Все про терморезисторы, назначение, виды, устройство, принцип действия

Серии терморезисторов

Отечественной промышленностью выпускались следующие серии терморезисторов прямого подогрева.

  • СТ1 – термисторы медно-марганцевые (ранее – ММТ);
  • СТ2 – термисторы кобальто-марганцевые (ранее – КМТ);
  • СТ3 – термисторы медно-кобальто-марганцевые;
  • СТ4 – термисторы никель-кобальто-марганцевые;
  • СТ5 – позисторы на основе титана бария, легированного германием;
  • СТ6 – позисторы на основе титаната бария (BaTiO3);
  • СТ8 – термисторы на основе полутораокиси ванадия и ряда поликрсталлических твердых растворов в системах V2O3-Me2O3 (Me=Ti; Al, Cr);
  • СТ9 – термисторы на основе двуокиси ванадия VO2;
  • СТ10 – Позисторы на основе системы (Ba, Sr)TiO3;
  • СТ11 – Позисторы на основе системы (Ba, Sr)(Ti, Sn)O3 легированной цернем.

Типоразмеры

Форма ТР: тонкие пластинки (реже трубочки), шайбочки, таблетки, каплевидные формы, размером в несколько мм. Некоторые типоразмеры микроскопические (микроны).

Есть также типоразмер SMD, напоминающий такого же типа плавкие предохранители, конденсаторы, иные детали. Изделия таких форм похожие (находятся в стандартных диапазонах 1206, 0805, 0603 и так далее), их почти невозможно различить «на глаз», надо читать спецификацию схемы.

Другой особый тип — встроенные изделия, они более узнаваемые: термопара, таблетка, капля с выводами или более габаритный корпус-цилиндр с двумя проводками.

По количеству отпаек (ножек) есть 2 типа позисторов: с 2 или 3 указанными элементами. Трехвыводные состоят из 2 позитронов-таблеток, объединенных одним корпусом. Одна из пластинок меньшая. Отличается и R, например, 1.3…3.6 кОм и 18…24 Ом. ТР с 2 ножками чаще всего кремниевые (Si), это более узнаваемые пластинки.

Обозначения разных электродеталей на схемах:

Спирали

Подобные элементы в значительной степени заменили проволочные в промышленности. Это особенно заметно в случае с 50 М термопреобразователями сопротивления. Эта конструкция имеет проволочную катушку, которая может свободно расширяться, в зависимости от температуры, и удерживаться на месте некоторой механической опорой, которая позволяет катушке сохранять свою форму.

Такая конструкция без натяжения позволяет чувствительному проводу расширяться и сжиматься без воздействия других материалов: в этом отношении он аналогичен SPRT, первичному стандарту, на котором основан ITS-90, обеспечивая при этом долговечность, необходимую для промышленного использования.

Основой чувствительного элемента является небольшая катушка из платиновой проволоки. Эта катушка напоминает нить в лампе накаливания. Корпус или оправка представляет собой твердо обожженную керамическую оксидную трубку с одинаково расположенными отверстиями, проходящими поперек осей. Катушка вставляется в отверстия оправки и затем упаковывается очень тонко измельченным керамическим порошком. Это позволяет сенсорному проводу двигаться, оставаясь при этом в хорошем тепловом контакте с процессом. Эти элементы работают при температуре до 850 °С.

Элемент в цепи размагничивания

Как проверить позистор в телевизоре? Ответ на вопрос следует из принципа его работы. Неисправность элемента проявляется искажением изображения от намагничивания. Для устранения этого дефекта в конструкции экранов используется сетка, включенная последовательно с позистором. Эта конструкция называется внешней петлей, охватывающей всю поверхность экрана с внутренней стороны.

Читать также: Как сделать картофелекопалку для мотоблока своими руками

Позистор часто запаян в цепь маски экрана, что усложняет его проверку на месте. Перед проведением замеров следует отпаяться хотя бы одним концом от сетки. Лучшим вариантом будет полное его извлечение из схемы.

Для нагрева элемента используют обычный или монтажный фен. Для проверки без внешнего нагрева потребуется собрать электрическую схему и определить по маркировке тип позистора. Исходя из паспортных данных устройства устанавливают ток срабатывания элемента и соответствующую температуру.

Исправность позистора можно условно установить при нагревании феном. Если сопротивление растет, значит элемент годный. Однако при таком варианте проверки остается вероятность ошибочного результата. Ведь сопротивление элементов схем с годами меняется, что приводит к нестабильности работы сборки.

NTC

Основные сведения

Сопротивление NTC-терморезисторов уменьшается при нагреве, их ТКС отрицательный. Зависимость сопротивления от температуры изображена на графике ниже.

Здесь вы можете убедиться, что при нагреве сопротивление NTC-терморезистора уменьшается.

Такие термисторы изготавливают из полупроводников. Принцип действия заключается в том, что с ростом температуры увеличивается концентрация носителей зарядов, электроны переходят в зону проводимости. Кроме полупроводников используются оксиды переходных металлов.

Обратите внимание на такой параметр как бета-коэффициент. Учитывается при использовании терморезистора для измерения температуры, для усреднения графика сопротивления от температуры и проведения расчетов с помощью микроконтроллеров. Бета-уравнение для приближения кривой изменения сопротивления термистора вы видите ниже

Бета-уравнение для приближения кривой изменения сопротивления термистора вы видите ниже.

Интересно: в большинстве случаев термисторы используют в диапазоне температур 25-200 градусов Цельсия. Соответственно могут использоваться для измерений в этих диапазонах, в то время как термопары работают и при 600 градусах Цельсия.

Где используется

Терморезисторы с отрицательным ТКС часто используют для ограничения пусковых токов электродвигателей, пусковых реле, для защиты от перегрева литиевых аккумуляторов и в блоках питания для уменьшения зарядных токов входного фильтра (емкостного).

На схеме выше приведен пример использования термистора в блоке питания. Такое применение называется прямым нагревом (когда элемент сам разогревается при протекании тока через него). На плате блока питания NTC-резистор выглядит следующим образом.

На рисунке ниже вы видите, как выглядит NTC-терморезистор. Он может отличаться размерам, формой, а реже и цветом, самый распространенный – это зелёный, синий и черный.

Ограничение пускового тока электродвигателей с помощью NTC-термистора получило широкое распространение в бытовой технике благодаря простоте реализации. Известно, что при пуске двигателя он может потреблять ток в разы и десятки раз превышающий его номинальное потребление, особенно если двигатель пускается не в холостую, а под нагрузкой.

Принцип работы такой схемы:

Когда термистор холодный его сопротивление велико, мы включаем двигатель и ток в цепи ограничивается активным сопротивлением термистора. Постепенно происходит разогрев этого элемента и его сопротивление падает, а двигатель выходит на рабочий режим. Термистор подбирается таким образом, чтобы в горячем состоянии сопротивление было приближено к нулю. На фото ниже вы видите сгоревший терморезистор на плате мясорубки Zelmer, где и используется такое решение.

Недостаток этой конструкции состоит в том, что при повторном пуске, когда термистор еще не остыл – ограничения тока не происходит.

Есть не совсем привычное любительское применение терморезистора для защиты ламп накаливания. На схеме ниже изображен вариант ограничения всплеска тока при включении таких лампочек.

Если терморезистор используется для измерения температуры – такой режим работы называют косвенным нагревом, т.е. он нагревается от внешнего источника тепла.

Интересно: у терморезисторов нет полярности, так что их можно использовать как в цепях постоянного, так и переменного тока не опасаясь переполюсовки.

Маркировка

Терморезисторы могут маркироваться как буквенным способом, так и содержать цветовую маркировку в виде кругов, колец или полос. При этом различают множество способов буквенной маркировки – это зависит от производителя и типа конкретного элемента. Один из вариантов:

На практике, если он применяется для ограничения пускового тока чаще всего встречаются дисковые термисторы, которые маркируются так:

5D-20

Где первая цифра обозначает сопротивление при 25 градусах Цельсия – 5 Ом, а «20» — диаметр, чем он больше – тем большую мощность он может рассеять. Пример такого вы видите на рисунке ниже:

Для расшифровки цветовой маркировки можно воспользоваться таблицей, изображенной ниже.

Из-за обилия вариантов маркировки можно ошибиться в расшифровке, поэтому для точности расшифровки лучше искать техническую документацию к конкретному компоненту на сайте производителя.

Виды

Обнаружение и измерение температуры – очень важная деятельность, имеет множество применений: от простого домохозяйства до промышленного. Термодатчик – это устройство, которое собирает данные о температуре и отображает их в понятном для человека формате. Рынок температурного зондирования демонстрирует непрерывный рост из-за его потребности в исследованиях и разработках в полупроводниковой и химической промышленностях.

Термодатчики в основном бывают двух типов:

  • Контактные. Это термопары, заполненные системные термометры, термодатчики и биметаллические термометры;
  • Бесконтактные датчики. Это инфракрасные устройства, имеют широкие возможности в секторе обороны из-за их способности обнаруживать тепловую мощность излучения оптических и инфракрасных лучей, излучаемых жидкостями и газами.

Термопара (биметаллическое устройство) состоит из двух разных видов проводов (или даже скрученных) вместе. Принцип действия термопары основан на том, что скорости, с которыми расширяются два металла, между собой отличаются. Один металл расширяется больше, чем другой, и начинает изгибаться вокруг металла, который не расширяется.

Терморезистор – это своего рода резистор, сопротивление которого определяется его температурой. Последний обычно используют до 100 ° C, тогда как термопара предназначена для более высоких температур и не так точна. Схемы с использованием термопар обеспечивают милливольтные выходы, в то время как термисторные схемы – высокое выходное напряжение.

Важно! Основное достоинство терморезисторов заключается в том, что они дешевле термопар. Их можно купить буквально за гроши, и они просты в использовании

Как такие полупроводники работают

Производители таких деталей допускают их максимальную чувствительность к перемене в температурном режиме. При нагреве число активно заряженных частиц возрастает. От количества таких частиц зависит проводимость элемента.

Важно понимать, что аналогичный полупроводниковый элемент работает по типу подчиненности к температурным режимам металла в составе компонента. В них применяются элементы с содержанием:

  • марганца;
  • медных примесей;
  • никеля и его сплавов;
  • силикатов;
  • оксидов и другого.

Но надо учитывать принцип действия терморезистора. От этого будет зависеть, как он будет работать — на повышение или понижение сопротивления, когда меняется рабочая температура элемента.

Терморезисторы разделяются на такие основные разновидности как — NTC или PTC.

Где применяются

Самое очевидное применение терморезисторов – в качестве датчиков для измерения температуры. Для этой цели пригодны как термисторы с характеристикой NTC, так и PTC. Надо лишь выбрать элемент по рабочему участку и учесть характеристику термистора в измерительном приборе.

Можно построить термореле – когда сопротивление (точнее, падение напряжения на нём) сравнивается с заданным значением, и при превышении порога происходит переключение выхода. Такой прибор можно применять в качестве устройства теплового контроля или пожарного датчика. Создание измерителей температуры основано на явлении косвенного нагрева – когда терморезистор нагревается от внешнего источника.

Также в сфере использования термосопротивлений используется прямой нагрев – термистор нагревается током, проходящим через него. NTC-резисторы таким способом можно применить для ограничения тока – например, при зарядке конденсаторов большой ёмкости при включении, а также для ограничения тока пуска электродвигателей и т.п. В холодном состоянии термозависимые элементы имеют большое сопротивление. Когда конденсатор частично зарядится (или электродвигатель выйдет на номинальные обороты), термистор успеет нагреться протекающим током, его сопротивление упадет, и он перестанет оказывать влияние на работу схемы.

Таким же способом можно продлить срок службы лампы накаливания, включив последовательно с ней терморезистор. Он ограничит ток в самый сложный момент – при включении напряжения (именно в это время большинство ламп выходит из строя). После прогрева он перестанет оказывать влияние на лампу.

Для защиты электродвигателей во время работы служат, наоборот, термисторы с положительной характеристикой. Если ток в цепи обмотки будет повышаться из-за заклинивания двигателя или превышения нагрузки на валу, PTC-резистор нагреется и ограничит этот ток.

Термисторы с отрицательным ТКС, также можно использовать в качестве компенсаторов нагрева других компонентов. Так, если параллельно резистору, задающему режим транзистора и имеющему положительный ТКС, установить NTC-термистор, то изменение температуры подействует на каждый элемент противоположным образом. В результате действие температуры компенсируется, и рабочая точка транзистора не сместится.

Существуют комбинированные приборы, называемые терморезисторами с косвенным нагревом. В одном корпусе такого элемента расположены термозависимый элемент и нагреватель. Между ними существует тепловой контакт, но гальванически они развязаны. Изменяя ток через нагреватель, можно управлять сопротивлением.

Терморезисторы с различными характеристиками широко используются в технике. Наряду со стандартными применениями, их сферу работы можно расширять. Все ограничивается только фантазией и квалификацией разработчика.

Что такое резистор и для чего он нужен?

Что такое триггер, для чего он нужен, их классификация и принцип работы

Принцип работы и основные характеристики стабилитрона

Что такое диодный мост, принцип его работы и схема подключения

Что такое датчик Холла: принцип работы, устройство и способы проверки на работоспособность

Термометр сопротивления — датчик для измерения температуры: что это такое, описание и виды

Расшифровка спецификации конкретной модели

Это были основные параметры серии, теперь рассмотрим спецификацию для С831 (см. рис. 5).

Спецификация модельного ряда серии B598*1

Краткая расшифровка:

Величина тока для штатного режима работы, для нашей детали это почти половина ампера, а именно 470 мА (0,47 А).
Этот параметр указывает ток, при котором величина сопротивления начинает существенно меняться в большую сторону. То есть, когда через С831 протекает ток с силой 970 мА, срабатывает «защита» устройства. Следует заметить, что этот параметр связан с точкой температурного перехода, поскольку проходящий ток приводит к разогреву элемента.
Максимально допустимая величина тока для перехода в «защитный» режим, для С831 это 7 А

Обратите внимание, что в графе указано максимальное напряжение, следовательно, можно рассчитать допустимую величину мощности рассеивания, превышение которой с большой вероятностью приведет к разрушению детали.
Время срабатывания, для С831 при напряжении 265 вольт и токе 7 ампер оно составит менее 8 секунд.
Величина остаточного тока, необходимого для поддерживания защитного режима рассматриваемой радиодетали, она 0,02 А. Из этого следует, что на удержание сработавшего состояния требуется мощность 5,3 Вт (Ir x Vmax).
Сопротивление устройства при температуре 25°С (3,7 Ом для нашей модели)

Отметим, с измерения мультиметром этого параметра начинается проверка позистора на исправность.
Величина минимального сопротивления, у модели С831 это 2,6 Ом. Для полноты картины, еще раз приведем график температурной зависимости, где будут отмечены номинальное и минимальное значение R (см. рис. 6).

Рисунок 6. График температурной корреляции для B59831, значения RN и Rmin отмечены красным

Обратите внимание, что на начальном этапе нагрева радиодетали ее параметр R незначительно уменьшается, то есть в определенном диапазоне температур у нашей модели начинают проявляться NTS свойства. Эта особенность, в той или иной мере, характерна для всех позисторов

  1. Полное наименование модели (у нас B59831-C135-A70), данная информация может быть полезной для поиска аналогов.

Конструкция

Самый простой термистор состоит из термочувствительного элемента, платиновых электродов и никелевых выводов. Вся эта конструкция заключена в герметичный корпус (Схема строения показана на рисунке 2).

В качестве термочувствительного материала используют оксиды металлов. Для защиты конструкции используют стеклянный, пластиковый или металлический корпус.

Рис. 2. Конструкция простого термистора

В некоторых случаях в качестве резистивного материала используют медь или платину. Эти материалы обладают высокими показателями ТКС металлов в рабочем диапазоне температур. Однако их применение ограничено по причине дороговизны платины и ее нелинейности преобразования.

Использование медных терморезисторов ограничивается низкой коррозионной сопротивляемостью меди. Благодаря высокой теплопроводности этого металла резистивные элементы на основе меди встречаются в моделях с косвенным нагревом. Применяются для температур не выше 180 ºC.

Еще одним недостатком металлических термосопротивлений является их инерционность, достигающая нескольких минут. Такие конструкции мало пригодны для поддержания теплового режима электроприборов, но они идеально подходят в качестве датчиков для измерения температуры.

С целью уменьшения тепловой инерционности терморезисторы изготавливают из микропроводов, которые заключают в стеклянную колбочку (см. рис. 3). Такие датчики хорошо герметизированы, отличаются стабильностью, а их инерционность не превышает долей секунд.

Рисунок 3. Конструкция термистора в стеклянной колбе

Широкое распространение получили типы датчиков на базе полупроводниковых материалов. При нагревании полупроводников происходит насыщение этих материалов электронами и дырками, что приводит к уменьшению сопротивления.

Существуют конструкции плоских терморезисторов (рис. 4), а также полупроводниковые термисторы со сложной структурой резистивного элемента.

Рис. 4. Конструкция плоского терморезистора

Сегодня все чаще можно встретить платы, на которых применен способ SMT монтажа. Для этих целей промышленность выпускает SMD-терморезисторы разных номиналов (см. рис. 5).

Рис. 5. Терморезисторы для микроэлектроники

В большинстве конструкций терморезистивный элемент изготовляют методом порошковой металлургии. В этих целях используют материалы:

  • халькогениды;
  • оксиды металлов;
  • галогениды и другие.

Очертание резистивных элементов может иметь форму бусинок, стержней, трубочек, пластинок и т. п.

Какую конструкцию вы бы не выбрали, принцип работы остается неизменным – зависимость сопротивления от температуры. Отличаются изделия только параметрами.

Это интересно: Как повысить напряжение постоянного и переменного тока (видео)

NTC

Основные сведения

Сопротивление NTC-терморезисторов уменьшается при нагреве, их ТКС отрицательный. Зависимость сопротивления от температуры изображена на графике ниже.

Здесь вы можете убедиться, что при нагреве сопротивление NTC-терморезистора уменьшается.

Такие термисторы изготавливают из полупроводников. Принцип действия заключается в том, что с ростом температуры увеличивается концентрация носителей зарядов, электроны переходят в зону проводимости. Кроме полупроводников используются оксиды переходных металлов.

Обратите внимание на такой параметр как бета-коэффициент. Учитывается при использовании терморезистора для измерения температуры, для усреднения графика сопротивления от температуры и проведения расчетов с помощью микроконтроллеров

Бета-уравнение для приближения кривой изменения сопротивления термистора вы видите ниже.

Интересно: в большинстве случаев термисторы используют в диапазоне температур 25-200 градусов Цельсия. Соответственно могут использоваться для измерений в этих диапазонах, в то время как термопары работают и при 600 градусах Цельсия.

Где используется

Терморезисторы с отрицательным ТКС часто используют для ограничения пусковых токов электродвигателей, пусковых реле, для защиты от перегрева литиевых аккумуляторов и в блоках питания для уменьшения зарядных токов входного фильтра (емкостного).

На схеме выше приведен пример использования термистора в блоке питания. Такое применение называется прямым нагревом (когда элемент сам разогревается при протекании тока через него). На плате блока питания NTC-резистор выглядит следующим образом.

На рисунке ниже вы видите, как выглядит NTC-терморезистор. Он может отличаться размерам, формой, а реже и цветом, самый распространенный – это зелёный, синий и черный.

Ограничение пускового тока электродвигателей с помощью NTC-термистора получило широкое распространение в бытовой технике благодаря простоте реализации. Известно, что при пуске двигателя он может потреблять ток в разы и десятки раз превышающий его номинальное потребление, особенно если двигатель пускается не в холостую, а под нагрузкой.

Принцип работы такой схемы:

Когда термистор холодный его сопротивление велико, мы включаем двигатель и ток в цепи ограничивается активным сопротивлением термистора. Постепенно происходит разогрев этого элемента и его сопротивление падает, а двигатель выходит на рабочий режим. Термистор подбирается таким образом, чтобы в горячем состоянии сопротивление было приближено к нулю. На фото ниже вы видите сгоревший терморезистор на плате мясорубки Zelmer, где и используется такое решение.

Недостаток этой конструкции состоит в том, что при повторном пуске, когда термистор еще не остыл – ограничения тока не происходит.

Есть не совсем привычное любительское применение терморезистора для защиты ламп накаливания. На схеме ниже изображен вариант ограничения всплеска тока при включении таких лампочек.

Если терморезистор используется для измерения температуры – такой режим работы называют косвенным нагревом, т.е. он нагревается от внешнего источника тепла.

Интересно: у терморезисторов нет полярности, так что их можно использовать как в цепях постоянного, так и переменного тока не опасаясь переполюсовки.

Маркировка

Терморезисторы могут маркироваться как буквенным способом, так и содержать цветовую маркировку в виде кругов, колец или полос. При этом различают множество способов буквенной маркировки – это зависит от производителя и типа конкретного элемента. Один из вариантов:

На практике, если он применяется для ограничения пускового тока чаще всего встречаются дисковые термисторы, которые маркируются так:

5D-20

Где первая цифра обозначает сопротивление при 25 градусах Цельсия – 5 Ом, а «20» — диаметр, чем он больше – тем большую мощность он может рассеять. Пример такого вы видите на рисунке ниже:

Для расшифровки цветовой маркировки можно воспользоваться таблицей, изображенной ниже.

Из-за обилия вариантов маркировки можно ошибиться в расшифровке, поэтому для точности расшифровки лучше искать техническую документацию к конкретному компоненту на сайте производителя.

Полупроводниковые резисторы

Это полупроводниковые приборы с двумя выводами, обладающие зависимостью электрического сопротивления от параметров среды — температуры, освещенности, напряжения и др. Для изготовления таких деталей используют полупроводниковые материалы, легированные примесями, тип которых определяет зависимость проводимости от внешнего воздействия.

Существуют следующие типы полупроводниковых резистивных элементов:

  1. Линейный резистор. Изготовленный из слаболегированного материала, этот элемент имеет малую зависимость сопротивления от внешнего воздействия в широком диапазоне напряжений и токов, чаще всего он применяется в производстве интегральных микросхем.
  2. Варистор — элемент, сопротивление которого зависит от напряженности электрического поля. Такое свойство варистора определяет сферу его применения: для стабилизации и регулирования электрических параметров устройств, для защиты от перенапряжения, в других целях.
  3. Терморезистор. Эта разновидность нелинейных резистивных элементов обладает способностью изменять свое сопротивление в зависимости от температуры. Существует два типа терморезисторов: термистор, сопротивление которого падает с ростом температуры, и позистор, чье сопротивление растет вместе с температурой. Терморезисторы применяются там, где важен постоянный контроль над температурным процессом.
  4. Фоторезистор. Сопротивление этого прибора меняется под воздействием светового потока и не зависит от приложенного напряжения. При изготовлении используется свинец и кадмий, в ряде стран это послужило поводом для отказа от применения этих деталей по экологическим соображениям. Сегодня фоторезисторы уступают по востребованности фотодиодам и фототранзисторам, применяемым в аналогичных узлах.
  5. Тензорезистор. Этот элемент устроен так, что способен менять свое сопротивление в зависимости от внешнего механического воздействия (деформации). Используется в узлах, преобразующих механическое воздействие в электрические сигналы.

Такие полупроводниковые элементы, как линейные резисторы и варисторы, характеризуются слабой степенью зависимости от внешних факторов. Для тензорезисторов, терморезисторов и фоторезисторов зависимость характеристик от воздействия является сильной.

Полупроводниковые резисторы на схеме обозначаются интуитивно понятными символами.

Устройство и действие терморезисторов

Наиболее распространенные терморезисторы изготавливаются в виде полупроводникового стержня, покрытого эмалевой краской. К нему подводятся выводы и контактные колпачки, использующиеся только в сухой среде. Отдельные конструкции терморезисторов помещаются в герметичном металлическом корпусе. Они могут свободно применяться в помещениях с любой влажностью и легко переносят влияние агрессивной среды.

Герметичность конструкции обеспечивается с помощью стекла и олова. Стержни в таких терморезисторах оборачиваются металлической фольгой, а для токоотвода используется никелевая проволока. Номинальные значения терморезисторов находятся в диапазоне от 1 до 200 кОм, а их температурный диапазон находится в пределах от -100 до +129 градусов.

В работе терморезисторов применено свойство проводников, изменять в зависимости от температуры. Для этих приборов применяются металлы в чистом виде, чаще всего, платина и .

Виды термопар

  • Хромель-алюминиевые. В основном применяются в промышленности. Характерные особенности: широкий температурный интервал измерений -200…+13000°C, доступная стоимость. Не допускаются к применению в цехах с высоким содержанием серы.
  • Хромель-копелевые. Применение сходно с предыдущим типом, особенность – сохранение работоспособности только в неагрессивных жидких и газообразных средах. Часто используются для измерения температуры в мартеновских печах.
  • Железо-константовые. Эффективны в разреженной атмосфере.
  • Платинородий-платиновые. Наиболее дорогие. Для них характерны стабильные и точные показания. Используются для измерения высоких температур.
  • Вольфрам-рениевые. Обычно в их конструкции присутствуют защитные кожухи. Основная область применения – измерение сред со сверхвысокими температурами.

NTC

Изделия такого типа обладают отрицательными ТКХ. Их отличие в том, что внутреннее сопротивление термистора способно уменьшаться при увеличении t0, и наоборот. Если температурная нагрузка t0 уменьшается, то сопротивление R увеличивается.

Такие характеристики важны в тех случаях, когда необходимо ограничить пусковой ток при:

  • запуске электродвигателя;
  • защите Li-ионных аккумуляторных батарей.

Также термистор нужен в блоке питания для понижения зарядных токов.

Терморезисторы NTC-типа находят применение и в автомобильной промышленности, как датчик для автоматического управления системой климат-контроль. Или как датчик контроля перегрева двигателя. Если допустимо безопасный режим превышается, уходит управляющая команда на реле управления и двигатель автоматически глушится.

Элементы NTC-типа — могут быть применены в системах пожаротушения, как датчик пожара, который обнаруживает быстрый рост температуры и включающий пожарную сигнализацию.

На этих миниустройствах может быть нанесена буквенная маркировка или цветовая в виде полосок или колец. Вид рисунка зависит от того где сделан компонент, его типа и ряда других параметров.

Для примера расшифруем маркировку 4D-21.

4D — показывает, что его номинал рассчитан для температур до 24 градусов Цельсия. Цифра 21 — диаметр элемента.

Чтобы правильно подобрать этот элемент существуют специальные таблицы, с рассчитанными параметрами работы. Например, такая как для термисторов SCN-серии:

Аналогичные таблицы помогают выбрать элемент в нужном рабочем диапазоне под свои задачи.

Устройство болометра

Принцип действия болометра основан на изменении электрического сопротивления термочувствительного элемента вследствие нагревания под воздействием поглощаемого потока электромагнитной энергии.

Болометр-паутина для измерения космического микроволнового фонового излучения . Изображение предоставлено NASA / JPL-Caltech .

Основной компонент болометра — очень тонкая пластинка (например, из платины или другого проводящего материала), зачерненная для лучшего поглощения излучения. Из-за своей малой толщины пластинка под действием излучения быстро нагревается и ее сопротивление повышается. Для измерения малых отклонений сопротивления пластинки ее включают в мостовую схему, которую балансируют при отсутствии засветки. Металлические болометры часто подсоединяют через трансформаторный вход, так как у них очень малое собственное сопротивление.

Концептуальная схема болометра . Мощность, Р , из падающего сигнала поглощается и нагревает тепловой массы с теплоемкостью , С , и температуры, T . Термическая масса соединена с резервуаром постоянной температуры через связь с теплопроводностью , G . Повышение температуры Δ Т = Р / С , и измеряют с помощью резистивного термометра, что позволяет определить P . Внутренняя тепловая постоянная времени τ = C / G

Первый полупроводниковый болометр был создан компанией Bell в годы Второй мировой войны. Отличался простотой, надежностью и высокой чувствительностью. Был использован в ИК-спектроскопии и теплопеленгации.

Первые терморезистивные болометры успешно работали на искусственных спутниках Земли, но позже были вытеснены пироэлектрическими приемниками.

В качестве материалов для металлических болометров используют платину, никель, , для полупроводниковых — сплавы окислов никеля, кобальта, марганца.

Полупроводниковый болометр состоит из двух пленочных (толщиной до 10 мкм) термисторов. Один из термисторов, непосредственно подвергающийся облучению, является активным. Второй — компенсационный. Он экранирован от внешнего излучения и предназначен для компенсации изменений температуры окружающей среды. Оба термистора помещаются в общий герметичный корпус.

болометра улучшается с понижением температуры чувствительного элемента. В астрономии обычно используются болометры, охлаждаемые до температуры жидкого гелия.

Основные параметры болометров:

  • сопротивление активного термистора при номинальной температуре;
  • рабочее напряжение;
  • чувствительность при определенной частоте модуляции светового потока;
  • порог чувствительности;
  • постоянная времени;
  • уровень собственных шумов — у металлических преобладает тепловой шум, у полупроводниковых — токовый.

Проверка мультиметром

Работоспособность позистора покажет мультиметр. Проверка основывается на замерах сопротивления при изменении температуры. Алгоритм:

  1. Переводим тестер на замеры Ом (например, на отметку 200K).
  2. Щупы — к ножкам ТР, полярность не имеет значения.
  3. Записываем результат.
  4. Нагреваем элемент: подносим паяльник, зажигалку к терморезистору, но соблюдаем расстояние, можно опустить в воду или просто зажать на несколько сек. пальцами.
  5. Снова замеряем количество Ом: если это PTC, то число должно вырасти, у термистора (NTC) падает.
  6. Сравниваем с номиналом, если, например, PTC по своим характеристикам в нормальном режиме имеет 6.9 Ом, а после нагрева значение растет на 2 Ом, то с большой степенью уверенности можно утверждать, что изделие исправное. Конечно, такая проверка будет приблизительной, для точности надо сравнить, как соотносятся уровни повышение R и t° (есть специальные таблицы и графики). Но ТР точно сломан, если сопротивление скачет резко или вообще не реагирует.

Проверка терморезистора опусканием в теплую воду и замерами тестером, показывающим сопротивление:

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: