродвигатель похож на трехфазный, который работает при сильном искажении симметрии напряжений:

на рисунке а) показана схема асинхронной однофазной машины, а на б) векторная диаграмма

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: