Простые линейные стабилизаторы тока для светодиодов своими руками

Самый простой стабилизатор напряжения, сделанный своими руками

Если у вас нет желания покупать готовое устройство, тогда стоит узнать, как сделать простенький стабильник самому. Импульсный стабилизатор в авто сложно изготовить своими руками. Именно поэтому стоит присмотреться к подборке любительских схем и конструкций линейных стабилизаторов напряжения. Самый простой и распространенный вариант стабильника состоит из готовой микросхемы и резистора (сопротивления).

Сделать стабилизатор тока для светодиодов своими руками проще всего на микросхеме LM317. Сборка деталей (см. рисунок ниже) осуществляется на перфорированной панели или универсальном печатном плато.

Устройство позволяет сохранить равномерное свечение и полностью избавить лампочки от моргания.

Схема 5 амперного блока питания с регулятором напряжения от 1,5 до 12 В.

Для самостоятельной сборки такого устройства понадобятся детали:

  • плато размером 35*20 мм;
  • микросхема LD1084;
  • диодный мост RS407 или любой небольшой диод для обратного тока;
  • блок питания, состоящий из транзистора и двух сопротивлений. Предназначен для отключения колец при включении дальнего или ближнего света.

При этом светодиоды (в количестве 3 шт.) соединяются последовательно с токоограничивающим резистором, выравнивающим ток. Такой набор, в свою очередь, параллельно соединяется со следующим таким же набором светодиодов.

Характеристики

Технические параметры LM317 при температуре окружающей среды +25 °C:

физические:

  • корпус TO-220, TO-220FP, TO-3, D2PAK, SOT-23;
  • материал корпуса — пластмасса;

электрические:

  • диапазон от 1.25 до 37 В;
  • сила тока на выходе не более 1.5 А;
  • нестабильность на выходе до 0,1 %;
  • опорное (Vref) от 0,1 до 1,3 В;
  • ток вытекающий из вывода подстройки (Iadj) от 50 до 100 мкА (µA);

внутренняя защита:

  • от короткого замыкания (Internal Short-Circuit Current Limiting);
  • от тепловой перегрузки (Thermal Overload Protection);
  • ограничение по максимальной рассеиваемой мощности (Output Safe-Area Compensation);

Все системы защиты от перегрузок остаются полностью работоспособными даже если вход регулирования отключен.

Схема включения

Зная номера контактов и их назначение можно понизить напряжение, подаваемое на вход микросхемы до необходимого значения. Для этого надо изменить сопротивление R1, подключенного к регулируемому выводу Adj. Давайте посмотрим как это выглядит.

Как видно на схеме включения lm317 к контакту Adj надо подключить два резистора R1 и R2. Они определяют напряжение, которое понижает стабилизатор и выдает на выход. Посмотрим следующую формулу выходного напряжения.

Исходя из формулы видно, что величина Vout зависит от значения резистора R2.Чем больше увеличивается значение сопротивления R2, тем больше будет выходное напряжение.

Основные характеристики линейного стабилизатора напряжения LM317

В даташитах на стабилизатор LM317 содержится полная техническая информация, с которой можно ознакомиться, изучив спецификацию. Ниже приведены параметры, несоблюдение которых наиболее критично и при неверном применении микросхема может выйти из строя. В первую очередь, это максимальный рабочий ток. Он приведен в предыдущем разделе для разных видов исполнения. Надо добавить, что для получения наибольшего тока в 1,5 А микросхему обязательно надо устанавливать на теплоотводе.

Максимальное напряжение на выходе регулятора, построенного на основе LM317, может быть не более 40 В. Если этого мало, надо выбрать высоковольтный аналог стабилизатора.

Минимальное напряжение на выходе составляет 1,25 В. При таком построении схемы можно получить и меньше, но сработает защита от перегрузки. Это не самый удачный вариант – такая защита должна работать от превышения выходного тока, как это работает в других интегральных стабилизаторах. Поэтому на практике получить регулятор, работающий от нуля при подаче отрицательного смещения на вывод Adjust, нельзя.

Минимальное значение входного напряжения в даташите не указано, но может быть определено из следующих соображений:

  • минимальное выходное напряжение – 1,25 В;
  • минимальное падение напряжения для Uвых=37 В равно трем вольтам, логично предположить, что для минимального выходного оно должно быть не меньше;

Исходя из этих двух посылок, на вход надо подавать не меньше 3,5 В для получения минимального выходного значения. Также для стабильной работы ток через делитель должен быть не менее 5 мА – чтобы паразитный ток вывода ADJ не вносил значительного сдвига напряжения (на практике он может достигать до 0,5 мА).

Это относится к информации из классических даташитов известных производителей (Texas Instruments и т.п.). В даташитах нового образца от фирм Юго-Восточной Азии (Tiger Electronics и т.д.) этот параметр указывается, но в неявном виде, как разница между входным и выходным напряжением. Она должна составлять минимум 3 вольта для всех напряжений, что не противоречит предыдущим рассуждениям.

Максимальное же входное напряжение не должно превышать проектируемое выходное более, чем на 40 В. Это надо также учитывать при разработке схем.

Простой преобразователь тока

Сборка миниатюрного преобразователя тока своими руками считается довольно простой. Такие стабилизаторы напряжения обычно изготавливаются в режиме для стабилизации тока. При этом не следует путать максимальное напряжение для всего блока и максимальную нагрузку на ШИМ-контроллер. На блок может быть установлена система низковольтных конденсаторов на 20 В, а импульсная микросхема может иметь вход до 35 В. Наиболее простой светодиодный стабилизатор тока, выполненный своими руками, — это вариант LM317. Потребуется только рассчитать резистор для светодиода с помощью онлайн калькулятора.

Для LM317 можно использовать подручное питание (к примеру, блок питания на 19 В от ноутбука, на 24 В или 32 В от принтера либо на 9 или на 12 вольт от бытовой электроники). К преимуществам такого преобразователя относят его низкую цену, минимальное количество деталей, высокую надежность, а также наличие в магазинах. Более сложную схему стабилизатора тока собирать своими руками не рационально. Поэтому если вы не являетесь опытным радиолюбителем, то импульсный стабилизатор тока намного проще и быстрее будет купить в готовом виде. При необходимости его можно доработать до требуемых параметров.

Чтобы выполнить сборку LM317, никаких особых знаний и навыков по электронике не потребуется (в схемах число внешних элементов минимально). Стоит такой простой стабилизатор тока очень дешево, при этом его возможности многократно проверены на практике.

Единственный недостаток заключается в том, что LM317 может потребовать дополнительного охлаждения. Также стоит опасаться китайских микросхем LM317 с более низкими параметрами. Стоимость в любом случае более чем доступна, при этом в цену включена доставка. Китайские производители выполняют довольно трудоемкую работу при цене изделия в 30-50 рублей за штуку. Ненужные запчасти можно распродать на Авито или форумах в интернете.

Сборка простого стабилизатора своими руками

Светодиод представляет собой полупроводниковый прибор, для работы которого необходим ток. Включение светодиодов через стабилизатор считается наиболее правильным. Продолжительность функционирования светодиода без потери яркости зависит от его режима работы. Главное достоинство простейших стабилизаторов (драйверов), таких как микросхема-стабилизатор LM317, — их довольно трудно спалить. Схема подключения LM317 требует всего двух деталей: самой микросхемы, включаемой в режим стабилизации, и резистора.

  1. Потребуется купить переменный резистор сопротивлением в 0.5 кОм (имеет три вывода и ручку регулировки). Заказать его можно через интернет или купить в «Радиолюбителе».
  2. Провода припаиваются к среднему выводу, а также к одному из крайних.
  3. С помощью мультиметра, включенного в режиме измерения сопротивления, замеряется сопротивление резистора. Нужно добиться максимального показания в 500 Ом (чтобы светодиод не перегорел при низком сопротивлении резистора). О том, как проверить мультиметром сам светодиод, написано здесь.
  4. После внимательной проверки правильности соединений перед подключением, собирается цепь.

Максимальная мощность LM317 — 1.5 Ампер. Если вы хотите увеличить ток, то в схему можно добавить полевой или обычный транзистор. В результате, для устройства на транзисторе на выходе можно добиться подачи 10 А (задается низкоомным сопротивлением). Для этих целей можно использовать транзистор КТ825 или установить аналог с лучшими техническими характеристиками и системой охлаждения.

В любом случае, ассортимент продаваемых модулей и блоков достаточно широкий, поэтому устройство с нужными параметрами можно собрать за минимальное время. КПД зависит от разницы напряжения входа и выхода, а также от режима работы.

Чем импульсные стабилизаторы лучше линейных? Ответ Компании Rohm

Приведен обзор модульных импульсных стабилизаторов компании Rohm, которые обладают высоким КПД и просты в применении. Кроме того, подробно рассматриваются и сравниваются основные характеристики импульсных и линейных стабилизаторов.

Современная аппаратура становится все легче и компактнее благодаря применению интегральных схем высокой степени интеграции, передовых схемотехнических решений, использованию более емких и легких аккумуляторных батарей

В портативном приборе важно правильно организовать питание и достичь не только высокого КПД, но и обеспечить требуемое время жизни батареи. Для продления срока ее службы нужно организовать низкое собственное энергопотребление прибора, а значит, используемых компонентов

Кроме того, желательно применять переход в ждущий режим

тех цепей, которые не используются в данный момент. Всем этим требованиям отвечают модульные импульсные стабилизаторы компании Rohm. Рассмотрим их параметры в сравнении с параметрами линейных аналоговых стабилизаторов.

Сравнение импульсных

и линейных стабилизаторов

Преимущества линейных стабилизаторов известны: это простота, низкий уровень шума на выходе и низкая цена. Недостатком их является низкий коэффициент полезного действия (КПД). Линейные стабилизаторы — только понижающие. Когда нужно высокое напряжение для питания дисплея или отрицательное напряжение для аналоговых цепей — без импульсных стабилизаторов не обойтись. Преимуществом импульсных стабилизаторов является высокий КПД, но в то же время импульсный характер работы является причиной генерации импульсных шумов, наличие которых не позволяет использовать импульсные стабилизаторы повсеместно.

В таблице 1 приведено сравнение основных параметров стабилизаторов с точки зрения их применения в портативной аппаратуре.

Как видно из таблицы, и линейные, и импульсные стабилизаторы имеют свои достоинства и недостатки. Обычно в одном устройстве применяются и линейные аналоговые, и импульсные стабилизаторы. Линейный стабилизатор преобразует напряжение батареи в напряжение для питания логических цепей, а один или несколько

импульсных стабилизаторов обеспечивают другие номиналы напряжений для питания аналоговых цепей или ЖК-дисплеев.

Для того чтобы уменьшить токи утечки батареи, в портативных приборах принято отключать неиспользуемые в настоящий момент цепи. В импульсных стаби-

RPM7136 — ИК-фотоприемник от ROHM

Инфракрасный фотоприемник для ПДУ японской фирмы ROHM RPM7136 нельзя отнести к новинке, скорее это «рабочая лошадка», продукт, проверенный временем. Основные достоинства продукции ROHM — это надежность японского производителя, оцененная многими производителями РЭА и очень привлекательная цена. Применение фотоприемника:

• Телевизоры

• Музыкальные центры

• Кондиционеры

• Бытовая электрорадиоаппаратура

Особенности RPM7136:

• Малый ток потребления (0,85 мА)

• Наличие внутреннего фильтра

• Высокое подавление пульсаций

• Высокая помехоустойчивость к солнечному свету Фотоприемник применяется в системах дистанционного управления бытового назначения. RPM7136 — это модуль, в функции которого входит прием и обработка ИК оптического сигнала, он обеспечивает прием, усиление, фильтрацию и демодуляцию. Несущая частота, с которой работает данный модуль, составляет 36,0 кГц. Модульный фотоприемник допускает непосредственное подключение к микроконтроллеру. Напряжение низкого логического уровня составляет ,5 В, а высокого — 4,5 В. Модуль может поставляться с пятью типами держателей.

Предыдущая статья «Микроконтроллеры MCF5223X для сетевых приложений»

Следующая статья >> «Чем импульсные стабилизаторы лучше линейных? Ответ Компании Rohm.Продолжение»

Импульсный стабилизатор тока

Поскольку экономия энергии во многих приложениях является решающей, разработчики компонентов, схемотехники стараются снизить влияние этих недостатков, и, зачастую, преуспевают в этом.

Схемы импульсных преобразователей

Стабилизатор на базе импульсного преобразователя имеет устройство, регулирующее работу ключа, в зависимости от нагрузки. Стабилизатор напряжения регистрирует напряжение на нагрузке и изменяет работу ключа (схема «а»). Стабилизатор тока измеряет ток через нагрузку, например с помощью маленького измерительного сопротивления Ri (схема «б»), включенного последовательно с нагрузкой.

В современных ключевых преобразователях в качестве ключа обычно используется MOSFET транзистор.

Понижающий преобразователь

Рассмотренный выше вариант преобразователя называется понижающим, поскольку напряжение на нагрузке всегда ниже напряжения источника питания.

Поскольку в дросселе постоянно течёт однонаправленный ток, требования к выходному конденсатору могут быть снижены, дроссель с выходным конденсатором играют роль эффективного LC фильтра. В некоторых схемах стабилизаторов тока, например для светодиодов, выходной конденсатор может отсутствовать вообще. В западной литературе понижающий преобразователь называется Buck converter.

Повышающий преобразователь

Схема импульсного стабилизатора, приведённая ниже, также работает на основе дросселя, однако дроссель всегда подключен к выходу источника питания. Когда ключ разомкнут, питание поступает через дроссель и диод на нагрузку. Когда ключ замыкается, дроссель накапливает энергию, когда ключ размыкается, возникающее на его выводах ЭДС добавляется к ЭДС источника питания и напряжение на нагрузке возрастает.

В отличие от предыдущей схемы, выходной конденсатор заряжается прерывистым током, следовательно выходной конденсатор должен быть большим, и, возможно, понадобится дополнительный фильтр. В западной литературе повышающе-понижающий преобразователь называется Boost converter.

Инвертирующий преобразователь

Как и в предыдущей схеме, выходной конденсатор заряжается прерывистым током, следовательно выходной конденсатор должен быть большим, и, возможно, понадобится дополнительный фильтр. В западной литературе инвертирующий преобразователь называется Buck-Boost converter.

Применение импульсного конвертера в качестве стабилизатора тока

Большинство импульсных блоков питания выпускаются с стабилизацией выходного напряжения. Типичные схемы таких блоков питания, особенно мощных, кроме обратной связи по выходному напряжению, имеют схему контроля тока ключевого элемента, например резистор с малым сопротивлением. Такой контроль позволяет обеспечивать режим работы дросселя. Простейшие стабилизаторы тока используют этот элемент контроля для стабилизации выходного тока. Таким образом, стабилизатор тока оказывается даже проще стабилизатора напряжения.

Рассмотрим схему импульсного стабилизатора тока для светодиода на базе микросхемы NCL30100 от известного производителя электронных компонентов On Semiconductor:

Схема понижающего преобразователя работает в режиме неразрывного тока с внешним ключом. Схема выбрана из множества других, поскольку она показывает, насколько простой и эффективной может быть схема импульсного стабилизатора тока с внешним ключом. В приведённой схеме, управляющая микросхема IC1 управляет работой MOSFET ключа Q1. Поскольку преобразователь работает в режиме неразрывного тока, выходной конденсатор ставить необязательно. В многих схемах датчик тока устанавливается в цепи истока ключа, однако, это снижает скорость включения транзистора. В приведённой схеме датчик тока R4 установлен в цепи первичного питания, в результате схема получилась простой и эффективной. Ключ работает на частоте 700 кГц, что позволяет установить компактный дроссель. При выходной мощности 7 Ватт, входном напряжении 12 Вольт при работе на 700 мА (3 светодиода), эффективность устройства более 95%. Схема стабильно работает до 15 Ватт выходной мощности без применения дополнительных мер по отводу тепла.

Ещё более простая схема получается с использованием микросхем ключевых стабилизаторов с встроенным ключом. Например, схема ключевого стабилизатора тока светодиода на базе микросхемы CAV4201/CAT4201:

Источник

Назначение и принцип работы

Стабилизаторы должны обеспечивать постоянный рабочий ток светодиодов когда в сети питания есть проблемы с отклонением напряжения от нормы (вам будет интересно узнать, как подключить светодиод от сети 220 вольт). Стабильный рабочий ток в первую очередь необходим для защиты LED от перегрева. Ведь при превышении максимально допустимого тока, светодиоды выходят из строя. Также стабильность рабочего тока обеспечивает постоянство светового потока прибора, например, при разряде аккумуляторных батарей или колебаниях напряжения в питающей сети.

Стабилизаторы тока для светодиодов имеют разные виды исполнения, а обилие вариантов схем исполнения радует глаз. На рисунке приведены три самые популярные схемы стабилизаторов на полупроводниках.

  1. Схема а) — Параметрический стабилизатор. В этой схеме стабилитрон задает постоянное напряжение на базе транзистора, который включен по схеме эмиттерного повторителя. Благодаря стабильности напряжения на базе транзистора, напряжение на резисторе R тоже постоянно. В силу закона Ома ток на резисторе также не меняется. Так как ток резистора равен току эмиттера, то стабильны токи эмиттера и коллектора транзистора. Включая нагрузку в цепь коллектора, мы получим стабилизированный ток.
  2. Схема б). В схеме, напряжение на резисторе R стабилизируется следующим образом. При увеличении падения напряжения на R, больше открывается первый транзистор. Это приводит к уменьшению тока базы второго транзистора. Второй транзистор немного закрывается и напряжение на R стабилизируется.
  3. Схема в). В третьей схеме ток стабилизации определяется начальным током полевого транзистора. Он не зависит от напряжения, приложенного между стоком и истоком.

В схемах а) и б) ток стабилизации определяется номиналом резистора R. Применяя вместо постоянного резистора подстрочный можно регулировать выходной ток стабилизаторов.

Производители электронных компонентов производят множество микросхем стабилизаторов для светодиодов. Поэтому в настоящее время в промышленных изделиях и в радиолюбительских конструкциях чаще применяются стабилизаторы в интегральном исполнении.

Сборка стабилизатора тока из двух транзисторов

Стабилизатор тока на LM317 для светодиодов

В этой схеме функции датчика выполняет резистор R2. Его номинал при подключении светодиодов выбирают с помощью формулы:

0,6/ Iн (ток в нагрузке).

Увеличение Iн открывает VT2, который, в свою очередь, запирает переход транзистора VT1.


Стабилизатор на двух транзисторах

Недостатком схемы специалисты считают существенное падение напряжения на основном транзисторе. При подключении нескольких светодиодов проблемы не возникают. Однако по мере увеличения нагрузки приходится ставить VT1 на крупный радиатор, обеспечивать эффективную вентиляцию рабочего объема. Подобные решения используют для создания мощных зарядных устройств.

Светодиодные ленты

Светодиодная лента представляет собой цепь соединённых светодиодов. Соединены они не просто так, например обычная 12V лента состоит из сегментов по 3 светодиода в каждом. Сегменты соединены между собой параллельно, то есть на каждый приходят общие 12 Вольт. Внутри сегмента светодиоды соединены последовательно, а ток на них ограничивается общим резистором (могут стоять два для более эффективного теплоотвода): Таким образом достаточно просто подать 12V от источника напряжения на ленту и она будет светиться. За простоту и удобство приходится платить эффективностью. Простая математика: три белых светодиода, каждому нужно по ~3.2V, суммарно это 9.6V. Подключаем ленту к 12V и понимаем, что 2.5V у нас просто уходят в тепло на резисторах. И это в лучшем случае, если резистор подобран так, чтобы светодиод горел на полную яркость.

Подключаем к Arduino

Здесь всё очень просто: смотрите предыдущий урок по управлению нагрузкой постоянного тока. Управлять можно через реле, транзистор или твердотельное реле. Нас больше всего интересует плавное управление яркостью, поэтому продублирую схему с полевым транзистором:

Конечно же, можно воспользоваться китайским мосфет-модулем! Пин VCC кстати можно не подключать, он никуда не подведён на плате.

Управление

Подключенная через транзистор лента управляется точно так же, как светодиод в предыдущей главе, то есть все примеры кода с миганием, плавным миганием и управление потенциометром подходят к этой схеме. Про RGB и адресные светодиодные ленты мы поговорим в отдельных уроках.

Питание и мощность

Светодиодная лента потребляет немаленький ток, поэтому нужно убедиться в том, что выбранный блок питания, модуль или аккумулятор справится с задачей. Но сначала обязательно прочитайте урок по закону Ома! Потребляемая мощность светодиодной ленты зависит от нескольких факторов:

  • Яркость. Максимальная мощность будет потребляться на максимальной яркости.
  • Напряжение питания (чаще всего 12V). Также бывают 5, 24 и 220V ленты.
  • Качество, тип и цвет светодиодов: одинаковые на вид светодиоды могут потреблять разный ток и светить с разной яркостью.
  • Длина ленты. Чем длиннее лента, тем больший ток она будет потреблять.
  • Плотность ленты, измеряется в количестве светодиодов на метр. Бывает от 30 до 120 штук, чем плотнее – тем больший ток будет потреблять при той же длине и ярче светить.

Лента всегда имеет характеристику мощности на погонный метр (Ватт/м), указывается именно максимальная мощность ленты при питании от номинального напряжения. Китайские ленты в основном имеют чуть меньшую фактическую мощность (в районе 80%, бывает лучше, бывает хуже). Блок питания нужно подбирать так, чтобы его мощность была больше мощности ленты, т.е. с запасом как минимум на 20%.

  • Пример 1: нужно подключить 4 метра ленты с мощностью 14 Ватт на метр, лента может работать на максимальной яркости. 14*4 == 56W, с запасом 20% это будет 56*1.2 ~ 70W, ближайший блок питания в продаже будет скорее всего на 100W.
  • Пример 2: берём ту же ленту, но точно знаем, что яркость во время работы не будет больше половины. Тогда можно взять блок на 70 / 2 == 35W.

Важные моменты по току и подключению:

  • Подключение: допустим, у нас подключено ленты на 100W. При 12 Вольтах это будет 8 Ампер – весьма немаленький ток! Ленту нужно располагать как можно ближе к блоку питания и подключать толстыми (2.5 кв. мм и толще) проводами. Также при создании освещения есть смысл перейти на 24V ленты, потому что ток в цепи будет меньше и можно взять более тонкие провода: если бы лента из прошлого примера была 24-Вольтовой, ток был бы около 4 Ампер, что уже не так “горячо”.
  • Дублирование питания: лента сама по себе является гибкой печатной платой, то есть ток идёт по тонкому слою меди. При подключении большой длины ленты ток будет теряться на сопротивлении самой ленты, и чем дальше от точки подключения – тем слабее она будет светить. Если требуется максимальная яркость на большой длине, нужно дублировать питание от блока питания дополнительными проводами, или ставить дополнительные блоки питания вдоль ленты. Дублировать питание рекомендуется каждые 2 метра, потому что на такой длине просадка яркости становится заметной уже почти на всех лентах.
  • Охлаждение: светодиоды имеют не 100% КПД, плюс ток в них ограничивается резистором, и как результат – лента неслабо греется. Рекомендуется приклеивать яркую и мощную ленту на теплоотвод (алюминиевый профиль). Так она не будет отклеиваться и вообще проживёт гораздо дольше.

Тюнинг ВАЗ 2109

Всем хорош способ подключения светодиодов, описанный в предыдущей статье, за исключением одного: при изменении оборотов двигателя напряжение бортовой сети автомобиля может изменяться. При этом яркость светодиодов также будет «плавать», что не совсем хорошо, да и внешний вид светодиодной подсветки страдает. Поэтому хотелось бы подключать светодиоды через устройство, которое при различном поданном на него напряжении будет выдавать одинаковый ток.

Напомним, что светодиод представляет из себя прибор, питаемый током (а не напряжением, как многие ошибочно считают).

Так вот, такое решение существует в природе, и оно очень компактно и стоит копейки. Оно называется драйвер, и представляет из себя стабилизатор LM317, имеющий вид микросхемы с тремя ножками. Также ее очевидное преимущество для начинающих автоэлектриков – ее достаточно сложно спалить.

Для ее использования в качестве драйвера питания групп светодиодов в автомобиле ее нужно включить в режиме стабилизации тока по следующей схеме:

Как видим, на схеме кроме самого стабилизатора присутствует резистор R1, номинал которого нам нужно подобрать для того, чтобы на выходе схемы получить стабильный ток в 20 мА, ну или сколько нужно в зависимости от параметров светодиодов.

Поступаем следующим образом. Нам понадобится переменный резистор с полным сопротивлением порядка 0,5 кОм, и мультиметр. Подключив центральный и один из крайних выводов переменного резистора к мультиметру в режиме измерения сопротивления, вращением ручки резистора добиваемся максимального его сопротивления. Это будет одно из крайних положений ручки.

Затем собираем из наших деталей вот такую схему. Как несложно заметить она повторяет схему подключения драйвера, и резистором служит в ней наш переменный резистор.

Теперь переключаем мультиметр в режим измерения тока, подаем напряжение, и вращая ручку переменного резистора, добиваемся установления в цепи тока в 20 мА.

Далее питание отключается, переменный резистор из схемы извлекается, и замеряется его сопротивление. И вместо него в схему впаиваем постоянный резистор полученного сопротивления. Все, наш драйвер готов.

Количество запитываемых от стабилизатора светодиодов желательно подбирать так, чтобы на стабилизаторе оставалось как можно меньше напряжения для снижения мощности, рассеиваемой на самом драйвере, особенно при больших токах. Если ваши светодиоды рассчитаны на потребление тока более 350 мА, микросхему нужно разместить на алюминиевый радиатор для улучшения теплоотдачи.

Также корпус микросхемы имеет контакт со своей средней ножкой, так что ее нужно изолировать от кузова автомобиля. Сама такая микросхема понижает напряжение, которое подается на светодиоды на 2-3В, так что на выходе будет 11-12В, это стоит учитывать.

Вот и все ваш стабилизатор (драйвер) готов, можно подключать светодиоды. При стабилизированном питании они прослужат гораздо дольше.

  1. 5
  2. 4
  3. 3
  4. 2
  5. 1

(4 голоса, среднее: 4.8 из 5)

Доработка реле контроля исправности ламп под светодиоды

Светодиоды в фонарях заднего хода.Фотоотчет

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: