Магнитопровод стержневого типа
Для питания радиоэлектронных устройств обычно применяются трехфазные трансформаторы с общей магнитной системой через ярмо Я для трех фаз с тремя стержнями С, или трехстержневые трансформаторы. Каждая из обмоток трансформатора, как первичная, так и вторичная, может быть соединена: а) звездой; б) треугольником.
При соединении звездой концы обмоток образуют общую точку 0. При соединении треугольником начало первой фазной обмотки соединяется с концом третьей, начало второй — с концом первой и начало третьей — с концом второй. В первом случае все начала, а во втором общие точки обмоток присоединяются к сети.
Следует отметить, что понятия начала и конца обмоток условны, однако они необходимы для правильного соединения фазных обмоток. В трехфазных трансформаторах положительному направлению тока от начала к концу обмотки должно соответствовать определенное направление магнитного потока в стержнях; в стержневых трансформаторах это направление должно быть одинаковым.
Соединение обмоток: а — звездой; б — треугольником.
Начала фазных обмоток высокого напряжения (ВН) принято обозначать прописными (большими) буквами А, В и С, а концы их — буквами X, У и Z, причем для обмоток фазы используются буквы АХ, ВУ и CZ. Начала и концы обмоток низкого напряжения (НН) обозначаются соответственно строчными (малыми) буквами — а, в, с и х, у, г.
Наибольшее распространение имеют соединения обмоток по схеме «звезда» (Y) и «треугольник» (D), причем первичные и вторичные обмотки могут иметь как одинаковые, так и различные схемы. Если при соединении обмоток «звездой» нулевая точка выводится, то такое соединение называют «звезда c нулем» (Yо).
Соединение обмоток «звездой»
Самым простым и дешевым из них является соединение обеих обмоток трансформатора звездой (Y/Y), при котором каждая из обмоток и ее изоляция (при глухом заземлении нейтральной точки) должны быть рассчитаны только на фазное напряжение и линейный ток.
Соединение обмоток трансформатора звездой.
Так как число витков обмотки трансформатора прямо пропорционально напряжению, то, следовательно, соединение обмоток звездой требует в каждой из обмоток меньшего количества витков, но большего сечения проводников с изоляцией, рассчитанной лишь на фазное напряжение.
У трехфазного трансформатора соединяют обмотки звездой (Y/Y). Такое соединение широко применяют для трансформаторов небольшой и средней мощности (примерно до 1800 кВ-А). Соединение звездой является наиболее желательным для высокого напряжения, так как при нем изоляция обмоток рассчитывается лишь на фазное напряжение. Чем выше напряжение и меньше ток, тем относительно дороже обходится соединение обмоток треугольником.
Где применяют обмотку треугольником
Соединение обмоток треугольником конструктивно удобнее при больших токах. По этой причине соединение Y/D широко применяется для трансформаторов большой мощности в тех случаях, когда на стороне низшего напряжения не требуется нейтрального провода.
При трехфазной трансформации только отношение фазных напряжений U1ф/U2ф всегда приближенно равно отношению чисел витков первичной и вторичной обмоток w1/w2; что же касается линейных напряжений, то их отношение зависит от способа соединения обмоток трансформатора.
Соединение обмоток трансформатора треугольником.
При одинаковом способе соединения (Y/Y или D/D) отношение линейных напряжений также равно коэффициенту трансформации. Однако при различном способе соединения (Y/D или D/Y) отношение линейных напряжений меньше или больше этого коэффициента в √3 раз. Это дает возможность регулировать вторичное линейное напряжение трансформатора соответствующим изменением способа соединения его обмоток.
На значения рабочих характеристик трансформаторов влияют потери энергии при нагреве обмоток в совокупности с другими внешними и внутренними факторами, значительно усложняющими связь формы вторичного напряжения от аналогичных параметров первичной цепи.
Похожие
Российской Федерации Руководящий нормативный документ типовая технологическая…Инструкция предназначена для персонала электростанций, предприятий электрических сетей, ремонтных предприятий и организаций Минэнерго… | Российской Федерации Руководящий нормативный документ типовая технологическая…Инструкция предназначена для персонала электростанций, предприятий электрических сетей, ремонтных предприятий и организаций Минэнерго… | ||
Контроль за состоянием трансформаторовРазличное назначение, нередко связанное с различиями в конструкции, разнообразные условия работы и другие особенности требуют различного… | Типовая инструкция по эксплуатации генераторов на электростанциях рд 34. 45. 501-88Разработано всесоюзным научно-исследовательским институтом электроэнергетики (внииэ) | ||
Типовая инструкция по эксплуатации автоматических установок водяного…Разработано акционерным обществом Фирма по наладке, совершенствованию технологии | С. Д. Лизунов сушка и дегазация трансформаторов высокого напряженияВ предлагаемом обзоре зарубежной литературы последних лет рассматриваются вопросы сушки и вакуумной обработки изоляции трансформаторов… | ||
Учебного курса, содержание лекцииПроверка силовых трансформаторов перед включением в работу Способы сушки изоляции трансформаторов | Инструкция по проверке трансформаторов напряженияВ инструкции приведены программа и методы проверки трансформаторов напряжения (ТВ) и их вторичных цепей. Даны основные сведения о… | ||
Встраиваемые светодиодные светильники al 501 Инструкция по эксплуатацииСветильник предназначен для общего освещения помещений офисов, торговых и выставочных залов, помещений общественного питания, магазинов… | Книга рассчитана на подготовленного читателя, знакомого с теорией…Книга предназначена для студентов и аспирантов энергетических вузов и инженерно-технического персонала трансформаторных заводов,… | ||
Руководство по эксплуатации рукю 442273. 501 РэНастоящее руководство по эксплуатации, объединенное с паспортом, удостоверяет основные технические характеристики прибора для определения… | Техническое задание на выполнение работ по техническому переоснащению…Аскуэ, трансформаторов тока и трансформаторов напряжения турбогенераторов тг-1, тг-2 и тсн 21Т, 22т симферопольской тэц на современные… | ||
Инструкция по вводу в эксплуатацию и погрузочно-разгрузочным работам…Каждый служащий, имеющий какое-либо отношение к транспортировке, установке, уходу и использованию трансформаторов тока (в сокращении… | Руководство по эксплуатации сварочного аппарата с горячим клином тн-501Пвх), eva, hdpe (пнд), pp (полипропилен) и других материалов, подлежащих термосплавке | ||
Методические указания по эксплуатации мазутных хозяйств тепловых…Утверждено главным инженером Филиала ОАО «Инженерный центр еэс» «Фирма оргрэс» В. А. Купченко 04. 04. 2005 г | Техническое описание и инструкция по эксплуатации -1Установка типа им-65 (в дальнейшем по тексту- установка) предназначена для испытания выпрямленным напряжением изоляции силовых кабелей,… |
Инструкция, руководство по применению
Варианты схематических решений
При конструировании блоков питания, обеспечивающих экономное расходование электроэнергии и исключающих тепловые потери в сердечнике трансформатора, возможны следующие варианты:
- Установка в выходных цепях обычных переключателей витков.
- Применение в тех же цепочках коммутаторов релейного типа.
- Использование в выходных управляющих линиях современных симисторных переключателей.
- Применение в преобразовательной схеме программируемого электронного коммутатора (контроллера).
Далее каждый из этих способов управления выходным напряжением будет рассмотрен более подробно.
Простой блок переключения
Этот тип коммутатора может быть выполнен в виде обычного галетного переключателя, рассчитанного на определенное число положений ручки управления. Каждому из них соответствует заданное количество витков вторичной катушки трансформатора, с увеличением числа которых возрастает его выходное напряжение.
Важно! К преимуществам этого способа следует отнести простоту реализации, а к недостаткам – неудобство постоянного переключения ручки, которой приходится управлять вручную. Кроме того, коммутации в этом случае происходят очень медленно и приводят к паразитным переходным процессам в выходных цепях, обладающих высокой индуктивностью
Кроме того, коммутации в этом случае происходят очень медленно и приводят к паразитным переходным процессам в выходных цепях, обладающих высокой индуктивностью.
Релейный
Принцип этого метода управления выходными каскадами БП основан на применении специальных коммутирующих элементов, называемых реле. С их помощью удается существенно повысить скорость переключений и исключить появления больших всплесков напряжения (тока). Со схемой такого коммутатора можно ознакомиться на приведенном справа рисунке.
Из нее видно, что для управления положением контактов реле используется отдельная катушка, напряжение с которой выпрямляется и подается на простейший электронный модуль, выполненный на основе транзисторов.
Поэтому переходные процессы в данной схеме заметно меньше, а опасность возникновения перенапряжений в выходных цепях существенно снижается. С другой стороны, контакты реле со временем снашиваются, а сильное искрообразование зачастую приводит к нарушениям в нормальной работе преобразователя. Гораздо надежнее некоторые типы полупроводниковых приборов (симисторы, например), при коммутации которых в цепях исключаются паразитные помехи.
Симисторный
Симисторная схема управления переключением обмоток (точнее – ее пример) приведена на рисунке слева. В данной ситуации коммутация витков выходной катушки осуществляется посредством электронных переходов специальных полупроводниковых приборов – симисторов. Для управления их переключением в схеме предусмотрен электронный модуль, срабатывающий по сигналу, поступающему от пользователя.
В данном случае для развязки управляющих и коммутирующих цепей применены оптические пары того же симисторного типа. Сигнал на их входные элементы поступает с выходов транзисторов, управляемых электронным коммутатором на операционных усилителях. В состав симистороной схемы управления выходными напряжениями входят:
- Блок питания на стабилизаторе VR1.
- Модуль задержки включения, выполненный на транзисторах VT1-VT3.
- Блок индикации на светодиодных элементах LED1-LED3.
- Типовой сдвоенный компаратор LM393.
- Логика типа 74HC86.
- Оптроны MOC3083.
- Входной делитель R6-R7.
В процессе настройки этой схемы резистором R7 выставляется фиксированное входное напряжение, поделенное делителем R6-R7 на десять. Пример: при поступлении с БП напряжения 20 Вольт, его величина на не инвертируемых входах LM393 составит всего 2 Вольта. А резисторы R8, R10 служат для выставления пороговых напряжений переключения
РПН трансформатора расшифровка
Данные устройства нельзя сравнивать с обычными реле. Однако, принцип работы РПН достаточно простой. В каждом фазном выводе, имеющемся у трансформатора, установлены подвижные контакты в количестве двух единиц.
Один из них прижимается к витку обмотки, соответствующему данному значению напряжения. Во время перевода, происходит прижатие второго свободного контакта к последующему витку, где напряжение отличается. После этого, происходит отрыв первого прижатого контакта от витка. Таким образом, происходит переподключение вывода к другому витку, не разрывая цепь. Регулирование напряжения трансформатора под нагрузкой (РПН) может выполняться вручную или с помощью электрического привода.
Чтобы обеспечить безопасные условия для персонала, ручной привод используется при выключенном трансформаторе. Управляется электрический привод дистанционно, нередко, в автоматическом режиме. Регулировка под нагрузкой осуществляется на трансформаторах с большой мощностью.
Иногда, кроме РПН регулирование под нагрузкой, применяется ПБВ переключение без возбуждения. Этот вид регулирования применяется редко, как правило, при сезонных регулировках выключенного трансформатора.
Устройство РПН, как правило, устанавливают на обмотке высшего напряжения по следующим причинам:
- на стороне высшего напряжения меньшие токи, поэтому устройство имеет меньшие габариты;
- обмотка высшего напряжения имеет большее количество витков, поэтому точность регулирования выше;
- по конструктивному исполнению обмотка высшего напряжения является наружной (магнитопровод – обмотка низшего напряжения – обмотка высшего напряжения). Поэтому ревизию устройства РПН выполнять проще;
- устройство РПН располагают в нейтрали высшей обмотки. Обмотки высшего напряжения соединяются в звезду, а обмотки низшего напряжения соединяются в треугольник. Трехфазное регулирование проще выполнить на обмотках, соединенных в звезду.
РОСПРИРОДНАДЗОР
Он значительно упрощает процесс: подготовка документа в нужном формате по каждому из видов загрязнений, его проверка и отправка непосредственно на сайт исполнительного органа в «Контуре» происходят автоматически. После декларант получает письмо о состоянии доставки документа. Если по каким-то причинам загрузить его на портал Росприроднадзора не удалось, он сохраняется в архиве и, как только нагрузка на сайте станет меньшей, подгружается из «очереди».
Основными преимуществами системы Контур.Экстерн являются:
- Законодательная актуальность: сервис обновляется в соответствии с каждым новым законом или правками.
- Легкий и быстрый расчет: достаточно при первой загрузке «Контура» указать полную информацию о предприятии, ее деятельности, источниках загрязнения, при следующих отправках данные будут загружаться автоматически.
- Всегда 100-процентная правильность заполнения, после автоматической проверки системой пользователь получает предложение исправить найденные ошибки.
- Отчетный документ отправляется в один клик.
Важно знать:
Стоимость тарифа «Отчетность в РПН» – 4300 рублей в год.
Для абонентов Контур.Экстерн дополнительный сертификат не нужен. Если подключение первичное и нужно сдать отчетность только в РПН, то выпуск сертификата входит в стоимость тарифа «Отчетность в РПН».
Для выпуска сертификата нужны: паспорт, СНИЛС и заявление на выдачу сертификата.
Конструктивные особенности сухих трансформаторов
Основу конструкции составляет активная часть трансформатора, которая включает в себя следующие элементы:
- магнитопровод или магнитный сердечник, набранный из тонких листов специальной электротехнической стали, обладающей высокой магнитной проницаемостью;
- обмотки низкого напряжения (НН), располагающиеся на стержнях магнитопровода;
- обмотки высокого напряжения (ВН), которые устанавливаются поверх обмоток НН и межобмоточной изоляции.
Для изготовления магнитопровода используются листы холоднокатаной электротехнической стали толщиной 0,27 мм, покрытые специальным изолирующим жаропрочным составом. Сердечник представляет собой набор большого количества тонких стальных пластин. Такая конструкция сердечника обеспечивает низкий уровень так называемых потерь в стали, или потерь холостого хода, обусловленных нагревом магнитопровода вихревыми токами Фуко. После сборки магнитопроводы закрепляются верхними и нижними ярмовыми балками, которые стягивают набор пластин с помощью болтового крепежа.
Для снижения потерь холостого хода также применяется специальная технология раскроя и сборки листовых заготовок, называемая «step – lap».
Фото 1. Пятипозиционная система стыковки пластин «step – lap»
Суть технологии «step – lap» заключается в том, что стыки листов в каждом слое сдвинуты друг относительно друга. Сборка магнитопровода по такой системе требует использования большого числа заготовок различной формы, поэтому раскрой и нарезка стали производится на специальных автоматизированных линиях с числовым программным управлением. Сложность изготовления сердечника по технологии «step – lap» компенсируется снижением его магнитного сопротивления и потерь холостого хода.
Каждая фаза обмотки НН сухого трансформатора представляет собой готовую конструкцию цилиндрической формы. Для изготовления токоведущей части используется лента из меди или алюминия. Намотка производится на автоматизированном оборудовании с одновременной укладкой изоляции между слоями и со стороны торцов. Для обеспечения эффективного охлаждения в конструкции обмотки НН предусматривается наличие вентиляционных каналов. Их количество зависит от мощности сухого трансформатора. Каналы выполняются с помощью профилей из стеклопластика, обладающего повышенной термостойкостью. Для защиты обмоток от воздействия атмосферной влаги, они покрываются электроизоляционными эмалями, окончательная полимеризация которых происходит под воздействием высокой температуры в специальных промышленных печах.
В целях контроля режима работы сухого трансформатора, обмотки НН оборудуются встроенным датчиком температуры, который является основным элементом тепловой защиты.
Обмотки ВН сухих трансформаторов состоят из нескольких секций, которые соединяются между собой последовательно. Изготовление обмотки выполняется автоматически с использованием ленточных заготовок из меди или алюминия. Герметизация обмоток ВН производится более тщательно, чем это делается при изготовлении обмоток низкого напряжения. Подготовленная обмотка заливается эпоксидным компаундом. Для того, чтобы изолирующим составом заполнились мельчайшие щели и зазоры, процедура выполняется в специальной камере, в которой создаётся глубокий вакуум путём откачки воздуха.
Габаритный чертеж сухого трансформатора 100 кВА
В зависимости от условий эксплуатации, сухие трансформаторы комплектуются защитными кожухами, обеспечивающими требуемую степень защиты активной части. Кожух выполняется из тонколистовой стали и защищает трансформатор от атмосферных осадков, механических воздействий, а также препятствует приближению людей к токоведущим частям. Стенки кожуха оборудованы отверстиями для вентиляции и съёмными панелями для производства осмотров и технического обслуживания.
Особенности работы пбв трансформатора и расшифровка
Потребители электрической энергии более эффективно работают при номинальном напряжении. Однако это условие для всех довольно сложно. Допустимым у потребителей является его отклонение до +5%. Чтобы достигнуть значения напряжения, близкого по значению к номинальныму, численность витков обмоток трансформатора изменяют. Осуществить это можно двумя способами:
- Связь регулировки напряжения с изменением количества витков
- Место установки анцапфы
- Способы ПБВ трансформатора
- Эксплуатация и ремонт устройств
- используя устройство ПБВ трансформатора;
- регулируя напряжение под нагрузкой.
Преимущества и недостатки
ПБВ – компактный и простой переключатель, в чём преимущество данного устройства перед РПН, переключающими трансформатор без снятия нагрузки.
К недостаткам следует отнести необходимость полного отключения агрегата для проведения регулировки. Но данным минусом можно пренебречь, если оборудование запитано от двух трансформаторов, один из которых выступает в роли резервного.
Также недостатком устройства является высокая степень окисления замыкающих контактов в процессе эксплуатации. Данная особенность составляет проблему, если переключение производится не слишком часто. Поэтому устройство нуждается в проведении периодическом техническом обслуживании.
Применение ПБВ позволяет добиться следующих положительных результатов:
- улучшить режим энергоснабжения потребителей;
- увеличить допустимые потери напряжения;
- повысить качественные характеристики электрического напряжения, подающегося на запитанное оборудование.
Простота конструкции обеспечивает высокую степень надёжности устройства.
Как работает однофазный трансформатор
Работа этого прибора заключается в следовании законам электромагнетизма. Во время подключения первой обмотки к питанию по ней начинает идти переменный ток, создающий в ферромагнитном сердечнике магнитные токи переменного знака. Когда этот поток замыкается в сердечнике, то он сцепляет первичную и вторичную катушки и производит в них электродвижущую силу, которая пропорциональна количеству витков катушки.
Важно! Когда по первичной катушке проходит ток, он создает с ее помощью магнитное поле, пронизывающее не только эту обмотку, но и вторичную. Принцип работы и рассеивание магнитных волн
Принцип работы и рассеивание магнитных волн
Газовое реле
Названный вид защиты в трансформаторе представлен механическим реле, которое дополняется двумя парами контактов. Стоит отметить, что интенсивность образования газов внутри трансформатора будет напрямую зависеть от степени, а также характера тех повреждений, которые вызвали это самое образование газов.
Именно благодаря этому есть возможность создать такую газовую защиту трансформатора, которая будет способна определять степень и характер повреждения и, в зависимости от полученных данных, посылать сигнал либо же сразу отключать агрегат. Основным элементом защиты в таких устройствах является газовое реле класса KSG. Его установка осуществляется в маслопроводе, который располагается между баком и расширителем.
Особенности конструкции, принцип действия
РПН, не смотря на характер действия и выполняемую функцию, не следует относить к реле. Но данное устройство отличается простым принципом действия.
Система переключающего устройства
На каждой из фаз трансформатора устанавливаются по два подвижных контакта. Один из них прижат к витку катушки, обеспечивающему заданную величину напряжения. При переводе, второй контакт прижимается к витку, изменяющему указанное значение. Включение может производиться вручную или с использованием привода.
Конструкция устройства отличается, в зависимости от его типа. Но основной принцип предполагает изменение количества работающих витков на первичной катушке трансформатора.
Устройство анцапфы
Анцапфа трансформатора – это простое устройство в виде виткового соединения, которое сопряжено с переключателем и обмоткой по высокой стороне. Корректировка выполняется в два направления: на повышение (убавление) и на понижение (добавление). Все это характеризуется физическим законом Ом, которое предполагает пропорциональное соотношение сопротивления к уровню напряжения.
Чтобы понять, в каком положении анцапфа трансформатора, необходимо посмотреть на условные обозначения шильды. Каждый шаг предполагает изменение на 2,5% в сторону уменьшения или увеличения. Для поддержания стабильности сопротивления контактов используется пружинное приспособление.
Заметим, что с течением времени сопротивление изоляции может снижаться, поэтому перевод устройства необходимо выполнять не менее 2 раз в год. Раз в год следует осуществлять физические измерения обмоток с использованием мегомметра или других приспособлений службы изоляции.
↑ Как все начиналось
Все началось с трансформатора. Перебирая свои складские запасы, под руку попался трансформатор ТПП 248-220-50К. На вид, мощности должно хватить, подумал я и принял решение сделать блок питания. Покопавшись еще, нашел старенький грязный амперметр. Делать большие вложения в грядущий проект не хотелось, поэтому решил конструировать из деталей, которые есть в наличии. Измерительный прибор пришлось отреставрировать:
Рис. 2.
Амперметр древний.Рис. 3. Прибор на новый лад: вольтметр + амперметр Для максимальной функциональности шкалу сделал двойную, на напряжение и ток. Не подумав о напряжениях трансформатора, решил, что мне для моих экспериментов хватит напряжения в 30 Вольт и тока в 3 ампера. Но это была поправимая ошибка, трансформатор я потом перемотал. Корпус – жестянка от старенького компьютерного блока питания. В старых компьютерных блоках питания вентилятор был небольшой и располагался сзади возле сетевого разъема, вместо него как враз встал мой отреставрированный вольтметр.
Рис. 4.
Корпус блока питания Трансформатор на удивление тоже вписывался в предельно допустимые габариты, чуть-чуть выше, но при закрытии крышки ничего незаметно. Передняя панель оргстекло, под ним, тонкий гетинакс с наклеенной самоклеющейся бумагой, на которой распечатаны на лазерном принтере надписи органов управления.
Рис. 5.
Элементы передней панели Вольтметр, потенциометр, выходные зажимы и переключатель режима индикации, плотно прижали этот «бутерброд» к корпусу без дополнительных болтиков. Результат см. рисунок 1. После того как собрал переднюю панель начал думать о принципиальной схеме.
Что такое коэффициент трансформации?
Одним из основных параметров трансформатора является его коэффициент трансформации. Рассмотрим в чём его смысл. Для этого примем допущение, что магнитное поле рассеяния сведено к минимуму и практически равно нулю. Тогда первичная и вторичная обмотки пронизываются одним и тем же магнитным потоком ФВ. И в соответствии с законом электромагнитной индукции электродвижущая сила на выводах обмоток трансформатора определяется следующими выражениями
где E1 и Е2 – ЭДС на выводах первичной и вторичной обмотки соответственно,
ω1 и ω2 – число витков первичной и вторичной обмотки соответственно,
dФВ/dt – скорость изменения магнитного потока.
Тогда приравняв последнюю часть обоих выражение получим соотношение определяющее значение коэффициента трансформации
где n – коэффициент трансформации.
Таким образом, коэффициентом трансформации n называется отношение числа витков первичной ω1 к числу витков вторичной ω2 обмотки.
В зависимости от величины коэффициента трансформации, трансформатор может быть понижающим, когда n > 1, и повышающим, когда n < 1. В повышающем трансформаторе ЭДС вторичной обмотки больше, чем в первичной E1 < Е2, а в понижающем – E1 > Е2.
↑ Недостатки
Основной из выявленных мной недостатков моего блока питания является корпус, он маловат. При наличии большего пространства можно было бы объединить плату А2 и А3, при желании поставить внутрь небольшой вентилятор, так же в больший корпус влезет больший трансформатор при наличии. Мой трансформатор конечно слабоват, 3 А без пульсаций получилось только при 28,5V. При 30V, пульсации пролазят на выход, мне как всегда пару витков не хватило, но даже если бы хватило все равно ничего хорошего не получилось, так как 90 Ватт это его максимальная мощность и при длительной эксплуатации он будет греться, воск, которым я пропитал транс чувствую, потечет.
Следующий недостаток — это измерительный прибор, мало того он не может одновременно показывать ток и напряжения, так он повлек за собой датчик тока относительно большого сопротивления, который при токе 3А немного нагревается, ситуацию усугубляет плохая вентиляция в корпусе. Как следствие нагрева — изменение сопротивления шунта и мой амперметр немножко начинает врать, но это для меня не критично.
Для тех кто решит повторить схему рекомендую не повторять мои ошибки, не жалеть резисторов на шунт. Трансформатор выбрать с запасом мощности, и использовать более современный вольтметр и амперметр, цифровой например. Перечисленные мною недостатки в принципе не относятся к схемному решению, поэтому я своей работой доволен.
Обмотки трансформатора
Эти самые катушки с проводом в трансформаторе называются обмотками. В основном обмотки состоят из медного лакированного провода. Такой провод находится в лаковой изоляции, поэтому, провод в обмотке не коротит друг с другом. Выглядит такой обмоточный трансформаторный провод примерно вот так.
Он может быть разного диаметра. Все зависит от того, на какую нагрузку рассчитан тот или иной трансформатор.
У самого простого однофазного трансформатора можно увидеть две такие обмотки.
Обмотка, на которую подают напряжение называется первичной. В народе ее еще называют «первичка». Обмотка, с которой уже снимают напряжение называется вторичной или «вторичка».
Для того, чтобы узнать, где первичная обмотка, а где вторичная, достаточно посмотреть на шильдик трансформатора.
I/P: 220М50Hz (RED-RED) — это говорит нам о том, что два красных провода — это первичная обмотка трансформатора, на которую мы подаем сетевое напряжение 220 Вольт. Почему я думаю, что это первичка? I/P — значит InPut, что в переводе «входной».
O/P: 12V 0,4A (BLACK, BLACK) — вторичная обмотка трансформатора с выходным напряжением в 12 Вольт (OutPut). Максимальная сила тока, которую может выдать в нагрузку этот трансформатор — это 0,4 Ампера или 400 мА.