Узип

Схемы подключения

Для защиты низковольтных сетей существует несколько схем подключения УЗИП. Идеальным вариантом считается комплексное применение устройств, так как удар молний абсолютно не прогнозируем.

Внешняя система

Внешний элемент защиты принимается из расчета, что по его компонентам возможно протекание максимального тока. Защитное устройство устанавливается с возможностью выдержать 100 кА. Чтобы негативный импульс не причинил много бед, его следует отвести по пути наименьшего сопротивления.

Для этого в электрическом щите устанавливается комплексный УЗИП, включающий в себя три степени защиты. Это устройство обладает большой мощностью и скоростью срабатывания, предохраняя оборудование общей мощностью до 20 кВт.

Если это разделенное на два участка заземление, то в щитке монтируются две отдельные шины: нулевая, заземляющая. Между ними устанавливается перемычка, которая считается дополнительной защитой.

Установка защиты на ответвлении

Возможна установка УЗИП не в распределительном щитке, а непосредственно на ответвлении электрической сети. Например, где воздушная линия расходится на два соседних дома, а контур заземления не обладает молниеотводами.

Иногда устройство устанавливается перед входом в дом и применение УЗИП с 3 классом защиты нерационально. Монтируются приборы, обладающие 1 и 2 классом. Если расстояние от столба до дома превышает 60 м, то в электрическом щитке устанавливается дополнительное устройство со 2 классом защиты.

Отличается способ установки защиты, если дом подключен к подземному кабелю. Аварийная ситуация возникает от других внешних источников, поэтому длительность импульсных помех будет намного меньше. Для защиты достаточно будет установить в распределительный щит УЗИП 2 класса.

Кроме электрических линий, перенапряжение может возникнуть в телевизионных сетях. Часто высоковольтные помехи генерируются на антенных приемниках в домах, где нет молниеотводов. Возникновение кратковременного высокого напряжения в антенном кабеле приводит к выходу из строя селектора телевизора.

Устройство защиты представляет собой антенный переходник с заземляющим устройством. Существуют два типа приборов: для аналогового, спутникового или цифрового телевидения. Различить их можно по соответствующим надписям на корпусе: Radio/TV, SAT.

Схема прибора серии VC-122

Устройство защиты от импульсных перенапряжений и помех указанной серии подходит для понижающих трансформаторов. Также модель активно используется в щитках серии РС

В первую очередь важно отметить, что у модели применяется высоковольтный модулятор. Параметр выходной проводимости у него равен 2 мк. Для щитков РС19 модель подходит

Модулятор в данном случае подсоединяется через обкладку

Для щитков РС19 модель подходит. Модулятор в данном случае подсоединяется через обкладку.

Фильтры разрешается использовать лишь проходного типа. Если рассматривать щитки серии РС20, то у них имеется демпфер. Расширитель для подключения используется магнитного типа

Также важно отметить, что понижающие трансформаторы на 200 В применяться не могут

Подробности Опубликовано: 29 Сентябрь 2015 Просмотров: 25575

Здесь привожу несколько типовых схем подключения устройств защиты от импульсных перенапряжений (УЗИП). Ниже вы найдете однофазные и трехфазные схемы для разных систем заземления: TN-C, TN-S и TN-C-S. Они наглядные и понятные для простого человека.

Сегодня существует большое количество производителей УЗИП. Сами устройства бывают разных моделей, характеристик и конструкций. Поэтому перед его монтажом обязательно изучите паспорт и схему подключения. В принципе, суть подключения у всех УЗИП одинаковая, но все же рекомендую сначала прочитать инструкцию.

Во всех выложенных схемах присутствуют УЗО и групповые автоматические выключатели. Их я указал для наглядности и полноты распределительного щитка. Эта «начинка» щитка у вас может быть совсем другая.

1. Схема подключения УЗИП в однофазной сети системы заземления TN-S.

На данной схеме представлен УЗИП серии Easy9 производителя Schneider Electric. К нему подключаются следующие проводники: фазный, нулевой рабочий и нулевой защитный. Здесь он устанавливается сразу после вводного автомата. Все контакты на любом УЗИП обозначены. Поэтому куда подключать «фазу», а куда «ноль» можно легко определить. Зеленый флажок на корпусе указывает на исправное состояние, а красный флажок сигнализирует о неисправной касете.

Представленное устройство относится к классу 2. Оно одно самостоятельно не способно защитить от прямого удара молнии. Грамотный выбор УЗИП это сложная и уже отдельная тема.

Также рекомендуется защищать устройства УЗИП с помощью предохранителей.

Думаю тут все понятно.

Ниже представлена аналогичная схема подключения УЗИП, но уже без электросчетчика и с использованием общего УЗО.

2. Схема подключения УЗИП в трехфазной сети системы заземления TN-S.

На схеме также изображен УЗИП производителя Schneider Electric серии Easy9, но уже для 3-х фазной сети. На рисунке изображено 4-х полюсное устройство с подключением нулевого рабочего проводника.

Еще существует 3-х полюсное УЗИП этой же серии. Оно применяется в системе заземления TN-C. В нем нет контакта для подключения нулевого рабочего проводника.

3. Схема подключения УЗИП в трехфазной сети системы заземления TN-C.

Здесь изображен УЗИП фирмы IEK. Данная схема представляет собой обычный вводной щит для частного дома. Он состоит из вводного автомата, электросчетчика, УЗИП и общего противопожарного УЗО. Также на схеме показан переход с системы заземления TN-C на TN-C-S, что требуется современными нормами.

На первом рисунке изображен 4-х полюсный вводной автомат, а на втором 3-х полюсный.

Нет постояннее соединения, чем временная скрутка!

Вот здесь нужно быть очень внимательным. Неправильный выбор автоматического выключателя по номиналу может привести к возгоранию проводки или автомат будет срабатывать на отключение по пять раз.

У вас дома в квартирном щитке сработал автоматический выключатель. В итоге какая-то часть квартиры обесточилась. В такой ситуации оказывался практически каждый. Какие ваши дальнейшие действия.

Лампочки перегорали, перегорают и будут перегорать иначе не выгодно их производить. Сами подумайте завод изготовил одну лампочку, человек ее купил, вкрутил у себя дома и она работает положенны.

Кабели и провода играют одну из самых важных ролей в электропитании вашего дома. Не правильный выбор сечения может привести к перегреву изоляции, ее пробою, короткому замыканию и к серьезным п.

Друзья, уважайте чужой труд и при копировании материалов, пожалуйста, ставьте открытую ссылку на источник sam-sebe-electric.ru, а то свет отключу. |

Требования к монтажу УЗИП

А теперь, когда определено, какие УЗИПы и где применять, можно рассмотреть некоторые особенности их использования. Устройства для защиты по питанию могут иметь три типа подключения:

— Т-образный (параллельный), когда УЗИП подключается параллельно питающей цепи. Рабочий ток при этом через устройство защиты не идёт, т.е. вы можете его использовать при любой мощности системы электроснабжения. Сечение соединительных проводников должно выбираться в соответствии с рекомендациями производителя УЗИП.

— последовательный, когда УЗИП ставится в разрыв питающего провода. В этом случае устройство защиты должно иметь номинальный ток нагрузки IL больше максимального рабочего тока цепи, в которую оно установлено.

— V-образный тип подключения, когда рабочий ток цепи протекает по шунту, установленному внутри УЗИП (7). С точки зрения защиты от импульсных перенапряжений это оптимальная конфигурация.

V-образное подключение

Типовая схема Т-образного (параллельного) подключения УЗИП 1+2 класса в сеть TNC-S приведена на 8.

Т-образное подключение УЗИП

Здесь есть одна тонкость, связанная с применением плавких вставок FU 1-3. Существуют рекомендованные производителем УЗИП номиналы данных устройств, например, для УЗИП 1+2 ступени с импульсными токами 25кА (10/350) на фазу оптимальными являются вставки 125А по характеристике gG/gL. При этом номинале через плавкую вставку может пройти импульс 25 кА (10/350) и она останется целой. Если взять вставку меньшего номинала, УЗИП будет недоиспользован, т.к. при приходе мощного импульса плавкая вставка сгорит и исключит из работы вполне исправный УЗИП. Т.е. система защиты будет работать только при импульсах, значительно слабее тех, на которые рассчитан УЗИП. По рекомендациям МЭК номинал входного защитного устройства ВА должен быть на ступень больше, чем номинал предохранителей FU 1-3. В случае невозможности выполнения такого требования, предохранители FU 1-3 можно не устанавливать. При V-образном и последовательном соединении эти дополнительные предохранители отсутствуют в принципе.

Ещё одна особенность Т-образного монтажа УЗИП заключается в том, что длина соединительных проводов между УЗИП и точкой присоединения к сети не должны превышать 0,5м (ГОСТ Р 50571.26-2002). Это связано с тем, что микросекундный импульс перенапряжения является высокочастотным сигналом и имеет очень крутой фронт. А любой проводник, кроме активного сопротивления, имеет ещё и индуктивное. Оно очень маленькое, примерно 1 мкГн/м при сечении провода 16 кв.мм, и на промышленной частоте им обычно пренебрегают. Но при крутизне фронта тока (dI/dt) 1кА/мкс на каждом метре провода падает 1кВ. И это напряжение складывается с остаточным напряжением УЗИП и прикладывается к оборудованию (9). При этом амплитуда импульса может значительно превысить допустимые для данного оборудования значения.

Именно по этой причине нельзя устанавливать вместо предохранителей FU 1-3 автоматические выключатели. Каждый автоматический выключатель содержит катушку индуктивности, стоящую последовательно в рабочей цепи. И в случае их использования при приходе импульса основное напряжение упадёт на автоматическом выключателе, а УЗИП при этом будет работать неэффективно. В результате такое подключение не обеспечит защиту оборудования.

Ещё один вопрос, который обычно встает перед инженером – нужно ли применять УЗИП 2 или 3 класса после устройства типа 1+2, установленного во вводном щите? Ведь уровень напряжения защиты у этого устройства (Up) не более 1,5кВ, что не превышает уровень, характерный для 3 класса. Ответ — не обязательно, если расстояние по кабелю от УЗИП 1+2 класса до защищаемого оборудования не более 15-20м и рядом нет источников сильных наводок. Если же расстояние более 20 метров, то устанавливать необходимо, т.к. ситуация может развиваться, как на 10. Здесь пришедший импульс перенапряжения ограничивается УЗИП до 1,5кВ, а уже внутри здания на него накладывается помеха, наведённая от различного мощного электротехнического оборудования. Сами по себе уровни этих помех не превышают допустимый для защищаемого оборудования, но вместе эти перенапряжения могут привести к сбоям и даже выходу оборудования из строя.

Стоит отметить, что для эффективной защиты от перенапряжений расстояние от места подключения УЗИП 2 или 3 класса до защищаемого оборудования не должно превышать 5м.

Устройство защиты от импульсных перенапряжений: как правильно выбрать и установить модуль

Представьте картинку, когда накопленная энергия статического электричества между движущимися на больших расстояниях облаками разряжается молниеносным ударом по зданию или питающей его ЛЭП.

Усредненная форма импульса тока приведена ниже. Она вначале круто возрастает примерно за 10 микросекунд, а затем, достигнув своего апогея, начинает плавно снижаться. Причем спад до середины максимального значения тока происходит через 350 мкс и продолжается дальше до нуля.

Этот импульс грозового разряда создает перенапряжение в сети, которое примерно повторяет форму тока, но может отличаться за счет работы ограничителей перенапряжения, установленных на воздушной ЛЭП.

Форма такого импульса, обработанного разрядниками, показана чуть правее, а обычная синусоида частотой 50 герц для сравнения ниже.

Ограничители перенапряжения ЛЭП работают за счет пробивания калиброванного воздушного зазора повышенным импульсом разряда. В обычном состоянии его сопротивление исключает протекание токов от напряжения нормальной величины.

У высоковольтных линий электропередач ограничители имеют довольно внушительные размеры.

На воздушных ЛЭП 0,4 кВ их габариты значительно меньше. Они располагаются на опоре рядом с изоляторами.

Ограничители перенапряжения ВЛ способны погасить очень высокое напряжение разряда молнии только до 6 киловольт. Такой импульс имеет измененную форму нарастания и спада напряжения с характеристикой 8/20 мкс. Он поступает на вводные устройства вашего дома.

Защита перенапряжения ЛЭП его сильно урезала и преобразовала. Но этого явно недостаточно для обеспечения безопасности оборудования и жильцов.

Бытовая проводка 220/380 вольт выпускается с изоляцией, способной противостоять импульсам 1,5÷2,5 кВ. Все, что больше, ее пробивает. Поэтому требуется использовать дополнительное устройство защиты от импульсных перенапряжений для частного дома.

Ассортимент таких конструкций обширен. Их необходимо уметь правильно выбирать и монтировать.

УЗИП для сети 0,4 кВ выпускаются на 2 режима возможной аварии для гашения:

  1. тока разряда с формой 10/350мкс, который не претерпел изменений от ОПН воздушной ЛЭП;
  2. импульса перенапряжения с характеристикой 8/20мкс.

По этим факторам удобно при выборе УЗИП пользоваться алгоритмом, который я показал картинкой ниже.

Однако следует представлять, что практически нет устройств, способных разово погасить импульс 6 киловольт до безопасной для бытовой проводки величины в 1,5 кВ.

Этот процесс происходит в три этапа. Под каждый из них используется свой класс УЗИП, хотя есть небольшие исключения из этого правила.

Модули класса 1 способны снизить импульс перенапряжения с 6 до 4 кВ, который проникает:

  • после ограничителей ЛЭП;
  • или наводится от тока разряда молнии, стекающего по молниеотводу;
  • либо ее удара в близко расположенные строения, деревья, почву.

УЗИП класса 1 устанавливают во вводном щиту здания внутри отдельной герметичной пожаробезопасной ячейки. Пренебрегать этим правилом опасно.

При монтаже следует правильно прокладывать защищаемые кабели. Они не должны пересекаться с отводом аварийных токов на контур земли и приходящими, не подвергнутыми защите магистралями.

От сверхтоков модули спасают силовыми предохранителями с плавкими вставками.

Автоматические выключатели для этих целей не приспособлены. Их контакты не выдерживают создаваемые импульсные перегрузки. Они привариваются, а повреждение продолжает развиваться.

Следующий класс УЗИП №2 снижает импульс перенапряжения с четырех до 2,5 кВ. Его ставят в следующем по иерархии распределительном щите, например, квартирном. Он дополняет работу предшествующего модуля, но может использоваться и автономно.

Класс №3 устройства защиты от импульсных перенапряжений может выполняться модулями, устанавливаемыми на DIN-рейку или комплектами, встраиваемыми в бытовые приборы, удлинители, сетевые фильтры.

УЗИП класса 3 способен обеспечивать безопасность только после срабатывания защиты класса №2. Он ставится последовательно за ней потому, что от 4-х киловольт сгорает.

Производители побеспокоились о сложности выбора правильной конструкции УЗИП и предлагают комплексное решение этого вопроса общим модулем, называемым 1+2+3.

Он ставится в отдельном боксе. Однако, цена такой разработки не всем по карману.

Монтаж и устройство молниезащиты.

Для защиты дома от прямого поражения молнией служит внешняя молниезащита, состоящая из:

  1. Молниеприемника, который принимает на себя прямой удар. Изготавливается из металлического прута или стержня.
  2. Токоотвода, отводящего ток молнии в землю. Делается из медного проводника или стальной проволоки в диаметре не менее 6 миллиметров.
  3. Заземлителя, находящегося в земле. Изготавливается из арматуры диаметром от 16 миллиметров, которая забивается в землю, по возможности как можно глубже. В идеале забить несколько глубиной не менее 3 метров. Учитывайте, что бы достичь максимальной эффективности, расстояние между заземлителями должно быть не менее их длины. Помните, что они должны находится от входа в дом не ближе 5, а лучше 7 метров и не менее 1.5 метра от стен дома. При грозе не подходите ближе 10 метров к местам, в которых забиты заземлители.

Молниезащита кровли.

Если в вашем доме металлическая крыша, тогда ее необходимо обязательно соединить при помощи сварки, болтов с заземлителями. При этом отдельными молниеприемниками оборудуются любые выступающие не металлические элементы на крыше, например труба.

При монтаже молниезащиты крыш необходимо придерживаться следующих обязательных правил:

  • Подложка под крышей должна быть из несгораемого материала, потому что при ударе молнии металл раскаляется до высоких температур с оплавлением, что может вызвать возгорание кровли.
  • Все металлические элементы должны иметь между собой надежную электрическую замкнутую связь. При удалении их друг от друга используйте медные перемычки.
  • Во многих случаях для металлической кровли более безопасным, быстрым и не дорогим будет установка стержневых или тросовых молниеприемников.

Монтаж молниезащиты на частном доме.

Наружную молниезащиту дома легко сделать своими руками. Вам понадобится металлический штырь для молниеприемника, медный провод или стальная проволока для токоотвода, арматура для заземлителя, а так же сварочный аппарат, болты, хомуты или скобы для соединений и крепления. В земле все соединения делайте только сваркой с нанесением на них защиты от коррозии.

Медный или стальной токоотводящий проводник крепится на крыше специальными креплениями под тип крыши и по стенам через 60 см. пластиковыми фиксаторами, дюбелями или металлическими скобами, полосами и т. д. Помните, что крепить необходимо только по негорючему основанию.

Существует три варианта устройства молниезащиты для частных домов.

  1. Самый простой вариант с установкой одного молниеприемника и молниеотвода. Но при этом молниеотвод необходимо установить в самой высокой точке, и чем выше он будет, тем большую площадь он будет эффективно защищать.
  2. Второй вариант с установкой нескольких штырей, которые будут объединены между собой тросом. При этом от каждого из них будет спускаться молниеотвод. Самый эффективный, но и затратный вариант.
  3. Молниеприемник можно совместить с мачтой под телевизионную антенну. При этом учитывайте, что молниеотвод должен быть выше антенны минимум на метр и крепиться к металлической трубе на изоляционных трубках. Токоотвод выполняется медным проводом с толстой изоляцией и крепится к трубе, но идеальный вариант- к растяжке мачты.

← Предыдущая страница
Следующая страница →

Лучшие модели II класса

DEKRAFT ОП101-1PN-080-B-440

Бюджетная модель, которая используется для защиты бытовых приборов. Монтаж осуществляется на DIN-рейку. Занимает относительно немного места (четыре модуля). Предназначен для систем IT типа. Номинальное напряжение – 400 В. На продукцию бренда предоставляется гарантия, что только подтверждает надежность и качество товара. Показатель защитного напряжения 2,2 кВ.

Покупателю обойдется в 4500 руб.

DEKRAFT ОП101-1PN-080-B-440
Достоинства:

  • высокий эксплуатационный срок;
  • именитый бренд;
  • эффективность;
  • приемлемая стоимость.

Недостатки:

отсутствие сервисных центров.

Schneider Electric 3 пол. + N 20 кА Easy9

Прекрасное приобретение от именитого производителя. Установка возможна как на территории частного дома, так и предприятиях. С подобным оборудованием никакие удары молнии электротехническим приборам не страшны. Функционирует с трехфазными сетями, где показатель номинального напряжения достигает отметки в 400 В. Стоит отметить, что максимальный показатель разряда тока будет равен 20 кА. Подобные факторы благоприятно сказываются на показателе надежности и долговечности используемого оборудования. Для удобства в последующем использовании, производителем предусмотрено наличие светового индикатора на передней панели изделия. Он указывает на состояние прибора. Показатель номинального сброса импульсного тока – 10 кА (показатель времени 8/20).

Цена – 9500 руб.

Schneider Electric 3 пол. + N 20 кА Easy9
Достоинства:

  • приемлемая стоимость;
  • компактность;
  • высокий эксплуатационный срок;
  • известный и проверенный временем производитель;
  • надежность.

Недостатки:

не выявлены.

ABB OVR T2 4L 80-440s P TS QS

Достаточно популярная модель на рынке. Помогает снизить негативное воздействие разряда тока. Особенностью является IT конфигурация системы. Для повышения показателя безопасности прибор оснастили дополнительными предохранителями, которые не позволят выйти системе из строя посредством перегрузок. Используется оптический сигнал. Устанавливается на DIN рейку, что крайне удобно. Модулей в устройстве – четыре, что существенно облегчает монтаж и помогает сохранить свободное пространство в щитке. Номинальный показатель сброса – 20 кА.

Стоимость – 25000 руб.

ABB OVR T2 4L 80-440s P TS QS
Достоинства:

  • качественная сборка;
  • удобная конфигурация;
  • высокий уровень защиты;
  • наличие резервного предохранителя.

Недостатки:

стоимость.

РИФ-Э-I+II 275/12.5 c (3+1)

Конструкция комбинированного типа, которую предпочтительнее устанавливать на территории частного дома. В основе изделия лежит сменный варисторный модуль. Прибор может выдержать нагрузки, которые рассчитаны на конструкции II и I класса. Именно поэтому используемые электротехнические приборы будут находиться в полной безопасности на протяжении всего эксплуатационного срока изделия. Применяется в комплексе с системами TT и TN-S. Показатель номинального разрядного тока – 50 кА. Установленный класс защиты – ip20 (универсальный показатель для большинства систем). Монтируется непосредственно на рейку. Работает при температуре от -40°С до +80°С.

Приблизительная стоимость – 13000 руб.

РИФ-Э-I+II 275/12.5 c (3+1)
Достоинства:

  • высокий эксплуатационный срок;
  • простота монтажа;
  • понятная конструкция;
  • высокий класс защиты;
  • наличие светового индикатора;
  • наличие терморасцепителя.

Недостатки:

отсутствуют.

Технические характеристики

Вот базовые технические характеристики, на которые следует обращать внимание при выборе УЗИП. Они обычно прописаны на корпусе устройства

номинальное и максимальное напряжение сети


Это напряжение, при котором устройство будет нормально работать не срабатывая. При его превышении УЗИП становится активным.

номинальный и максимальный разрядный ток


Это ток, который УЗИП может пропустить через себя несколько раз без последствий и риска выхода их строя.

УЗИП — это не обязательно одноразовое устройство, как некоторые считают.

уровень защитного напряжения или классификационное напряжение


Максимальное U на клеммах устройства, когда варистор начинает открываться при протекании через него определенного тока.

класс устройства

Виды

В зависимости от устройства и принципа действия УЗИП делятся на несколько видов.

Коммутирующие защитные аппараты

Также называются искровыми разрядниками. Принцип работы разрядника основан применении явления искрового промежутка. Конструкция имеет воздушный зазор в перемычке, которая соединяет каждую из линий электропередачи с контуром заземления. Цепь в перемычке разомкнута при номинальном напряжении. Если происходит разряд молнии из-за перенапряжения в линии электропередачи, произойдет пробой воздушного зазора, цепь между фазой и землей будет замкнута, а импульс высокого напряжения будет напрямую заземлен. Конструкция разрядника клапана в цепи с искровым разрядником обеспечивает резистор, на котором подавляются импульсы высокого напряжения. В большинстве случаев разрядники используются в высоковольтных сетях.

УЗИП-разрядник

Ограничители сетевого перенапряжения (ОПН)

Эти устройства заменили устаревшие, громоздкие разрядники. Чтобы понять принцип работы ограничителя, необходимо рассмотреть характеристики нелинейного резистора, так как принцип работы разрядника основан на его вольтамперной функции. Варисторы используются в качестве нелинейных резисторов в данных устройствах. Основным материалом для изготовления варистора является оксид цинка. В смеси с другими оксидами металлов образуется компонент, образующий p-n-переход с вольтамперными характеристиками. Когда напряжение в сети соответствует номинальному параметру, ток в цепи варистора близок к нулю. Когда в p-n-переходе возникает перенапряжение, ток резко увеличивается, что приводит к падению напряжения до номинального значения. После стандартизации параметров сети варистор возвращается в непроводящий режим, не влияя на работу устройства.

Вам это будет интересно Регулятор мощности нагрузки

Ограничители

Комбинированные УЗИП

Комбинированные приборы работают по принципу разрядника, но также имеют в конструкции резистор. С помощью данной конструкции напряжение не только заземляется, но и параллельно стабилизируется в основной цепи.

Классы

Такие устройства которые можно разделить на несколько категорий:

  • Класс I. Предназначен для предотвращения прямого воздействия молнии. Эти устройства должны быть оснащены входным распределительным оборудованием (АСУ) для административных и промышленных зданий и жилых многоквартирных домов.
  • Класс II. Они обеспечивают защиту распределительной сети от перенапряжений, вызванных процессом переключения, и выполняют функцию вторичной защиты, чтобы предотвратить воздействие ударов молнии. Они установлены и подключены к сети в щитке.
  • Класс III. Они используются для защиты оборудования от импульсов напряжения, вызванных остаточными скачками и асимметричным распределением напряжения между фазовой и нейтральной линиями. Такие устройства также могут работать в режиме фильтра высокочастотных помех. Наиболее удобным для частных домов или квартир является то, что они подключены и установлены непосредственно потребителями. Особенно популярным является изготовление устройства в виде модуля, который можно быстро монтировать на DIN-рейку, или конфигурации с сетевой розеткой или штепсельной вилкой.

Внешняя защита от молний

В первую очередь это молниеотвод, который устанавливается на самой высокой точке дома, соединенный проводником с системой заземления. Еще до недавнего времени громоотвод соединялся к заземлителем, который одновременно служил и системой заземления в доме. Как выяснилось опытным путем, такой защиты недостаточно для того, чтобы спокойно чувствовать себя в грозу. Чтобы не пугать никого описанием, что бывает в случае, когда молния пробивает заземление (200 тыс. А!), необходимо показать устройство и схему нормально функционирующего молниеотвода.

Молниеприемник, который устанавливается на крыше, бывает 2 видов. Это либо высокий металлический штырь, который вертикально выставляется при помощи деревянных стоек, либо трос, протянутый вдоль всего конька крыши и уложенный на деревянные подпорки.

Есть еще вариант, когда на крышу укладывают металлическую сетку, сваренную из арматур сечением 8–10 мм², с шагом ячеек 2–5 м. В принципе, особенной разницы между ними нет.

Молниеприемник в виде троса, протянутого по коньку крыши

Тросовые молниеприемники охватывают большую площадь крыши и считаются более безопасными, а сеточные не портят внешнего вида дома. Сечение молниеприемника должно быть не меньше 12 мм², хотя лучше всего арматура с запасом — 16 мм². При установке штыря необходимо помнить, что он должен возвышаться над самой высокой точкой кровли не меньше чем на 20–30 см, то же самое относится и к тросовому приемнику.

Молниеотвод в виде штыря

Примечание. Зона, которую защищает громоотвод, примерно равна его высоте. Например, при высоте над землей 6 м он защитит от попадания молнии территорию круга с радиусом 6 м.

Провод, по которому энергия молнии пойдет к заземлителю, лучше брать стальной сечением не меньше 10 мм² или медный провод сечением не меньше 6 мм². Это как раз тот случай, когда кашу маслом не испортить: чем толще будет провод, тем безопаснее. Проводник соединяется с приемником сваркой или при помощи болтового соединения, конец провода обжимается наконечником. Кабель опускается по наружной стене дома, к которой он крепится при помощи пластиковых хомутов. Они, в свою очередь, приделываются к стене при помощи дюбельей. Желательно, чтобы это была глухая стена, противоположная входной двери, без окон. Проводник не должен проходить мимо металлических элементов (лестниц, водопроводных и водосточных труб) ближе чем на 30 см.

Сетка из арматуры равномерно защищает всю крышу

Теперь отдельно о системе заземлителя. Он не должен быть совместным с заземлителем контура заземления дома. Это отдельное устройство, и характеристики его должны быть такими же, как у заземлителя дома. Его также надо углублять в землю на 3 м и приваривать к токоотводу.

Примечание. При современном строительстве для оштукатуривания дома используют металлическую сетку, которая поддерживает раствор на стене, армируя его. Эта сетка — неплохая защита от наведенных токов, которые часто случаются во время грозы, даже когда молния не ударяет поблизости.

Нормативная база применения УЗИП

Что такое УЗИП? Основной российский документ, определяющий, что такое УЗИП, это ГОСТ Р 51992-2002 «Устройства для защиты от импульсных перенапряжений в низковольтных силовых распределительных системах».

Согласно этому ГОСТу «Устройство для защиты от импульсных перенапряжений (УЗИП): устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсов тока. Это устройство содержит, по крайней мере, один нелинейный элемент». Стандарт распространяется на устройства для защиты электрических сетей и электрооборудования при прямом или косвенном воздействии грозовых или иных переходных перенапряжений. Данные устройства предназначены для подсоединения к силовым цепям переменного тока частотой 50-60 Гц на номинальное напряжение до 1000В (действующее значение) или 1500В постоянного тока.

В зависимости от класса испытаний УЗИП делятся на 3 типа.

Испытания класса I предназначены для имитации частично направленных грозовых импульсов тока. УЗИП, подвергаемые таким испытаниям, рекомендуются для установки на линейных вводах в здания, защищённые молниезащитными системами, а также при воздушном вводе питания. Характерной особенностью данного класса является испытание импульсным током Iimp c формой волны 10/350 мкс (1). Важнейшим параметром, характеризующим УЗИП, является уровень напряжения защиты Up, который измеряется при In. Это «параметр, характеризующий УЗИП в части ограничения напряжения на его выводах, который выбран из числа предпочтительных значений». Его значение всегда выше остаточного напряжения Ures , т.е. пикового значения, появляющегося на выводах УЗИП вследствие прохождения разрядного тока заданной амплитуды. Up не должен превышать стойкость электрооборудования к импульсному напряжению, определённому в ГОСТ Р 50571.19-2000. Поэтому принято, что для УЗИП 1-го класса Up не превышает 4 кВ.

Стандартный испытательный импульс

Испытания класса II предназначены для имитации наведённого в проводниках под действием электромагнитного поля импульса. УЗИП, подвергаемые таким испытаниям (УЗИП 2-го класса), предназначены для установки после УЗИП 1-го класса в промежуточные шкафы, либо во вводной шкаф, если отсутствует вероятность попадания части прямого тока молнии в систему электроснабжения. Испытания проводятся номинальным разрядным током In и максимальным разрядным током Imax . Оба импульса имеют форму волны 8/20 мкс, но разную амплитуду. При этом Imax > In. Импульс In УЗИП должен выдержать многократно при условии его остывания до комнатной температуры в промежутке между импульсами. Обычно количество выдерживаемых импульсов от 5 до 15 (по ГОСТу количество не установлено и определяется производителем, по МЭКу – 15 импульсов). Импульс Imax УЗИП должен выдержать однократно, при этом его дальнейшая работа в соответствии с заявленными параметрами не гарантируется (но возможна). Уровень напряжения защиты Up для устройств 2-го класса не должен превышать 2,5 кВ.

Испытания класса III также имитируют наведённый импульс, но испытываются комбинированной волной напряжения 1,2/50 мкс и тока 8/20 мкс. При этом в параметрах указывается напряжение разомкнутой цепи Uoc и номинальный In и максимальный Imax токи. Уровень напряжения защиты Up для 3-го класса не должен превышать 1,5 кВ. Это тот уровень, который должна выдерживать техника, даже не проходившая испытаний на устойчивость к микросекундным импульсным перенапряжениям. Поэтому данные устройства рекомендуется использовать в непосредственной близости от защищаемого оборудования (желательно не далее 5-7 метров, а в общем, чем ближе, тем лучше).

Ещё несколько важных параметров, которые необходимо знать для подбора УЗИП.

Максимальное длительное рабочее напряжение Uc — действующее значение переменного или постоянного тока, которое длительно подаётся на выводы УЗИП. Оно равно номинальному напряжению с учетом возможного завышения напряжения при различных нештатных режимах работы сети.

Номинальный ток нагрузки IL — максимальный длительный переменный (действующее значение) или постоянный ток, который может подаваться к нагрузке, защищаемой УЗИП. Данный параметр важен для УЗИП, подключаемых в сеть последовательно с защищаемым оборудованием. Так как большинство УЗИП подключаются параллельно цепи, то данный параметр у них не указывается.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: