Короткое замыкание

Цепи переменного тока

Рассмотренные выше ситуации имели общий характер или касались цепей постоянного тока. В большинстве случаев электроснабжение и жилых, и промышленных объектов производится от сети переменного напряжения 220 или 380 Вольт. Неприятности с проводкой, рассчитанной на постоянный ток, чаще всего случаются в автомобилях.

Между этими двумя основными типами электропитания есть разница, и существенная. Дело в том, что прохождению переменного тока препятствуют дополнительные составляющие сопротивления, называемые реактивными и обусловленные волновой природой возникающих в них явлений. На переменный ток реагируют индуктивности и емкости. Ток короткого замыкания трансформатора ограничивается не только активным (или омическим, то есть таким, которое можно измерить карманным приборчиком-тестером) сопротивлением, но и его индуктивной составляющей. Второй тип нагрузки – емкостный. Относительно вектора активного тока векторы реактивных составляющих отклонены. Индуктивный ток отстает, а емкостный опережает его на 90 градусов.

Примером разницы поведения нагрузки, обладающей реактивной составляющей, может служить обычный динамик. Его некоторые любители громкой музыки перегружают до тех пор, пока диффузор магнитное поле не выбивает вперед. Катушка слетает с сердечника и тут же сгорает, потому что индуктивная составляющая ее напряжения уменьшается.

Какие бывают виды

Короткое замыкание. Каждый слышал это словосочетание. Многие видели надпись «Не закорачивать!» Часто, когда ломается какой-нибудь электроприбор, говорят: «Коротнуло!» И несмотря на негативный оттенок этих слов, профессионалы знают, что короткое замыкание – не печальный приговор. Иногда с коротким замыканием (КЗ) бороться бессмысленно, а порой и принципиально невозможно. В этой статье будут даны ответы на самые важные вопросы: что такое короткое замыкание и какие виды КЗ встречаются в технике.

Будет интересно Что такое статическое электричество и как от него избавиться

Начнем рассматривать эти вопросы под необычным углом – узнаем, в каких случаях короткие замыкания неизбежны и где они не играют роль повреждений. Возьмем за оба конца обыкновенный металлический провод. Соединим концы вместе. Провод замкнулся накоротко – произошло КЗ. Но так как в цепи отсутствуют источники электрической энергии и нагрузка, такое короткое замыкание никакого вреда не несет. В некоторых областях электротехники КЗ, которое мы рассмотрели, играет на руку, например, в электрических аппаратах и электрических машинах.

Взглянем на однофазное реле или пускатель, в конструкции которых есть магнитная система с подвижными частями – электромагнит, притягивающий якорь. Из-за постоянно меняющейся полярности тока, текущего в обмотках электромагнита, его магнитный поток периодически становится равен нулю, что вызывает дребезжание якоря, появляются вибрации и характерное, знакомое всем электрикам гудение. Чтобы избавиться от этого явления, на торец сердечника электромагнита или якоря прикрепляют короткозамкнутый виток – кольцо или прямоугольник из меди или алюминия.

Из-за явления электромагнитной индукции в витке создается ток, создающий свой магнитный поток, компенсирующий пропадание основного магнитного потока, создаваемого электромагнитом, что приводит к уменьшению или исчезновению вибраций, разрушающих конструкцию.

Так же на руку играет короткое замыкание и в роторе асинхронного электродвигателя. Благодаря взаимодействию магнитного поля, создаваемого обмотками статора, с короткозамкнутым ротором, в роторе по уже упомянутому закону появляются свои токи, создающие свое поле, что приводит ротор во вращение

Конечно, важно грамотное проектирование электродвигателя или электрического аппарата, чтобы токи, протекающие в короткозамкнутых элементах, не приводили к перегреву и порче изоляции основных обмоток

Возгорание розетки

Подобным образом понятие «короткое замыкание» используется применительно к трансформаторам. Люди, так или иначе связанные с энергетикой, знают, что одна из важнейших характеристик трансформатора – это напряжение короткого замыкания, UКЗ, измеряемое в процентах. Возьмем трансформатор. Одну из его обмоток, скажем, низшего напряжения (НН) закоротим амперметром, сопротивление которого, как известно, принимается равным нулю. Обмотку высшего напряжения (ВН) подключаем к источнику напряжения. Повышаем напряжение на обмотке ВН до тех пор, пока ток в обмотке НН не станет равным номинальному, фиксируем это напряжение.

Делим его на номинальное напряжение высшей стороны, умножаем на 100%, получаем UКЗ. Эта величина характеризует потери мощности в трансформаторе и его сопротивление, от которого зависит ток короткого замыкания, ведущий к повреждениям. Поговорим наконец о коротких замыканиях, несущих негативные последствия. Такие короткие замыкания появляются, когда ток от источника питания протекает не через нагрузку, а только через провода, обладающие ничтожно маленьким сопротивлением. Например, трехфазный кабель питается от трансформатора, и одним неосторожным движением ковша экскаватора происходит его повреждение – две фазы закорачиваются через ковш. Такое КЗ называют двухфазным. Аналогично по количеству замкнутых фаз называют другие КЗ.

Однофазное замыкание на землю в сетях с изолированной нейтралью не является коротким, но может представлять угрозу жизни живых существ. Металлическим называют КЗ, в котором переходное сопротивление равно нулю – например, при болтовом или сварочном соединении. Токи КЗ в зависимости от напряжения и вида повреждения могут достигать тысяч и сотен тысяч ампер, приводить к пожарам и колоссальным электродинамическим усилиям, «выворачивающим» шины и провода. Защита от КЗ может осуществляться автоматическими выключателями или предохранителями, а в высоковольтных сетях – средствами релейной защиты и автоматики.

Защита блока питания от короткого замыкания.

Что это такое

Ток короткого замыкания (ТКЗ) – это резко возрастающий ударный электрический импульс. Главной его опасностью является то, что согласно закону Джоуля-Ленца такая энергия имеет очень высокий показатель выделения тепла. В результат короткого замыкания могут расплавиться провода или перегореть определенные электроприборы.

Фото — временная диаграмма

Он состоит из двух основных слагающих — апериодическая составляющая тока и вынужденная периодическая слагаемая.

Формула — периодическая Формула — апериодическая

По принципу, сложнее всего измерить именно энергию апериодического возникновения, которая является емкостной, доаварийной. Ведь именно в момент аварии разница между фазами имеет наибольшую амплитуду. Также его особенностью является не типичность возникновения этого тока в сетях. Схема его образования поможет показать принцип действия этого потока.

Сопротивление источников из-за высокого напряжения при КЗ замыкается на небольшом расстоянии или «накоротко» — поэтому это явление получило такое название. Бывает ток короткого трёхфазного замыкания, двухфазного и однофазного – здесь классификация происходит по количество замкнутых фаз. В некоторых случаях, КЗ может быть замкнут между фазами и на землю. Тогда, чтобы его определить, нужно будет отдельно учитывать заземление.

Фото — результат КЗ

Также можно распределить КЗ по типу подключения электрооборудования:

Для полного объяснения этого явления предлагаем рассмотреть пример. Скажем, есть конкретный потребитель тока, который подключен к локальной линии электропередач при помощи отпайки. При правильной схеме общее напряжение в сети равно разнице ЭДС у источника питания и снижению напряжения в локальных электрических сетях. Исходя из этого, для определения силы тока короткого замыкания может использоваться формула Ома:

Здесь r –сопротивление КЗ.

Если подставить определенные значения, то можно будет определить ток замыкания в любой точке на всей линии электропередач. Здесь не нужно проверять кратность КЗ.

Виды КЗ

Согласно ГОСТ 52735-2007, в энергосетях короткие замыкания принято разделять на несколько видов. Для наглядности ниже представлены схемы различных видов КЗ.

Причины возникновения короткого замыкания

Несмотря на случайность данного процесса, существует много причин, имеющих косвенное или прямое отношение к его происхождению. Перечислим наиболее распространенные причины, по данным аварийной статистики:

Износ электрохозяйства энергетических систем или бытовой электросети. Со временем изоляция проводов или токоведущих элементов теряет диэлектрические свойства, в результате на участке цепи возникает непредусмотренное электрическое соединение. Определить общее состояние проводки можно по проводам в электрических точках. Старение изоляции заметно на отводах к электрическим точкам

Превышение допустимой нагрузки на цепь питания. Это вызывает нагрев токоведущих элементов, что приводит к повреждению изоляции. Подробно о перегрузке электросети можно прочитать на нашем сайте. Перегрузка электросети может стать причиной короткого замыкания

Удар молнии в ВЛ. В этом случае происходит перенапряжение электросети, которое может вызвать КЗ

Обратим внимание, что молнии не обязательно попадать непосредственно в ЛЭП, близкий разряд может вызвать ионизацию воздуха, увеличивающую его электропроводимость. В результате увеличивается вероятность образования электрической дуги между линиями электропередач.

Физическое воздействие на провода, вызывающее механическое повреждение изоляции

В качестве примера достаточно вспомнить шутку, где перфоратор называют электрическим прибором для поиска скрытой проводки.
Попадание металлических предметов на токоведущие элементы. Собственно, это следствие, поскольку причина кроется в неудовлетворительном уходе за электрохозяйством.

Подключение к сети неисправного оборудования, например вызванного существенным снижением внутреннего сопротивления.

Человеческий фактор. Под это определение можно подвести практически все случаи так или иначе связанные с неправильными действиями человека. Например, ошибки при монтаже электропроводки, неудачные попытки ремонта электрооборудования, неправильные действия оперативного персонала подстанции и т.д.

https://youtube.com/watch?v=6cyiEfkrMsw

Видео о том, что такое короткое замыкание:

В электрике есть два вида неисправностей:

  1. Тока нет там, где он должен быть — это называется разрыв
  2. Ток есть там, где его быть не должно — это называется короткое замыкание.

Сегодня мы поговорим как раз о токе короткого замыкания. Любую электрическую цепс можно представить себе, как Источник тока и сопротивление нагрузки, по которой течет ток.

Ток в нормальной цепи без короткого замыкания

Однако, если появится какой-то проводящий элемент, который замкнет собой контур с входным напряжением, то картина будет следующей.

Схема цепи с коротким замыканием

В указанной цепи произошло короткое замыкание

На практике это может быть любая проволока или неосторожно засунутая отвертка, которая создала контур короткого замыкания. Особенность этой ситуации в том, что сопротивление этих проводов Rкз ничтожно мало по сравнению с сопротивлением нагрузки Rн

Что приводит к тому, что ток устремляется туда.

Опасность этого явления в том, что из-за очень низкого сопротивления, ток будет очень высоким. Рассмотрим конкретный пример — ваша Rн — это обычный фен мощностью 1 кВт. Т.е. при Действующем напряжении сети 220 В у него ток будет около 4 А и тогда мы можем понять, что наше Rн около 54 Ом.

Если же туда попадет провод, у которого сопротивление, скажем 0,054 Ом (вполне реальная цифра), то ток от 4 сразу может скакнуть до 4кА, а провод будет нагреваться уже в не в 1000, а 1000000 раз больше.

На практике это приводит к тому, что провод мгновенно нагревается до температуры плавления и перегорает. Однако, если он достаточно толстый, и расплавляется не очень быстро, то он может успечь поджечь горючие элементы, если они окажутся рядом.

В целом, это все, что вам необходимо знать про короткое замыкание )) Ниже теоретические выкладки, читать которые не обязательно.

В разговорной речи электриков это частно называется «коротнуло», «замкнуло», «закоротило» и т.д. На практике все эти слова означают, что произошло короткое замыкание электрической цепи. Т.е. проводники с разными потенциалами соединились и по сути произошла нештатная ситуация, при которой нормальное функционирование электрического устройства невозможно. В точке контакта происходит резкое падение сопротивления, что приводит к скачкообразному увеличению силы тока, которое влечет за собой тяжелые последствия.

Цепи переменного тока

В легковом автомобиле двигатель внутреннего сгорания через передаточный механизм вращает генератор. Второй источник тока – аккумуляторная батарея. В бортовой сети есть цепи с переменным и постоянным током. Для изменения питающего напряжения применяют специальный преобразователь.

Электрическая схема автомобильного преобразователя напряжения (12-220V) для подключения усилителя мощностью 750 Вт

Для оценки постоянных составляющих тока применяют представленные выше формулы. Переменные – анализируют с учетом реактивных составляющих нагрузок. Индуктивные и емкостные характеристики изменяют фазы токов и напряжений, обеспечивают накопление и возврат электроэнергии обратно в источник питания.

Межфазное замыкание: способы защиты и предотвращения, места возникновения

При эксплуатации высоковольтных электрических цепей нередко явление, определяемое нормативными документами как межфазное замыкание. Такое отклонение от нормального режима работы систем электроснабжения связано с неисправностями питающих линий, последствия которых бывают непредсказуемыми. Особо опасный характер возможных повреждений вынуждает разобраться с рядом вопросов, касающихся того, что собой представляет это явление, к каким неприятностям оно приводит и как их избежать.

Понятие и причины замыканий

Причиной замыкания, как правило, становится нарушение изоляции проводов

Межфазным замыканием электричества в многофазных цепях называют непреднамеренное соединение между собой изолированных проводников с поврежденным защитным покрытием.

В отдельных случаях оно проявляется как однофазное замыкание на землю или корпус работающего электрооборудования.

Такое состояние электрической сети является нарушением нормального режима работы системы и трактуется как аварийное. В этом случае в местах замыкания двух проводников или в точках их контакта с землей величина тока существенно возрастает. Максимальное его значение достигает порой нескольких тысяч Ампер. Неуправляемые потоки электричества способны привести к разрушительным последствиям.

Причинами возникновения аварийных ситуаций в высоковольтных электрических сетях являются:

  • Повреждение защитной изоляции каждого из фазных проводников из-за нарушений правил эксплуатации кабельных линий.
  • Случайный обрыв одной из жил воздушного кабеля и его замыкание на другой провод или землю.
  • Замыкание провода с поврежденной изоляцией на корпус действующей электроустановки.

Каждый из случаев возникновения короткого замыкания является следствием грубейшего нарушения правил эксплуатации электрооборудования и в соответствии с требованиями нормативных документов нуждается в тщательном расследовании.

Виды аварийных замыканий

По типу электропитания все короткие замыкания делятся на повреждения, произошедшие в однофазных или в трехфазных цепях, а по их количеству – на одиночные и двойные КЗ. Самый простой случай – однофазные линии, в которых возможно только одиночное замыкание фазы на нейтраль или землю. Трехфазное короткое замыкание отличается большим вариантом возможностей, поскольку число проводов в кабеле увеличивается до 3-х. При этом возможны следующие варианты повреждений:

  • Замыкание двух высоковольтных проводов между собой.
  • КЗ одного провода на нейтраль или землю (однофазные короткие замыкания).
  • Контакт сразу двух проводников с поверхностью грунта.

Виды коротких замыканий и их характеристики.

Выше было отмечено, что для выработки и потребления электрической энергии наибольшее распространение нашли трехфазные системы переменного тока с изолированной и заземленной нейтралью. В общем случае в таких системах могут возникнуть трехфазные, двухфазные и однофазные короткие замыкания, а также замыкания между фазными проводами и землей. Разберем более подробно виды коротких замыканий, возникающих в различных системах (рис. 28).
В системах, работающих с изолированной (незаземленной) нейтралью, короткие замыкания могут быть трехфазные в одной точке (рис. 28, а); двухфазные в одной точке (рис. 28, б); двухфазные в двух точках при замыкании фаз на землю (рис. 28, в). В системах с заземленной нейтралью встречаются следующие короткие замыкания: трехфазные в одной точке (рис. 28, г); двухфазные в одной точке (рис. 28, д); двухфазные на землю в одной и в двух точках (рис. 28, е); однофазные на землю (рис. 28, ж) или на заземленный нулевой провод (в четырехпроводных системах).

В системах с изолированной нейтралью большинство аварий (около 90%) приходится на двухфазные короткие замыкания и лишь небольшая часть приходится на трехфазные короткие замыкания. В системах, работающих с заземленной нейтралью, наиболее часто встречаются однофазные короткие замыкания (65%), затем двухфазные на землю (20%), двухфазные (10%) и трехфазные (5%). Таким образом, подавляющее большинство коротких замыканий является несимметричным (к симметричным коротким замыканиям относятся лишь трехфазные).
Рассмотрим, как меняются в общих чертах токи и напряжения при различных видах коротких замыканий. При трехфазных коротких замыканиях (рис. 28, а и г) все три фазы А, В и С замыкаются между собой. В точке короткого замыкания К(3) все линейные и фазные напряжения равны нулю, а токи во всех трех фазах равны по величине и сдвинуты друг относительно друга на угол 120° (имеем случай симметричного короткого замыкания).
При двухфазном коротком замыкании между фазами В и С (рис. 28, б и д’) линейное напряжение между поврежденными фазами в точке короткого замыкания К(2) будет равно нулю, а фазные напряжения не равны нулю, так же как не равно нулю и напряжение неповрежденной фазы А. Токи короткого замыкания в поврежденных фазах равны по величине и направлены в разные стороны (несимметричное короткое замыкание). Таким образом, условия для этого вида короткого замыкания могут быть записаны так: ток короткого замыкания в фазе А отсутствует (она не повреждена), следовательно Iка == 0; в поврежденных фазах В и С токи IКв = —Iκc, а напряжения UКв=Uкс. При двухфазном замыкании на землю в одной точке в системе с заземленной нейтралью (рис. 28, е) фазные напряжения в поврежденных сказах В и С в точке R(2) равны нулю, а в неповрежденной фазе А оно остается почти неизменным. Токи короткого замыкания в поврежденных фазах равны по величине и сдвинуты друг относительно друга на некоторый угол.
В случае однофазного короткого замыкания на землю (рис. 28, ж) фазное напряжение поврежденной фазы А в точке К(1) будет равно или почти равно нулю, а напряжение в неповрежденных фазах В и С имеет почти нормальную величину. Сумма фазных напряжений не равна нулю. Ток замыкания на землю протекает только в поврежденной фазе А (случай несимметричного короткого замыкания). В сокращенном виде условия режима однофазного короткого замыкания можно записать следующим образом: Iкв = 0; Iкс =0, Iка =0· Остальные векторы напряжений и тока показаны на векторной диаграмме рис. 28, ж. Таким образом, большинство из рассмотренных видов коротких замыканий характеризуется несимметричной системой векторов тока и напряжения в точке короткого замыкания. Наибольшую величину имеет ток однофазного короткого замыкания, однако путем принятия специальных мер (например, заземлением не всех нейтралей установки) добиваются, чтобы его величина не превышала тока трехфазного короткого замыкания. При возникновении аварии несимметричные короткие замыкания переходят в симметричные короткие замыкания всех трех фаз (при развитии аварии) и это приводит к особо тяжелым последствиям. Поэтому при эксплуатации электроустановки следует предотвращать всякую возможность появления коротких замыканий. Для отключения токов короткого замыкания на станциях и подстанциях устанавливаются масляные выключатели, отделяющие поврежденные участки сети.

  • Назад
  • Вперёд

Почему происходит короткое замыкание

Для того чтобы понять почему происходит короткое замыкание, нужно вспомнить закон Ома для участка цепи – «Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению на этом участке», формула при этом следующая:

I=U/R

 где I – сила тока, U – напряжение на участке цепи, R – сопротивление.

Любой электроприбор в квартире, включающийся в розетку, это активное сопротивление (R – в формуле), напряжение в бытовой электросети вам должно быть известно – 220В-230 В и оно практически не меняется. Соответственно, чем выше сопротивление электроприбора (или материала, проводника и т.д.) включаемого в сеть, тем меньше величина тока, так, как зависимость между этими величинами обратно пропорциональная.

Теперь представьте, что мы включаем в сеть электроприбор практически без сопротивления, допустим его величина R=0.05 Ом, считаем, что тогда будет с силой тока по закону Ома.

I=220В(U)/0,05(Ом)=4400А

В результате получается очень высокий ток, для сравнения стандартная электрическая розетка в нашей квартире, выдерживает лишь ток 10-16А, а у нас по расчетам 4,4 кА.

Современные медные провода, используемые в проводке, имеют настолько хорошие показатели электрической проводимости, что их сопротивление, при относительно небольшой длине, можно принять за ноль. Соответственно, прямое соединение фазного и нулевого провода, можно сравнить, с подключением к сети электроприбора, с очень низким сопротивлением. Чаще всего, в бытовых условиях, мы сталкиваемся именно с таким типом короткого замыкания.

Конечно, это очень грубый пример, в реальных условиях, при расчете силы тока при коротком замыкании, учитывать приходится гораздо больше показателей, таких как: сопротивление всей линии проводов, идущих к вам, соединений, дополнительного оборудования сети и даже дуги образующейся при коротком замыкании, а также некоторых других.Поэтому, чаще всего, сопротивление будет выше тех 0,05 Ом, что мы взяли в расчете, но общий принцип возникновения КЗ и его разрушительных эффектов понятен.

Опыты холостого хода и короткого замыкания

Электроснабжение сельскохозяйственных потребителей — Cиловые трехфазные и однофазные трансформаторы

Точное значение коэффициента трансформации представляет собой отношение э.дс. обмотки высшего напряжения к э.д.с. обмотки низшего напряжения независимо от того, какая из обмоток первичная и какая вторичная.

Опыт холостого хода (рис. 11.4, а) используют для определения коэффициента трансформации. При этом обмотку низшего напряжения подключают к устройству (потенциал — регулятор), позволяющему в широких пределах изменять напряжение, подводимое к трансформатору, а обмотку высшего напряжения размыкают.

С целью определения коэффициента трансформации к обмотке низшего напряжения достаточно подвести напряжение 0,1 UH для трансформаторов малой мощности и (0,33…0,5) UH для трансформаторов большой мощности. Падение напряжения в первичной обмотке весьма мало. С допустимой точностью можно принять, что E1 = U1 и Е2 = U2, так как ток во вторичной обмотке практически равен нулю.

Из опыта холостого хода трансформатора определяют также зависимости тока холостого хода Ix, потребляемой мощности Рх и коэффициента мощности cosφ от значения подводимого напряжения U1, при разомкнутой вторичной обмотке, то есть при I2 = 0. Ток холостого хода силовых трансформаторов составляет от 10 (для маломощных трансформаторов) до 2% (для мощных трансформаторов) номинального. При снятии характеристик холостого хода подводимое напряжение изменяют в пределах от 0,6 до 1,2 UH таким образом, чтобы получить 6…7 показаний. На рисунке 11.4,6 дан примерный вид характеристик холостого хода.

Мощность холостого хода характеризует электрическую энергию, расходуемую в самом трансформаторе, так как со вторичной обмотки энергию при этом не потребляют. Энергия в трансформаторе расходуется на нагрев обмоток проходящим по ним током и нагрев стали сердечника (вихревые токи и гистерезис). Потери на нагрев обмоток (потери в обмотках) при холостом ходе ничтожно малы. Практически можно считать, что все потери холостого хода сосредоточены в стали сердечника и идут на его нагрев.

Коэффициент мощности трансформатора определяют по формуле

.                Px
cosφ = ——————.                        (11.3)
.           3Ux.фIk

где Рх — полная мощность, потребляемая трансформатором при холостом ходе (сумма показаний двух ваттметров, приведенных на рисунке 11.4, а); Uх.ф и Ix — средние значения фазных напряжения и тока.

Опыт короткого замыкания проводят по схеме, изображенной на рисунке 11.5, а. К обмотке низшего напряжения подводят напряжение, при котором в обмотке высшего напряжения, замкнутой накоротко, протекает номинальный ток. Это напряжение называют напряжением короткого замыкания еk%;его значение приводят в паспорте трансформатора в процентах номинального.

Так как в этом опыте из-за малого напряжения, подведенного к обмотке низшего напряжения, магнитный поток в сердечнике весьма незначителен и сердечник не нагревается, то считают, что вся потребляемая трансформатором при опыте короткого замыкания мощность затрачивается на электрические потери в проводниках обмоток. Характеристики короткого замыкания (рис. 11.5,6) представляют собой зависимости потребляемого тока Ik мощности Pk и коэффициента мощности cosφ, от подведенного напряжения при замкнутой вторичной обмотке. Значение подводимого напряжения находится в пределах 5…10% номинального. Коэффициент мощности определяют так:

.                Pk
cosφk = ——————.                        (11.4)
.           3Ux.фIk

Сумма показаний ваттметров дает значение потерь в трансформаторе, которые вызывают нагрев обмоток. Мощность, показываемая ваттметром,

Pk = Pm1 + Pm2 = 3I12 + 3I22R2,

где R1 и R2—сопротивления первичной и вторичной обмоток трансформатора.

Напряжение короткого замыкания, при котором во вторичной обмотке протекает ток, равный номинальному, выражают в процентах номинального:

.           Uk.ф

ek% = ————100.                         (11.6)
.           Uн.ф

Напряжение короткого замыкания — важная характеристика трансформатора. По этой величине делают вывод о возможности параллельной работы трансформаторов, по ней и ее составляющим определяют изменения вторичного напряжения трансформатора при изменении нагрузки. Используя эту величину, находят токи короткого замыкания в условиях эксплуатации.

< Предыдущая   Следующая >
Похожие материалы:
  • Номинальные первичное и вторичное напряжения
  • Номинальная мощность трансформатора
  • Номенклатура трансформаторов

Полный ток при наступлении КЗ

Сама по себе апериодическая компонента не может быть рассмотрена, поскольку она является одной из составных частей тока короткого замыкания. В электрической сети присутствуют сопротивления индуктивного характера, не дающие току мгновенно изменяться в момент появления КЗ. Рост нагрузочного тока проистекает не скачкообразно, а согласно определенных законов, предполагающих переходный период от нормального к аварийному значению. Расчетно-аналитическая работа значительно упрощается, когда ток КЗ во время перехода рассматривается как две составные части – апериодическая и периодическая.

Апериодическая часть представляет собой составную часть тока ia с неизменной величиной. Она появляется непосредственно в момент КЗ и в кратчайший срок падает до нулевой отметки.

Периодическая часть тока КЗ Iпm получила название начальной, поскольку по времени она появляется в самом начале процесса. Данный показатель используется для того чтобы выбрать наиболее подходящую уставку или проверить чувствительность релейной защиты. Этот ток известен еще и как сверхпереходный, поскольку его определение осуществляется с помощью сверхпереходных сопротивлений, вводимых в схему замещения. Периодический ток считается установившимся, когда затухает апериодическая часть и заканчивается сам переходный процесс.

Следовательно, полный ток короткого замыкания будет составлять сумму обоих частей – апериодической и периодической во весь период перехода состояний. В определенный момент полный ток за кратчайшее время принимает максимальное значение. Подобное состояние известно под названием ударного тока КЗ, определяемого при проверках электродинамической устойчивости установок и оборудования.

Выбор начального или сверхпереходного тока для проведения расчетов определяет скорое угасание апериодической части, которое происходит раньше, чем срабатывает защита. При этом периодическая составляющая остается неизменной.

Советуем изучить Что лучше конвектор или тепловентилятор

Электрические сети, подключенные к генераторным установкам или энергетической системе с ограниченной мощностью, отличаются значительным изменением напряжения при появлении КЗ. В связи с этим, токи, начальный и установившийся, не будут равны между собой. Для того чтобы сделать расчет релейной защиты, можно воспользоваться показателями изначального тока. В этом случае погрешность будет незначительной в сравнении с установившимся током, подверженным воздействию различных факторов. Прежде всего, это увеличенное сопротивление в поврежденной точке, нагрузочные токи и прочие параметры, которые чаще всего не учитываются при выполнении расчетов.

Как измерить мощность электротока

Измерение мощности электротока короткого замыкания не отличается от измерения обычной электроэнергии. Все что нужно для ответа на вопрос, как рассчитать ток короткого замыкания трансформатора, это поделить сетевое напряжение на электросопротивление. Также можно воспользоваться более сложной формулой: Iкз = E/r.

Стоит указать, что при снижении показателя сопротивления, токовая сила будет расти. Соответственно, по проводнику будет идти тепло. Эта связь обладает количественной и временной характеристикой. Поэтому чем выше токовое значение, тем больше тепла будет выведено за определенное время. В этот момент можно найти, рассчитать и посчитать токовое значение.

Ток КЗ. От чего зависит величина тока короткого замыкания?

При проектировании электроустановок необходимо знать значения симметричных токов короткого замыкания для различных точек трехфазной цепи. Величины этих критических симметричных токов позволяют проводить расчеты параметров кабелей, распределительных устройств, устройств селективной защиты и т. п.

Какое освещение Вы предпочитаете

ВстроенноеЛюстра

Ток КЗ во вторичной обмотке одного понижающего распределительного трансформатора. В первом приближении сопротивление высоковольтной цепи принимается очень малым, и им можно пренебречь, поэтому:

Расчёт тока КЗ

Здесь P – номинальная мощность в вольт-амперах, U2 – напряжение между фазами вторичной обмотки на холостом ходу, Iн — номинальный ток в амперах, Iкз — ток КЗ в амперах, Uкз — напряжение при коротком замыкании в процентах.

В таблице ниже приведены типичные значения напряжений короткого замыкания для трехфазных трансформаторов на напряжение высоковольтной обмотки в 20 кВ.

Типичные значения напряжений короткого замыкания

Если для примера рассмотреть случай, когда несколько трансформаторов питают параллельно шину, то величину тока короткого замыкания в начале линии, присоединенной к шине, можно принять равной сумме токов короткого замыкания, которые предварительно вычисляются по отдельности для каждого из трансформаторов.

Когда все трансформаторы получают питание от одной и той же сети высокого напряжения, значения токов короткого замыкания при суммировании дадут несколько большее значение, чем окажется в реальности. Сопротивлением шин и выключателей пренебрегают.

Пусть трансформатор обладает номинальной мощностью 400 кВА, напряжение вторичной обмотки 420 В, тогда если принять Uкз = 4%, то:

Рисунок для расчета тока КЗ

Точности полученного значения будет достаточно для расчета электроустановки.

Ток короткого трехфазного замыкания в произвольной точке установки на стороне низкого напряжения:

Расчёт тока короткого трехфазного замыкания

Здесь: U2 — напряжение на холостом ходу между фазами на вторичных обмотках трансформатора. Zт — полное сопротивление цепи, расположенной выше точки повреждения. Далее рассмотрим, как найти Zт.

Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы «Специалисту по модернизации систем энергогенерации»

Ток короткого замыкания: составляющие тока, формула, сила тока, график В таблице ниже приведены типичные значения напряжений короткого замыкания для трехфазных трансформаторов на напряжение высоковольтной обмотки в 20 кВ. Спрашивайте, я на связи!

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: