Устройство магнитного пускателя
Все виды магнитных пускателей объединяют такие элементы конструкции, как электромагнит переменного тока, система подвижных и неподвижных силовых и вспомогательных контактов. Несущей частью является корпус из термостойких и негорючих пластиков. Эти пластмассы должны быть механически прочными и не деформироваться при повышенной температуре. Любой пускатель, как правило, трехфазный.
Классификация магнитных пускателей делается по нескольким признакам, среди которых обычно главной является величина пускателя. Под величиной подразумеваются не габариты или вес пускателя, а то, какой ток он может коммутировать и насколько он устойчив к дуге в цепях с индуктивностями (при отключении электродвигателя). Основой является нереверсивный магнитный пускатель, так как реверсивные собираются из последних. Работа магнитных пускателей протекает в разных условиях, поэтому их также классифицируют по степени защищенности: открытое, защищенное, пылебрызгонепроницаемое.
Работа магнитного пускателя очень часто требует наличия теплового реле. Все типы магнитных пускателей имеют конструктивно совместимые тепловые реле. Часто их выпускает один и тот же производитель. Особенно важными применениями тепловых реле является защита электродвигателей от перегрева. Тепловое реле состоит из двухфазных биметаллических проводников (проводников с разными коэффициентами теплового расширения) – по одному на каждую фазу.
С электрической точки зрения, они являются резисторами с очень малым сопротивлением, и, таким образом, служат датчиками тока. Когда через фазы (или одну из них) протекает слишком большой ток, биметаллическая пластина изгибается и размыкает магнитные контакты, то есть контакты в цепи катушки пускателя. Подключение тепловых реле выполняется между пускателем и нагрузкой.
Все больше распространяются модульные пускатели. Это пускатели, монтируемые на DIN-рейку. Это металлическая профильная полоса, закрепляемая в шкафах на щите. Простота и легкость монтажа – исключительные. Рядом с пускателем (контактором) можно прикрепить тепловые реле, автоматы, УЗО (устройство защитного отключения), микропроцессорные контроллеры и многое другое. Модульные устройства очень легко собираются в схемы, благодаря каналам для проводов, проложенным между DIN-рейками. Монтаж выполняется зачищенными проводами необходимого сечения, обжатыми наконечниками. Наконечники вставляют в отверстия клемм приборов согласно принципиальной схеме и зажимают винтами.
Устройство магнитного пускателя
Все виды магнитных пускателей объединяют такие элементы конструкции, как электромагнит переменного тока, система подвижных и неподвижных силовых и вспомогательных контактов. Несущей частью является корпус из термостойких и негорючих пластиков. Эти пластмассы должны быть механически прочными и не деформироваться при повышенной температуре. Любой пускатель, как правило, трехфазный.
- Контактные пружины, обеспечивающие плавность пуска
- Подвижные контакты (мостики)
- Неподвижные контакты (пластины)
- Пластмассовая траверса
- Якорь
- Катушка пускателя
- Ш-образная часть магнитопровода
- Дополнительные контакты
Классификация магнитных пускателей делается по нескольким признакам, среди которых обычно главной является величина пускателя. Под величиной подразумеваются не габариты или вес пускателя, а то, какой ток он может коммутировать и насколько он устойчив к дуге в цепях с индуктивностями (при отключении электродвигателя). Основой является нереверсивный магнитный пускатель, так как реверсивные собираются из последних. Работа магнитных пускателей протекает в разных условиях, поэтому их также классифицируют по степени защищенности: открытое, защищенное, пылебрызгонепроницаемое.
Работа магнитного пускателя очень часто требует наличия теплового реле. Все типы магнитных пускателей имеют конструктивно совместимые тепловые реле. Часто их выпускает один и тот же производитель. Особенно важными применениями тепловых реле является защита электродвигателей от перегрева. Тепловое реле состоит из двухфазных биметаллических проводников (проводников с разными коэффициентами теплового расширения) – по одному на каждую фазу.
С электрической точки зрения, они являются резисторами с очень малым сопротивлением, и, таким образом, служат датчиками тока. Когда через фазы (или одну из них) протекает слишком большой ток, биметаллическая пластина изгибается и размыкает магнитные контакты, то есть контакты в цепи катушки пускателя. Подключение тепловых реле выполняется между пускателем и нагрузкой.
Все больше распространяются модульные пускатели. Это пускатели, монтируемые на DIN-рейку. Это металлическая профильная полоса, закрепляемая в шкафах на щите. Простота и легкость монтажа – исключительные. Рядом с пускателем (контактором) можно прикрепить тепловые реле, автоматы, УЗО (устройство защитного отключения), микропроцессорные контроллеры и многое другое. Модульные устройства очень легко собираются в схемы, благодаря каналам для проводов, проложенным между DIN-рейками. Монтаж выполняется зачищенными проводами необходимого сечения, обжатыми наконечниками. Наконечники вставляют в отверстия клемм приборов согласно принципиальной схеме и зажимают винтами.
На верхнюю сторону пускателей наносится маркировка, необходимая при монтаже и ремонте. Там есть обозначение типа, схема контактов и в некоторых случаях производители оставляют место для наклейки или подписи потребительских данных.
Большие успехи в силовой электронике, достигнутые за последние десятилетия, привели к тому, что большинство основных производителей теперь предлагают потребителям бесконтактные пускатели, содержащие мощные полупроводниковые ключи. У них есть определенные преимущества. Они работают бесшумно, не искрят, имеют высокую частоту переключений.
Некоторые модели благодаря ШИМ-контроллерам позволяют плавно пускать электродвигатели, а для автоматизации предусмотрены даже сетевые интерфейсы. К недостаткам можно отнести высокую цену, высокую квалификацию ремонтного персонала и небезопасную гальваническую связь с сетью, что может угрожать электрикам-ремонтникам.
Составные части аппарата
Первым делом рассмотрим устройство магнитного пускателя. На самом деле конструкция не сложная и включает в себя подвижную и неподвижную часть. Чтобы информация была более понятной, рассмотрим конструкцию аппарата, опираясь на модель серии ПМЕ:
Конструкция аппарата ПМЕ
- Контактные пружины, которые обеспечивают плавное замыкание контактов при включении пускателя, а также создают необходимое усилие нажатия.
- Контактные мостики.
- Контактные пластины.
- Пластмассовая траверса.
- Якорь.
- Обмотка.
- Ш-образная часть сердечника (неподвижная)
- Дополнительные контакты.
Помимо этого устройство магнитного пускателя может включать в себя амортизаторы, назначение которых – смягчить удар во время пуска аппарата. В серии ПМ12 амортизаторы обозначены цифрой 8, но более понятно они показаны на второй картинке – конструкции магнитного пускателя ПАЕ-311 (обозначение «10»).
ПАЕ-311
Мы рассказали, из чего состоит магнитный пускатель, однако вряд ли это дало Вам что-либо понять, особенно если Ваш уровень знаний «чайник в электрике». Чтобы все стало на свои места, далее мы рассмотрим принцип работы аппарата.
Принцип действия и конструктивные особенности
Чтобы преобразовать нагрузку применяют тиристорный преобразователь цепей высокого напряжения на основе IGBT. Частотный преобразователь на тиристорах – это прибор преобразования тока, регулировки его параметров и уровня тока. Частотным преобразователем можно выровнять значения параметров приводов на электромоторах: угол, обороты вала при запуске и другие.
Схема тиристорного выравнивателя.
Для мотора постоянного тока используют преобразователь на тиристорах. Достоинства этого прибора позволили создать ему широкое применение. К преимуществам относятся:
- КПД (95%) у марки ПН-500.
- Область контроля: мотора от малых мощностей до мегаватт.
- Может выдерживать значительные импульсы нагрузок запуска двигателя.
- Долговечная и надежная эксплуатация.
- Точность.
Недостатки имеются и у этой системы. Мощность находится на низшем уровне. Это проявляется при точном регулировании процесса производства. В качестве компенсации используют дополнительные устройства. Такой частотный преобразователь не может работать без помех. Это видно при эксплуатации чувствительных приборов электрооборудования и радиотехнических устройств.
Составные части:
- Реактор в виде трансформатора.
- Блоки выпрямления тока.
- Реактор для сглаживания преобразования.
- Перенапряжение не воздействует на защиту.
Преобразователи (2017 г) подключаются через реактор. Трансформатор служит для согласования звена напряжения выхода и входа, выравнивания между ними напряжения. Схема электрического соединения включает в себя реактор для сглаживания. Частотный преобразователь имеет схему, в которой есть сглаживающий реактор.
Частотник пропускает нагрузку. Нагрузка идет в блоки выпрямителя в выходное звено. Чтобы выровнять питание нескольких устройств подключают индукционные потребители на специальных шинах.
Преобразователи частоты бывают двух типов – высокочастотные и низкочастотные. Подбор нужной модели осуществляется по необходимым параметрам цепей электроэнергии. В 3-фазных станках тип подключения иной. 1-фазный ток переносит воздействия, но КПД теряется на преобразовании 3-фазного тока.
Система применяется в плавильном производстве, контроле подъемно-транспортных устройствах, сварочном производстве. Такой принцип работы нагрузки реализовывает систему двигателя с генератором. На наименьших оборотах двигателя происходит регулировка оборотов шпинделя в широком диапазоне, настройка разных характеристик привода мотора.
Виды тиристоров
Выше были рассмотрены запираемые, но существует еще немало типов полупроводниковых тиристоров, о которых также стоит упомянуть. В самых различных конструкциях (зарядные устройства, переключатели, регуляторы мощности) используются определенные типы тиристоров. Где-то требуется, чтобы управление проводилось путем подачи потока света, значит, используется оптотиристор. Его особенность заключается в том, что в цепи управления используется кристалл полупроводника, чувствительный к свету. Параметры тиристоров различны, у всех свои особенности, характерные только для них. Поэтому нужно хотя бы в общих чертах представлять, какие виды этих полупроводников существуют и где они могут применяться. Итак, вот весь список и основные особенности каждого типа:
- Диод-тиристор. Эквивалент этого элемента – тиристор, к которому подключен встречно-параллельно полупроводниковый диод.
- Динистор (диодный тиристор). Он может переходить в состояние полной проводимости, если превышается определенный уровень напряжения.
- Симистор (симметричный тиристор). Его эквивалент – два тиристора, включенных встречно-параллельно.
- Тиристор инверторный быстродействующий отличается высокой скоростью коммутации (5… 50 мкс).
- Тиристоры с управлением полевым транзистором. Часто можно встретить конструкции на основе МОП-транзисторов.
- Оптические тиристоры, которые управляются потоками света.
Общая классификация
Проведя исследование системы, предполагающей наличие тиристора, можно определить наиболее оптимальную схему включения. От выбранного типа запуска непосредственно зависит средний уровень напряжения, выдаваемого выпрямителем при условии отсутствия вмешательства со стороны оператора. В случаях, когда тиристор применяется для двигателя постоянного тока, используются два класса тиристорных преобразователей – мостовые и оснащенные выходом с нулевым значением.
Тиристорный преобразователь мостового типа, как правило, устанавливается в высокомощных системах. Это оптимально в силу того, что каждый такой тиристор может обладать меньшим уровнем напряжения, что позволяет распределить общую нагрузку между несколькими узлами и снизить нагрузку на каждый из них. Кроме того, выпрямленное через мостовой тиристор напряжение не будет иметь постоянную составляющую, что повышает стабильность работы при проходе электрического тока через преобразующие обмотки.
Еще одним отличием между разными классами тиристоров является количество фазовых выходов. Оборудование и приборы, имеющие малый уровень энергопотребления, требуют наличия у тиристора всего нескольких фаз. Если преобразователь спроектирован для работы в высоконагруженных комплексах, его конструкция может включать от 12 до 24 фазовых контактов.
Вне зависимости от выбранного типа активации и общей конструкции данная категория преобразователей напряжения будет иметь все преимущества использования тиристоров. Сюда входит полное отсутствие вращающихся деталей, которые ускоряют процесс износа и требуют периодической замены. Из этого вытекает другое преимущество – низкая инерционность. Главным отличием от простых электромеханических преобразователей электрического тока является компактность, что положительно влияет на совместимость с устройствами, где мало свободного места.
При всех своих преимуществах тиристорный преобразователь имеет ряд недочетов:
- если настройка напряжения проводится в сторону снижения, выходная мощность начинает падать пропорционально уменьшению энергоснабжения;
- при работе преобразователя создаются высшие гармоники, которые сразу попадают в сеть питания всей системы;
- тиристор жестко связан с цепью подачи питания, из-за чего малейший скачок напряжения сразу отзывается в системе. Изменение характеристик подаваемого на двигатель тока создает толчок оси, скачкообразно меняя скорость ее вращения, а это в свою очередь вызывает всплеск тока.
Эксплуатационные показатели электродвигателя, который работает в связке с тиристорным преобразователем, напрямую зависят от уровня напряжения, которое подается на якорь. Также важную роль играет создаваемая приводом нагрузка.
Разберемся, как работает конкретно наш тиристорный регулятор мощности
Схема первая
Оговорим заранее, что вместо слов «положительная» и «отрицательная» будут использованы «первая» и «вторая» (полуволна).
Итак, когда на нашу схему начинает действовать первая полуволна, начинают заряжаться ёмкости C1 и C2. Скорость их заряда ограничена потенциометром R5. данный элемент является переменным, и с его помощью задаётся выходное напряжение. Когда на конденсаторе C1 появляется необходимое для открытия динистора VS3 напряжение, динистор открывается, через него поступает ток, с помощью которого будет открыт тиристор VS1. Момент пробоя динистора и есть точка «а» на графике, представленном в предыдущем разделе статьи. Когда значение напряжения переходит через ноль и схема оказывается под второй полуволной, тиристор VS1 закрывается, и процесс повторяется заново, только для второго динистора, тиристора и конденсатора. Резисторы R3 и R3 служат для ограничения тока управления, а R1 и R2 — для термостабилизации схемы.
Принцип работы второй схемы аналогичен, но в ней идёт управление только одной из полуволн переменного напряжения. Теперь, зная принцип работы и схему, вы можете собрать или починить тиристорный регулятор мощности своими руками.
Области применения контакторов
Наиболее распространенное применение контактора в пускателях двигателей. Он используется с защитой от перегрузки и короткого замыкания для промышленного двигателя.
Контакторы используются для автоматизации промышленного, коммерческого и жилого освещения. Для этого типа применения используется реле с защелкой. В этом типе реле используются две катушки. Один для разомкнутого контакта и второй для замкнутого контакта.
Однополюсные контакторы используются для управления нагрузкой 12 В постоянного тока в автомобиле.
Использование контакторов с автоматическим выключателем обеспечивает безопасность эксплуатации нагрузки в промышленности. И в такой роли он используется для быстрого переключения нагрузки.
digitrode.ru
Проверка биполярного прибора тестером
Проверку прибора можно осуществить двумя способами. Для этого в тестере используется режим прозвонки или специально предназначенный режим проверки биполярных транзисторов.
Читать также: Жиклер для газового котла
На начальном этапе выясняется тип проводимости элемента. Для этого можно воспользоваться справочником или вычислить путём прозвонки. База вычисляется методом перебора. Щуп с общего вывода тестера подключается к одному из выводов транзистора, а щуп со второго вывода по очереди прикасается к двум оставшимся ножкам радиоэлемента. При этом смотрится какую величину сопротивления показывает тестер.
Необходимо найти такое положение, чтоб величина значения сопротивления между выводами составляла бесконечность. На цифровом тестере в режиме прозвонки будет гореть единица. Если такое положение не найдено, следует зафиксировать щуп второго вывода, а щупом с общего выхода осуществлять перебор.
Когда требуемая комбинация будет достигнута, то вывод, по отношению которого измеряется сопротивление, будет базой. Для вычисления выводов коллектора и эмиттера понадобится: в случае pnp транзистора на вывод базы — подать отрицательное напряжение, а для npn — положительное. Сопротивление перехода эмиттер — база будет немного больше, чем база-коллектор.
Например, исследуя биполярный низкочастотный транзистор NPN типа MJE13003, который имеет последовательность выводов база, коллектор, эмиттер, понадобится:
- Переключить мультиметр в режим прозвонки.
- Стать положительным щупом на базу прибора.
- Вторым концом прикоснуться к коллектору прибора, сопротивление должно быть около 800 Ом.
- Второй конец переставить на эмиттер прибора, сопротивление должно составить 820 Ом.
- Поменять полярность. На базу стать отрицательным щупом, а к коллектору и эмиттеру прикоснуться поочерёдно вторым концом. Сопротивление должно быть бесконечным.
Если во время проверки все пункты выполняются верно, то транзистор исправен. В ином случае, при возникновении короткого замыкания между любыми переходами, или обрыва в обратном включении, делается вывод о неисправности транзистора. Проверка прибора обратной проводимости проводится аналогичным образом, лишь меняется полярность приложенных щупов. Таким способом можно проверить транзистор мультиметром, не выпаивая его, так и сняв с платы.
Второй способ измерения при использовании современного мультиметра, позволит не только проверить исправность полупроводникового прибора, но и определить коэффициент усиления h21. В зависимости от типа и вида, ножки транзистора совмещаются с соответствующими надписями на гнезде, обозначенном также hFE. При включении прибора на экране появится цифра, обозначающая коэффициент усиления транзистора. Если цифра определяется равной нулю, то такой транзистор работать не будет, или же неправильно определена его проводимость.
Симисторный ключ
Для гальванической развязки цепей управления и питания лучше
использовать оптопару или специальный симисторный драйвер. Например,
MOC3023M или MOC3052.
Эти оптопары состоят из инфракрасного светодиода и фотосимистора. Этот
фотосимистор можно использовать для управления мощным симисторным
ключом.
В MOC3052 падение напряжения на светодиоде равно 3 В, а ток — 60 мА,
поэтому при подключении к микроконтроллеру, возможно, придётся
использовать дополнительный транзисторный ключ.
Встроенный симистор же рассчитан на напряжение до 600 В и ток до
1 А. Этого достаточно для управления мощными бытовыми приборами через
второй силовой симистор.
Рассмотрим схему управления резистивной нагрузкой (например, лампой
накаливания).
Таким образом, эта оптопара выступает в роли драйвера
симистора.
Существуют и драйверы с детектором нуля — например, MOC3061. Они
переключаются только в начале периода, что снижает помехи в
электросети.
Резисторы R1 и R2 рассчитываются как обычно. Сопротивление же
резистора R3 определяется исходя из пикового напряжения в сети питания
и отпирающего тока силового симистора. Если взять слишком большое —
симистор не откроется, слишком маленькое — ток будет течь
напрасно. Резистор может потребоваться мощный.
Нелишним будет напомнить, что 230 В в электросети (текущий стандарт для
России, Украины и многих других стран) — это значение
действующего напряжения. Пиковое напряжение равно \(\sqrt2 \cdot 230 \approx
325\,\textrm{В}\).
Модули IGBT
Поскольку IGBT, как правило, крайне редко применяются в одиночном варианте, конструкторы стали думать о модульных вариантах их компоновки. Модуль конструктивно гораздо проще и компактнее использовать в изделиях. Но не только это.
Потребуется, правда, вмешательство достаточно квалифицированных инженеров, так как речь идет о переделке схемы частотников, так как далеко не все модели допускают такое расширение: там нет ни выходов для таких подключений, и ни слова в инструкциях, кроме, разве что, запрета вмешательства в схему преобразователя со стороны потребителей и отказа об ответственности для таких случаев. Кроме технической стороны дела, есть еще и возможная юридическая: возможное нарушение патентов, лицензий и т.д. Это тоже надо иметь в виду.
Тиристорные пускатели
В современной электроэнергетике в условиях повышенных требований к энергопотребителям все большее применение находят электронные устройства для запуска асинхронных электродвигателей.
Отличительная особенность электронных устройств заключается в том, что с их помощью осуществляется управление запуском электродвигателя, в результате работа двигателя оптимальным образом соответствует нагрузке, создаваемой присоединенным исполнительным механизмом.
Использование тиристорных пускателей, являющихся самыми надежными электронными устройствами для запуска асинхронных двигателей, дает возможность:
- уменьшить в 4-5 раз броски пускового тока электродвигателей при плавном пуске;
- уменьшить падение напряжения в питающей сети;
- устранить перекосы фаз из-за несимметричной нагрузки;
- улучшить условия эксплуатации токоподводящего оборудования;
- уменьшить потери электроэнергии;
- сократить финансовые затраты при строительстве более экономичных энергосистем.
Применение позволяет:
- ограничить пусковой момент электродвигателя и, тем самым, исключить ударные нагрузки на механизм, рывки в механической трансмиссии транспортеров, подъемников или гидравлические удары в трубах или задвижках в момент пуска и останова двигателей;
- уменьшить пусковые токи, снизить вероятность нежелательных отключений и перегрева двигателя;
- повысить срок службы двигателя за счет применения полного набора защит;
- уменьшить электрические потери в электродвигателе;
- увеличить частоту пусков и удлинить межремонтные промежутки; оборудования при минимальном обслуживании;
- продлить срок нормальной эксплуатации оборудования.
ООО «Энергия -Т», г. Тольятти,
является разработчиком и изготовителем всего спектра тиристорных (бесконтактных) пускателей серии ПТТ, предназначенных для осуществления прямого «безударного» пуска, плавного пуска и плавного останова, защиты асинхронных двигателей максимальной номинальной мощностью от 6,6 до 660 кВт, номинальным напряжением 0,4 кВ и номинальной частотой 50 Гц.
Основные типы тиристорных пускателей, выпускаемых предприятием:
Пускатели с плавным пуском, с прямым «безударным» пуском:
- на напряжение 0,4 кВ частотой 50 Гц
- трехфазные трехполюсные, двухполюсные
- на номинальные рабочие токи от 10 до 1000 А
- модификации с использованием тиристоров, симисторов, модулей тиристорных
- конструктивное исполнение – с (без) шунтированием, с (без) реверсом
- с набором защит: от токов короткого замыкания
- интегральная токовая защита
- от обрыва фаз
- от перегрева силовых полупроводниковых приборов
в климатическом исполнении УХЛ, категория размещения 4 по ГОСТ 15543.1-89
степень защиты изделия IP00, IP20.
Предприятие по техническому заданию заказчика разрабатывает и изготавливает любые тиристорные пускатели на номинальные рабочие токи от 10 до 1000 А.
Пускатели тиристорные трехфазные ПТТ-Х-380-ХХ-УХЛ4
Пускатели предназначены для бесконтактной коммутации асинхронных двигателей. Основные области применения пускателя тиристорного с безударным пуском (ПТТ): для пуска электродвигателей центробежных насосов, компрессоров, вентиляторов и воздуходувок, ненагруженных конвейеров и т.д.
Основные области применения пускателя тисторного с плавным пуском (ПТТ-ПП): насосное, вентиляционное, дымососное, подъемно-транспортное оборудование и т.д. Алгоритм плавного пуска (останова) обеспечивается увеличением (снижением) напряжения на выходе тиристорного пускателя по линейному закону за счет импульсно-фазового регулирования.
История изобретения
Изобретение тиристора стало возможным после открытия полупроводников и исследования их свойств. После обнаружения в 1600 году английским физиком Уильямом Гилбертом электричества многие инженеры и ученые посвятили себя изучению этого явления. Выдающими людьми, изучающими электромагнетизм в разное время, были: Эрстед, Ампер, Вольт, Фарадей, Максвелл, Кюри, Яблочков. Благодаря их исследованиям и теоретическим догадкам было установлено, что все окружающие твёрдые тела можно разделить на три группы:
- проводники — вещества, обладающие большим количеством свободных носителей зарядов и способные практически без потерь проводить электрический ток;
- диэлектрики — физические тела, плохо проводящие ток;
- полупроводники — материалы, у которых в кристаллической решётке концентрация подвижных зарядов намного ниже, чем количество атомов.
В 1947 году американцы Бардин, Бреттейн и Шокли создали первый транзистор, что и послужило толчком к бурному развитию полупроводниковой техники. В разных странах начались исследования этих материалов. Так, русским инженером Лошкарёвым была выявленная биполярная диффузия. А Красиловым и Мадояном разработаны образцы германиевых элементов.
В 60-х годах полученные исследования позволили создать чипы, которые содержали несколько объединённых транзисторов. Начали создаваться компании и заводы, выпускающие серийно электронные компоненты. В процессе изучения свойств полупроводников было установлено, что структура монокристаллов, то есть тел, имеющих непрерывную кристаллическую решётку, может иметь три и более p-n переходов. В зависимости от уровня напряжения, подаваемого на один из них, изменялись состояния других.