СИСТЕМА УПРАВЛЕНИЯ
Система управления ВА обеспечивает поддержание уровня постоянного тока или активной мощности нагрузки в соответствии с заданной уставкой, а также непрерывный контроль и индикацию основных параметров преобразователя.
Рис.8. Интерактивное окно АРМ оператора
Встроенная система аварийного осциллографирования обеспечивает непрерывную запись в память контроллера основных сигналов и параметров силовой схемы с возможностью передачи накопленных данных на ПК и вывода на дисплей требуемых осциллограмм до- и послеаварийных процессов.
В состав системы управления выпрямителем входят шкаф управления (ШУ) и шкаф регулирования и защит (ШРЗ).
Все органы управления работой выпрямителя, а также цифровая панель интерфейса оператора на основе HMI Siemens, устанавливаются на передней двери шкафа управления ШУ.
В шкафу ШРЗ устанавливается оборудование для контроля и защиты выпрямителя. Из силовой схемы в систему управления поступают сигналы об исправности тиристоров и срабатываниях предохранителей тиристоров от ЯУ, сигналы о перегреве шинопровода преобразователя от термодатчиков, а также аналоговые сигналы от измерителей тока и напряжения.
Гибкая конфигурация системы управления и возможности ее программного обеспечения позволяют найти оптимальное решение для любого применения выпрямительных агрегатов, таких как выпрямитель для электролиза, в широком диапазоне мощности и тока.
2.5.Определение полной мощности, ее составляющих и коэффициента мощности ТП
Величина полной мощности и ее составляющих может быть определена на основании следующих соотношений.
Относительная величина полной мощности, потребляемой ТП из питающей сети при линейном изменении коммутационного тока:
. (2.13)
Относительная величина активной составляющей мощности:
. (2.14)
Относительная составляющая реактивной мощности:
. (2.15)
Относительная величина мощности первой гармоники:
. (2.16)
Относительная величина мощности скольжения:
. (2.17)
Коэффициент мощности преобразователя:
. (2.18)
Результаты вычислений сведены в табл. (2.4) и табл. (2.5) для Iд=Iдн и Iд=0.5·Iдн соответственно.
На основании соотношений 2.13¸2.18 и табл.2.4 и 2.5 строятся зависимости вышеприведенных величин в функции относительного значения ЭДС электродвигателя EД / EДН /рис.2.4/.
Табл. 2.4
a |
SI |
P |
Q |
S1 |
Sm |
Km |
126 |
1.045 |
-0.56 |
0.827 |
0.99991 |
0.3035 |
-0.54 |
114 |
1.0452 |
-0.4 |
0.918 |
0.99993 |
0.3042 |
-0.38 |
103 |
1.0453 |
-0.23 |
0.973 |
0.99994 |
0.3046 |
-022. |
92 |
1.0453 |
-0.07 |
0.998 |
0.99994 |
0.3047 |
-0.06 |
82 |
1.0453 |
0.1 |
0.955 |
0.99994 |
0.3047 |
0.09 |
71 |
1.0453 |
0.26 |
0.965 |
0.99994 |
0.3045 |
0.25 |
60 |
1.0451 |
0.43 |
0.904 |
0.99993 |
0.3041 |
0.41 |
47 |
1.0459 |
0.59 |
0.805 |
0.99991 |
0.3033 |
0.57 |
30 |
1.0454 |
0.76 |
0.652 |
0.99986 |
0.3016 |
0.79 |
Табл. 2.5
a |
SI’ |
P’ |
Q’ |
S1’ |
Sm’ |
Km’ |
126 |
1.046 |
-0.61 |
0.792 |
0.99991 |
0.3035 |
-0.54 |
114 |
1.0461 |
-0.45 |
0.895 |
0.99993 |
0.3042 |
-0.38 |
103 |
1.0462 |
-0.28 |
0.96 |
0.99994 |
0.3046 |
-0.22 |
92 |
1.0462 |
-0.12 |
0.993 |
0.99994 |
0.3047 |
-0.06 |
82 |
1.0463 |
0.05 |
0.999 |
0.99994 |
0.3047 |
0.09 |
71 |
1.0462 |
0.21 |
0.977 |
0.99994 |
0.3045 |
0.25 |
60 |
1.0462 |
0.38 |
0.925 |
0.99993 |
0.3041 |
0.41 |
47 |
1.0461 |
054 |
0.839 |
0.99991 |
0.3033 |
0.57 |
30 |
1.0469 |
0.71 |
0.705 |
0.99986 |
0.3016 |
0.79 |
Рис.2.4.
Тиристор – краткий обзор полупроводника
Включение полупроводника в открытое состояние возможно путём подачи импульса пускового тока небольшой величины на управляющий электрод «У». Когда тиристор пропускает ток нагрузки в прямом направлении, электрод анода A является положительным по отношению к электроду катода «K», с точки зрения регенеративной фиксации.
Как правило, триггерный импульс для электрода У должен иметь длительность в несколько микросекунд. Однако чем длиннее импульс, тем быстрее происходит внутренний лавинный пробой. Также увеличивается время открывания перехода. Но максимальный ток затвора превышать не допускается.
После переключения и полной проводки, падение напряжения на участке анод- катод держится постоянным на уровне около 1 вольта, при всех значениях анодного тока от нуля до номинального значения. Тем не менее, следует помнить: как только полупроводник начинает проводить, этот процесс продолжается даже при отсутствии управляющего сигнала «У».
Продолжается такое состояние до момента, когда ток анода уменьшится до величины меньше допустимо минимальной. Лишь на этом уровне и ниже происходит автоматическая блокировка перехода. Иначе работают лишь новые тиристоры структуры «MCT».
ТИРИСТОРЫ
Инновационная разработка в группе тиристоров. Управляемая структура MCT (MOSFET Controled thyristor): 1 — управление 1; 2 — анод; 3 — управление 2; 4 — катод; 5 — подложка металл; OFF-FET — канал типа n-канал; ON-FET — канал типа p-канал
Этот фактор показывает, что в отличие от биполярных транзисторов и полевых транзисторов, тиристоры, по сути, невозможно использовать для усиления или контролируемого переключения.
Таким образом, напрашивается логичный вывод: тиристоры как полупроводниковые приборы специально разработаны для использования в составе схем коммутации высокой мощности.
Эти полупроводники могут работать только в режиме переключения, где они действуют как открытый или закрытый коммутатор. Как только этот коммутатор срабатывает, он остаётся в состоянии проводника.
Поэтому в цепях постоянного напряжения и некоторых сильно индуктивных цепях переменного напряжения, значение тока необходимо искусственно уменьшать при помощи отдельного переключателя или схемы отключения.
Принцип работы частотного преобразователя
Электронный преобразователь состоит из нескольких основных компонентов: выпрямителя, фильтра, микропроцессора и инвертора.
Выпрямитель имеет связку из диодов или тиристоров, которые выпрямляют исходный ток на входе в преобразователь. Диодные ПЧ характеризуются полным отсутствием пульсаций, являются недорогими, но при этом надежными приборами. Преобразователи на основе тиристоров создают возможность для протекания тока в обоих направлениях и позволяют возвращать электрическую энергию в сеть при торможении двигателя.
Фильтр используется в тиристорных устройствах для снижения или исключения пульсаций напряжения. Сглаживание производится с помощью ёмкостных или индуктивно-ёмкостных фильтров.
Микропроцессор – является управляющим и анализирующим звеном преобразователя. Он принимает и обрабатывает сигналы с датчиков, что позволяет регулировать выходной сигнал с преобразователя частоты встроенным ПИД-регулятором. Также данный компонент системы записывает и хранит данные о событиях, регистрирует и защищает аппарат от перегрузок, короткого замыкания, анализирует режим работы и отключает устройство при аварийной работе.
Инвертор напряжения и тока используется для управления электрическими машинами, то есть для плавного регулирования частоты тока. Такое устройство выдает на выходе «чистый синус», что позволяет использовать его во многих сферах промышленности.
Watch this video on YouTube
Принцип работы электронного частотного преобразователя (инвертора) заключается в следующих этапах работы:
- Входной синусоидальный переменный однофазный или трехфазный ток выпрямляется диодным мостом или тиристорами;
- При помощи специальных фильтров (конденсаторов) происходит фильтрация сигнала для снижения или исключения пульсаций напряжения;
- Напряжение преобразуется в трехфазную волну с определенными параметрами с помощью микросхемы и транзисторного моста;
- На выходе из инвертора прямоугольные импульсы преобразовываются в синусоидальное напряжение с заданными параметрами.
Принцип работы и конструкция
Для преобразования нагрузки может использоваться тиристорный или транзисторный высоковольтный преобразователь на базе IGBT. Тиристорный частотный преобразователь (ТП, ТПР или ТПЧ) – это электрическое устройство для преобразования переменного тока в постоянный, регулирования его уровня и прочих характеристик. С его помощью можно уравнивать различные параметры электрических редукторов: скорость вращения в момент пуска, угол и прочие.
Фото — тиристорный уравнитель
Тиристорный преобразователь применяется для двигателя постоянного тока (ДПТ) вместе с системой автоматического регулирования (FR A700 в Mitsubishi Electric, Siemens Simoreg DC Master, Omron Yaskawa). Он имеет очень широкую область применения благодаря своим достоинствам:
- Высокий показатель КПД – до 95 % (к примеру, у модели ПН-500);
- Широкий спектр контроля. Его можно использовать для двигателя с мощностью от десятых киловатта до нескольких мегакиловатт;
- Способность выдерживать сильные импульсные нагрузки при включении электродвигателя в сеть;
- Высокие показатели надежности и долговечности;
- Точность в работе.
Но у такой системы есть определенные недостатки. В первую очередь – это низкий коэффициент мощности, который проявляется при глубоком регулировании производственных процессов. Компенсировать его можно при помощи дополнительных устройств. Кроме этого, мощный преобразователь вызывает помехи в электрической сети, что сказывается на работе чувствительного электро- и радиооборудования.
Конструкция:
- Трансформатор или реактор;
- Выпрямительные блоки;
- Дополнительный реактор, сглаживающий преобразование;
- Система защиты оборудования от перенапряжений.
Большинство современных преобразователей подключаются к трансформатору через реактор. Трансформатор в этой схеме является согласующим звеном между входящим и выходным напряжением, он уравновешивает разницу между ними. Помимо него, электросхема также включает в себя специальный сглаживающий реактор. Этот прибор необходим для нейтрализации определенных пульсаций, возникающих при выпрямлении и изменении типа тока. Но система не всегда включает в себя реактор, т. к. при достаточной индуктивности асинхронного двигателя в нем нет необходимости.
Агрегат пропускает через автономный инвертор (расположенный во входящем звене) первичную нагрузку. Они попадают в выпрямляющие блоки, установленные в выходном звене. Для подключения других индукционных потребителей используются специальные шины, которые помогают выравнивать питание в целой группе устройств.
Такой преобразователь бывает низкочастотный и высокочастотный. В зависимости от потребных частот и имеющихся параметров электричества подбирается нужная модель. Нужно отметить, что в станках, где используется трехфазный ток, применяется другой тип подключения. Однофазный переносит воздействия и преобразования, в то время как на преобразовании трехфазного тока теряется КПД.
Фото — преобразовательный пункт
Система используется в плавке металлов, сварочных работах, контроле кранового механизма и многих других производственных и технологических процессах. Применение такого принципа работы позволяет реализовать систему генератор-двигатель без использования генератора. Благодаря этому производится широкая регулировка частот вращения шпинделя даже на самых малых скоростях, настраиваются механические и другие характеристики электропривода и прочие параметры.
Виды преобразовательных агрегатов
В соответствии с подлежащим преобразованию параметром, все известные виды устройств этого класса подразделяются на следующие категории:
- Инверторы напряжения;
- Преобразователи тока;
- Устройства, предназначенные для трансформации частоты управляющего сигнала (ТПЧ).
Первые из этих моделей предназначаются для приведения выходного напряжения к удобному для работы с нагрузкой виду и способны преобразовывать переменное напряжение в постоянное и наоборот. Для этого используются электронные схемы, обеспечивающие либо выпрямление поступающего на вход переменного тока, либо превращение постоянного напряжения в серию импульсов, которые впоследствии преобразуются в синусоиду.
Цифровая система микропроцессоров управления ТПЧ 320
Микропроцессорные системы управления ТПЧ 320 регулируют, защищают и диагностируют. Она сформирована на плате с микросхемами и экраном через кабели. Эта система дает гарантию надежной работы, защищает от помех.
Каждому вентилю передается импульс. Информация выдается на экран панели. Можно получить информацию от механизмов цепи. Система управления обрабатывает много данных, передающихся по связи. Это такие данные:
- Мощность.
- Частота.
- Вес загрузки.
- Вес расплавленного металла.
- Время.
Комплектность шкафа ТПЧ 320:
- Выпрямитель.
- Система выравнивания мощности.
- Дроссель сглаживания.
- Диагностика.
- Контроль температуры.
- Контроль охлаждения.
- Блокировка дверей.
- Защита, перезапуск частотника при отключении линии питания.
Эксплуатационные условия ТПЧ 320
№ | Условие | Значение |
1 | Помещение с температурой | от +5° С до +35° С (УХЛ 4) и от +5° С до +45° С (ТС 4); |
2 | Высота не более: | 1000 м; |
3 | Влажность до: | 80% при +25° С (УХЛ 4) и 98 % при +35° С (ТС 4); |
4 | Среда: | Безопасная, без агрессивных газов |
5 | Защита ГОСТ 14254-80 | IP 55 |
6 | Уровень помех не выше: | ГОСТ 23450 — 79 |
Реверсивные тиристорные преобразователи Принцип работы и устройство
Определение величины преобразуемой мощности
С чего нужно начинать расчет? Самым главным параметром любого источника питания является мощность. Именно от нее напрямую зависят все остальные параметры преобразователя, в том числе масса, габариты и стоимость. В данном случае выходную мощность РВЫХ можно легко определить как сумму мощностей обоих каналов:
(1) |
где РВЫХ1, РВЫХ2 – соответственно, выходная мощность первого и второго канала.
Однако на самом деле на массу, габариты и стоимость ключевое влияние оказывает не выходная, а преобразуемая мощность РПМ – скорость передачи энергии через магнитные или электрические поля элементов, изменяющих параметры электрической энергии. В нашем примере это процесс происходит в дросселе L1, поэтому именно от его режима работы зависят все остальные параметры схемы.
В общем случае, величина преобразуемой мощности может быть меньше мощности преобразователя. Это связано с тем, что за счет особенностей схемотехники силовой части часть энергии поступает в нагрузку непосредственно из источника первичного питания (с входа преобразователя), минуя магнитное поле дросселя. Этот вопрос подробно рассмотрен в [], где и получены формулы, позволяющие рассчитать величину РПМ для четырех наиболее распространенных («базовых») схем:
(2) |
где UВХ, UВЫХ – соответственно, напряжение на входе и выходе преобразователя.
Наша схема, на первый взгляд, не является ни одной из «базовых», однако посмотрим на нее внимательно. Если мысленно убрать из нее все элементы, относящиеся ко второму каналу преобразования (обмотку W2, VD1, C3), то останется классический повышающий преобразователь, а если убрать элементы первого канала (VD2, C2) – то обратноходовой (Рисунок 3).
Рисунок 3. | Разделение схемы (Рисунок 1) на элементарные «базовые» преобразователи. |
Для первого канала (повышающая схема) преобразуемая мощность РПМ1 зависит от соотношения напряжений на входе и выходе, причем, чем больше разница напряжений, тем больше РПМ1. Определим эту величину для худшего случая – при минимальном входном напряжении UВХ_MIN:
(3) |
Во втором канале (обратноходовая схема) вся энергия проходит через магнитное поле дросселя, поэтому преобразуемая мощность РПМ2 не зависит от соотношения напряжений на входе и выходе:
(4) |
Магнитопровод дросселя L1 является общим для двух каналов, поэтому, используя принцип суперпозиции, суммарную преобразуемую мощность РПМ можно представить в виде суммы преобразуемых мощностей первого и второго каналов:
(5) |
Сравнивая результаты расчетов по формулам (1) и (5), видим, что РПМВЫХ. Недостающие 4 Вт за счет электрической связи поступают в нагрузку первого канала напрямую с входа без каких-либо преобразований. Это позволяет сделать нашу схему почти на 17% меньше и легче, чем в случае включения обоих каналов по обратноходовой схеме (Рисунок 2б). Кстати, если у читателя есть желание попрактиковаться в расчетах преобразуемой мощности, то на Рисунке 2 приведены результаты расчетов РПМ, для всех индуктивных компонентов, которые можно использовать для самопроверки.
Схемные решения преобразователей на основе тиристоров
Особенностью схем на тиристорах является то, что они рассчитаны на работу с определенным характером нагрузки.
Последовательный и параллельный инверторы тока
Данный тип преобразователей имеет дополнительный конденсатор, включенный последовательно или параллельно нагрузке. Назначение конденсатора – обеспечение надежного запирания тиристоров, не участвующих в прохождении тока по силовой цепи. Для стабилизации тока через нагрузку вход инвертора тока содержит индуктивность, которая в идеальном случае должна стремиться к бесконечности.
Комбинированные схемы
Комбинированная последовательно-параллельная схема содержит два конденсатора и позволяет улучшить нагрузочные характеристики устройства. В частности, такая схема отличается большей устойчивостью при работе с малой нагрузкой.
Последовательная, параллельная и комбинированная схемы
Преобразователь напряжения Мак-Мюррея
Схема Мак-Мюррея включает в себя контур LC. Данный контур образуется из соединения конденсатора и катушки индуктивности через открытый в данный момент тиристор, закрывая противоположный.
Данное решение позволяет питать индуктивную нагрузку, например, устройства, в которых производится индукционный нагрев или сварка металлических конструкций.
Последовательный резонансный инвертор
В подобной схеме емкость конденсатора и индуктивность подобраны таким образом, чтобы на частоте преобразования LC контур находился в резонансе. Таким образом, управление тиристорами будет происходить на резонансной частоте.
Преобразование может вестись на более высокой частоте, что улучшает характеристики схемы из-за лучших условий переключения ключевых элементов.
1.1 Исходные данные
Необходимо расчитать и смоделировать в системе MatLab двигатель постоянного тока серии:2ПФ200LYXЛ4
Расшифровка маркировки двигателя постоянного тока:
1) 2П-название серии: вторая серия машин постоянного тока.
2) Ф-защищенное с самовентиляцией.
3) 200 — высота оси вращения, мм.
4) L — условное обозначение длины сердечника якоря: L — большая.
5) УХЛ4- для макроклиматических районов с умеренным и холодным климатом четвертой категории.
Технические данные двигателя постоянного тока сведены в таблицу 1.
Таблица 1 — Технические данные двигателя постоянного тока
Мощность Рн, кВт |
Напряжение Uн, В |
Частота вращения , об/мин |
КПД ,% |
Сопротивление обмотки при 15°С, Ом |
Индуктивность цепи якоря Lя, мГн |
||||
номинальная nн |
максимальная nmax |
якоря, Rя |
добавочных полюсов Rд |
возбуждения, Rв |
|||||
20 |
440 |
1000 |
2500 |
85,5 |
0,286 |
0,168 |
31 |
10 |
Тиристорный преобразователь частоты и принцип его работы
Преобразователи частоты в схемах подключения двигателя пользуются большой популярностью и спросом, поскольку позволяют строить стабильные и управляемые системы, которые без таких электронных схем спроектировать и внедрить затруднительно. К таким специфическим применениям, связанным с работой синхронных и асинхронных двигателей, относят:
- необходимость обеспечить плавный, безопасный пуск и остановку электромотора;
- потребность обеспечить необходимый крутящий момент на низких оборотах и при выходе на номинальный режим;
- потребность регулировки частоты вращения ротора в широких пределах;
- создание экономичных систем;
- разработку систем на базе электромоторов с обратной связью, при помощи которой регулируется состояние системы.
Это достаточно сложная задача, учитывая, что мощные электродвигатели, особенно двигатели трехфазного тока, работают при достаточно высоких напряжениях, мощностях и, соответственно, большой силе тока. Поэтому первые регуляторы частоты были созданы на основе тиристоров, которые появились значительно раньше мощных IGBT-транзисторов. Cхемотехника тиристорных регуляторов частоты вращения электромотора достаточно проста и может быть реализована даже без применения сложных контроллеров, интегральных микросхем и микропроцессоров.
В первых разработках частотных преобразователей на тиристорах использовались временные цепи с регулировкой, построенной на базе конденсаторов и резисторов, которые задают собственную частоту колебаний системы.
Принцип построения инверторов [ править | править код ]
Преобразование постоянного напряжения первичного источника в переменное достигается с помощью группы ключей, периодически коммутируемых таким образом, чтобы получить знакопеременное напряжение на зажимах нагрузки и обеспечить контролируемый режим циркуляции в цепи реактивной энергии. В таких режимах гарантируется пропорциональность выходного напряжения. В зависимости от конструктивного исполнения модуля переключения (модуля силовых ключей инвертора) и алгоритма формирования управляющих воздействий, таким фактором могут быть относительная длительность импульсов управления ключами или фазовый сдвиг сигналов управления противофазных групп ключей. В случае неконтролируемых режимов циркуляции реактивной энергии реакция потребителя с реактивными составляющими нагрузки влияет на форму напряжения и его выходную величину .
Инверторы напряжения со ступенчатой формой кривой выходного напряжения
Принцип построения такого инвертора заключается в том, что при помощи предварительного высокочастотного преобразования формируются однополярные ступенчатые кривые напряжения, приближающиеся по форме к однополярной синусоидальной кривой с периодом, равным половине периода изменения выходного напряжения инвертора. Затем с помощью, как правило, мостового инвертора однополярные ступенчатые кривые напряжения преобразуются в разнополярную кривую выходного напряжения инвертора.
Инверторы с синусоидальной формой выходного напряжения
Принцип построения такого инвертора заключается в том, что при помощи предварительного высокочастотного преобразования получают напряжение постоянного тока, значение которого близко к амплитудному значению синусоидального выходного напряжения инвертора. Затем это напряжение постоянного тока с помощью, как правило, мостового инвертора преобразуется в переменное напряжение по форме, близкое к синусоидальному, за счет применении соответствующих принципов управления транзисторами этого мостового инвертора (принципы так называемой «многократной широтно-импульсной модуляции»). Идея этой «многократной» ШИМ заключается в том, что на интервале каждого полупериода выходного напряжения инвертора соответствующая пара транзисторов мостового инвертора коммутируется на высокой частоте (многократно) при широтно-импульсном управлении. Причём длительность этих высокочастотных импульсов коммутации изменяется по синусоидальному закону . Затем с помощью высокочастотного фильтра нижних частот выделяется синусоидальная составляющая выходного напряжения инвертора. . При использовании однополярного источника постоянного напряжения (доступны уровни 0 и Ud, где Ud — напряжение постоянного тока, питающего инвертор) эффективное значение первой гармоники фазного напряжения U e f f ( 1 ) = 0.45 U d <displaystyle U_<
m >^<(1)>=0.45U_<
m >>При использовании двуполярного источника постоянного напряжения (доступны уровни 0, -Ud/2 и Ud/2) амплитудное значение первой гармоники фазного напряжения U m ( 1 ) = 0.5 U d <displaystyle U_<
m >^<(1)>=0.5U_>соответственно, эффективное значение U e f f ( 1 ) = 0.35 U d <displaystyle U_<
m>^<(1)>=0.35U_<
m >>
Инверторы напряжения с самовозбуждением
Инверторы с самовозбуждением (автогенераторы) относятся к числу простейших устройств преобразования энергии постоянного тока. Относительная простота технических решений при достаточно высокой энергетической эффективности привело к их широкому применению в маломощных источниках питания в системах промышленной автоматики и генерировании сигналов прямоугольной формы, особенно в тех приложениях, где отсутствует необходимость в управлении процессом передачи энергии. В этих инверторах используется положительная обратная связь, обеспечивающая их работу в режиме устойчивых автоколебаний, а переключение транзисторов осуществляется за счет насыщения материала магнитопровода трансформатора. В связи со способом переключения транзисторов, с помощью насыщения материала магнитопровода трансформатора, выделяют недостаток схем инверторов, а именно низкий КПД, что объясняется большими потерями в транзисторах. Поэтому такие инверторы применяются при частотах f <displaystyle f>не более 10 кГц и выходной мощности до 10 Вт. При существенных перегрузках и коротких замыканиях в нагрузке в любом из инверторов с самовозбуждением происходит срыв автоколебаний (все транзисторы переходят в закрытое состояние).
Частотные преобразователи со звеном постоянного тока
Это устройства, выполненные по транзисторной или тиристорной схеме. Однако их основная отличительная особенность состоит в том, что корректная и безопасная работа частотника требует наличия звена постоянного напряжения. Поэтому для подключения их к промышленной сети требуется выпрямитель. Обычно, применяются комплектное оборудование, состоящее из частотного преобразователя и выпрямителя, регулируемые от одной системы управления.
В ПЧ этой группы применяется двухступенчатое преобразование электроэнергии: синусоидальное U вх с f = const выправляется в выпрямителе (В), отфильтровывается фильтром (Ф), разглаживается, и далее заново преобразуется инвертором (И) в U ̴. Ввиду двухступенчатого преобразования электроэнергии снижается КПД и несколько ухудшаются массогабаритные показателив сравнении с преобразователями частоты с непосредственной связью.
Для создания синусоидального U ̴ самоуправляющиеся преобразователи частоты. В качестве ключевой базы в них используются усовершенствованная тиристорная и транзисторная основа.
Основным преимуществом тиристорной преобразовательной аппаратуры считается возможность оперироватьс большими параметрами сети, с выдерживанием при этом продолжительной нагрузки и импульсных воздействий. Аппараты обладают более высоким КПД.
Частотные преобразователи на тиристорах на сегодня превосходят остальные высоковольтные приводы, мощность которых исчисляется десятками МВТ с U вых от 3до 10 кВ и более. Однако и цена на них соответственно наибольшая.
Преимущества:
- наибольший КПД;
- возможность использования в мощных приводах;
- приемлемая стоимость, невзирая на внедрение добавочных элементов.