Маленький кристалл с большими возможностями: характеристики светодиодов

Преимущества

Особенности того, как работает светодиод, дали ему несколько важных эксплуатационных и функциональных достоинств перед другими видами преобразователей электрической энергии в световую:

  • современные светодиоды не уступают по параметрам светоотдачи металлогалогенным и натриевым газоразрядным лампам;
  • конструкция практически полностью исключает выход из строя каких-либо компонентов из-за вибрации и механических повреждений;
  • LED-светильники малоинерционные, то есть моментально достигают полной яркости после включения;
  • современный ассортимент позволяет выбирать модели со спектром от 2700 до 6500 K;
  • внушительный рабочий ресурс – до 100 000 часов;
  • ценовая доступность индикаторных светодиодов;
  • светодиодное освещение, как правило, не требует большого напряжения и сохраняет пожарную безопасность,;
  • температуры ниже 0˚С почти не сказываются на работоспособности устройств;
  • строение светодиода не предусматривает использование фосфора, ртути, других опасных веществ или ультрафиолетового излучения.

Маркировка размерной линейки

Размеры корпусов SMD светодиодов можно
определить по маркировке. Например, длина и ширина SMD 5050 равны 5
см, габариты SMD 3528 – 3,5х2,8 см.

По маркировке DIP-диодов можно определить не только размеры. Например, для круглого изделия маркировка 5RHWWC3000mcd6500K34V70 означает, что оно круглое (RH) с диаметром 5 мм, цвет белый холодный (W), корпус прозрачный (WC), напряжение 3,4 В, угол рассеивания 70 градусов. Маркировка квадратного DIP 8x8red50mcd2,1V говорит о том, что длина и ширина 8 мм, цвет красный, сила света 50 мкд, напряжение 2,1 В.

На светодиодных лампах с винтовыми
цоколями Е 14 Е 27 цифры указывают на диаметр цоколей. GU 5.3, GU 10 и G 13 –
поворотные цоколи с разъемом, оснащенным двумя штырями. Цифры обозначают
расстояние между ними.

Существуют филаментные светодиодные
лампы с цоколями E 27 или E 14, в которые установлен драйвер. Их размеры и
формы разные, большинство похожи на обычные лампы накаливания, цифры – диаметр
цоколя.

Время
деградации свечения

Производители светодиодных модулей и
ламп указывают длительный срок службы – от 20-и тыс. часов (для старых моделей),
до 30-50 тыс. часов для новых SMD, до 100 тыс. часов – для самых современных
изделий

Для рядового потребителя важно знать, можно ли верить этим цифрам

Обычно срок службы – это период времени,
в течение которого изделия перестают работать, причем не полностью, а до
момента падения параметров светового потока до определенного уровня. Одни
производители в качестве
порога принимают 30%, другие – 50%, но ни в
технической документации, ни рекламных материалах это не указывают, что мешает выбрать
модель.

Чаще всего указывается срок службы 50
тыс. часов (5 лет и 8 месяцев). Проверить это при помощи испытаний невозможно.
Модели меняются очень быстро, за 5 лет появляются другие, старые перестают
изготавливать. Испытания проводятся быстро в экстремальных условиях.

Время деградации зависит от:

  • снижения
    работоспособности диода;
  • периода
    старения люминофора;
  • механических
    деформаций;
  • снижения
    хаpaктеристик первичной оптики.

Световой поток снижается в основном из-за деградации кристалла в результате утечки тока из участков, излучающих свет. Проявляется деградация как снижение напряжения. Чтобы срок службы соответствовал заявленному, осветительный прибор должен работать в условиях, при которых не повышается температура. Ток должен соответствовать значению, указанному производителем, желательно установка в схему устройство, защищающее от статического электричества. Кристалл деградирует очень быстро, если разрушаются паяные соединения (на производстве допущен бpaк).

При старении люминофора меняется не яркость, а оттенок свечения (появляется синий цвет). Первичная оптика производится из силикона и пластика. При воздействии ультрафиолета, который излучает светодиод, эти материалы мутнеют. То же самое происходит при слишком высокой температуре. Снижает срок службы так же некачественный драйвер (если его мощность не соответствует мощности диодов) и снижение хаpaктеристик вторичной оптики (если она имеется).

Виды светодиодов:

– индикаторные;

– осветительные.

Индикаторные представляют собой слабые по яркости и мощности элементы, применяемые чаще всего в различных электронных приборах в качестве индикаторов включения/выключения той или иной функции: подсветка панели приборов в транспортном средстве, жидкокристаллическом телевизоре, компьютерном блоке питания и прочее. Их распространение весьма широко, т.к. эти маломощные LED-приборы не требуют дорогостоящего оборудования для изготовления, а потому их себестоимость мала.

Осветительные диоды – это элементы с высокой мощностью и яркостью, основная область применения которых – осветительные электрические приборы.

Область применения

Использование мощных светодиодов особенно актуально в тех областях, где нужно создать яркое освещение или подсветку, не повышая при этом энергопотребление и не снижая рабочий ресурс самого светильника. Это прежде всего такие сферы, как:

  1. Подсветка улиц, дорог, магистралей.
  2. Освещение больших площадей различного назначения – культурно-массовых объектов, аэропортов, вокзалов, стадионов.
  3. Создание достаточной видимости в цехах в соответствии с нормативами на производстве.
  4. Декоративная иллюминация зданий, мостов, строений, садов.
  5. Обеспечение системы сигнальных фонарей, светофоров на транспорте, взлетно-посадочных полосах, морских портах.
  6. Проведение охранных, поисковых мероприятий с созданием максимально возможной засветки местности в темное время суток.
  7. Освещение частных территорий.
  8. Оптические системы транспортных средств передвижения.

Разновидности светодиодов

Последовательное совершенствование открытой в 1962 году технологии привело к созданию разнообразных базовых элементов и моделей светодиодов на их основе. На сегодняшний день классификация проводится по расчётной мощности, типу соединения и типу корпуса.

В первом случае различаются осветительные и индикаторные варианты. Первые предназначены для использования в осветительных целях. Их уровень мощности приблизительно соответствует аналогичным вольфрамовым и люминесцентным лампам. Индикаторные светодиоды не излучают сильный поток света и используются в электронном оборудовании, приборных и навигационных панелях и т.д.

Индикаторные светодиоды между собой различают по типу соединения на тройные AlGaAs, тройные GaAsP и двойные GaP. Аббревиатуры, соответственно, означают алюминий-галлий-мышьяк, галлий-мышьяк-фосфор и галлий-фосфор. AlGaAs светят жёлтым и оранжевым в пределах видимого спектра, GaAsP- красным и жёло-зелёным, а GaP – зелёным и оранжевым.

По типу корпуса представленные в широком применении светодиодные светильники сейчас делятся на:

  • DIP. Это старый форм-фактор из линзы, пары контактов и кристалла. Такие светодиоды применяются в световых табло и игрушках для подсветки;
  • «Пиранья» или Superflux. Это доработанная модель DIP, которая имеет не два, а четыре контакта. Выделяет меньше тепловой энергии и, соответственно, меньше греется. Сейчас применяется в автомобильной подсветке;
  • SMD. Самая популярная технология на современном рынке LED-светильников. Это универсальный чип, монтаж которого был произведён непосредственно на плате. Используется в большинстве источников света, осветительных линий, лент и т.п;
  • COB. Это результат совершенствования технологии SMD. У таких светодиодов есть несколько чипов, монтированных на одной плате на алюминиевом или керамическом основании.

МАРКИРОВКА ДИОДОВ

Под диодом обычно понимают электровакуумные или полупроводниковые приборы, которые пропускают переменный электрический ток только в одном направлении и имеют два контакта для включения в электрическую цепь. Односторонняя проводимость диода является его основным свойством. Диоды бывают низкой, средней, высокой и сверхвысокой частоты. Кроме того, у них различная рассеиваемая мощность: малая, средняя и большая.

УСЛОВНОЕ ОБОЗНАЧЕНИЕ ДИОДА (НОВАЯ СИСТЕМА)

ПЕРВЫЙ элемент (цифра или буква) обозначает исходный полупроводниковый материал:

  • Г или 1 — германий или его соединения;
  • К или 2 — кремний или его соединения;
  • А или 3 — арсенид галлия;
  • И или 4 — соединения индия.

ВТОРОЙ элемент (буква) обозначает подкласс диодов:

  • Д — диоды выпрямительные и импульсные;
  • Ц — выпрямительные столбы и блоки;
  • В — варикапы;
  • Б — диоды Ганна;
  • И — туннельные диоды;
  • А — сверхвысокочастотные диоды;
  • С — стабилитроны;
  • Г — генераторы шума;
  • Л — излучающие оптоэлектронные приборы;
  • О — оптопары.

ТРЕТИЙ элемент (цифра) обозначает основные функциональные возможности прибора. Для подкласса Д (диоды):

  • 1 — выпрямительные диоды с постоянным или средним значением прямого тока не более 0,3 А;
  • 2 — выпрямительные диоды с постоянным или средним значением прямого тока более 0,3 А, но не свыше 10 А;
  • 4 — импульсные диоды c временем восстановления обратного сопротивления более 500 нс;
  • 5 — импульсные диоды c временем восстановления более 150 нс, но не свыше 500 нс;
  • 6 — импульсные диоды c временем восстановления 30…150 нс;
  • 7 — импульсные диоды c временем восстановления 5…30 нс;
  • 8 — импульсные диоды c временем восстановления 1…5 нс;
  • 9 — импульсные диоды c эффективным временем жизни неосновных носителей заряда менее 1 нс.

ЧЕТВЕРТЫЙ элемент (число) обозначает порядковый номер разработки. ПЯТЫЙ элемент (буква) условно определяет классификацию приборов.

УСЛОВНОЕ ОБОЗНАЧЕНИЕ ДИОДА (СТАРАЯ СИСТЕМА)

ПЕРВЫЙ элемент (буква) — название, Д — диод. ВТОРОЙ элемент (номер) обозначает тип диода:

  • 1…100 — точечные германиевые;
  • 101…200 — точечные кремниевые;
  • 201…300 — плоскостные кремниевые;
  • 801…900 — стабилитроны;
  • 901…950 — варикапы;
  • 1001…1100 — выпрямительные столбы.

ТРЕТИЙ элемент (буква) обозначает разновидность прибора. Этот элемент может отсутствовать, если разновидностей диода нет.

Например, диод КД202А расшифровывается так: К — кремниевый диод, Д — выпрямительный диод, 202 — назначение и номер разработки, А — разновидность.

ЦВЕТОВАЯ МАРКИРОВКА ДИОДОВ

Для некоторых типов диодов используется цветная маркировка в виде точек и полосок. Маркировочные полосы (кольца, метки) могут располагаться как со стороны анода, так и со стороны катода

Если маркировочных полос несколько, то следует обратить внимание на их толщину и на метки, определяющие полярность выводов. При совпадении цвета и типа маркировочных меток у различных типономиналов следует обратить внимание на цвет корпуса

Отличают такие типы диодов:

  1. Семейство Д9 маркируется одним-двумя цветными кольцами района анода.
  2. Диоды КД102 в районе анода обозначаются цветной точкой. Корпус прозрачный.
  3. КД103 имеют дополняющий точку цветной корпус, исключая 2Д103А, обозначаемый белой точкой области анода.
  4. Семейства КД226, 243 маркируются кольцом области катода. Прочих меток не предусмотрено.
  5. Семейство КД247 — два цветных кольца в районе катода.
  6. Диоды КД410 обозначаются точкой в районе анода.

Таблица для определения типономинала отечественных диодов по нанесенной цветовой маркировке:

У импортных диодов система обозначений отличается, при выборе аналога, используйте специальные таблицы соответствия. Маркировка проводится согласно стандартам JEDEC (США) и PRO ELECTRON (Европа).

ОБОЗНАЧЕНИЕ ДИОДОВ НА СХЕМЕ

Условное обозначение диода — треугольник (символ анода) вместе с пересекающей его линией электрической связи образуют подобие стрелки, указывающей направление проводимости. Перпендикулярная этой стрелке черточка символизирует катод.

Буквенный код диодов — VD. Этим кодом обозначают не только отдельные диоды, но и целые группы, например, выпрямительные столбы. На основе базового символа построены и условные графические обозначения полупроводниковых диодов с особыми свойствами.

Что такое светодиод – принцип действия

Принцип действия полупроводникового светодиода

На этом рисунке схематично изображено излучение (hv) c длиной волны (Lp) примерно 250 мкм. Оно создано в p-n переходе (полупроводник прямосмещенного типа) при рекомбинационном переходе инжектированных носителей на другой энергетический уровень.

В этой фразе есть несколько общеизвестных слов. Для расшифровки специфических терминов и понятий нужно изучить соответствующий раздел науки. Но на самом деле углубление в физику процесса не имеет практического значения. Вполне достаточно знать, что светодиод – полупроводниковый прибор. Он излучает в видимом диапазоне спектра при пропускании тока ограниченной величины в прямом направлении.

Конструкция и типовые части светодиодаЭлектрическая схема подключения

Параметры качественного светодиодного фонаря

На сегодняшний день на рынке можно приобрести большое количество и обычных фонарей, но их активно вытесняют светодиодные. Произошло это в первую очередь из-за того, что последние дают намного более яркий свет.

Для того чтобы правильно подобрать светодиоды для фонариков, характеристики которых весьма разнообразны, необходимо при выборе учесть все основные требования покупателя

То, на что нужно обратить внимание – это тип луча, он может быть широким или узким. Какому виду отдать предпочтение, зависит от будущего применения

К примеру, чтобы можно было видеть предметы на расстоянии 30 метров, лучше подобрать фонарик с широким лучом, а модели с узким могут хорошо подсветить удаленные объекты. Чаще всего такое освещение имеют тактические приборы, которыми пользуются туристы, охотники и велосипедисты.

Еще одним важным фактором, влияющим на работу фонаря, является тип его питания. Для самых простых бытовых приборов используются обыкновенные батарейки типа АА или ААА, но для сильных и мощных устройств такого объема будет недостаточно. В этом случае необходимо воспользоваться литий-ионными аккумуляторами, которые могут работать беспрерывно в течение 5 часов.

Стоит обратить свое внимание и на светодиоды для фонариков, характеристики яркости которых отличаются между собой не более чем на 40%. Гарантией качества выбранных устройств служит наличие маркировки

В случаи ее отсутствия можно говорить о несертифицированном изделии, чаще всего китайского производства.

Светодиоды фирмы CREE

Эта фирма специализируется на изготовлении сверхкачественных и ярких диодов. Она одна из первых начала разрабатывать новые белые лампочки, тем самым установив новую веху в индустрии.

Светодиоды CREE, характеристики которых представлены, остаются конкурентоспособными в своей отрасли:

— имеют рекордные значения светового потока, достигающие 345 люменов при токе 1000 мА;- тепловое сопротивление на низком уровне;- относительно расширенный угол изучения;- миниатюрный, равномерно распределенный кристалл;- максимальный прием тока до 1500 мА;- улучшенную линзу из силикона вместо используемого стекла;- максимальную температуру работы кристалла 150 °С.

Как видно, такие технологии только вступают в силу и приносят исключительные выгоды от их использования. Каждый день делаются новые открытия, светодиодные лампы становится более экономичными и яркими, благодаря чему начинают по праву занимать лидирующее место на световой арене.

Технические характеристики

Часто в руки попадает светодиод, параметры которого нам не известны. Подключение светодиода напрямую к источнику питания, при малейшем превышении номинального рабочего напряжения резко увеличит протекающий через него ток и выведет из строя. Обычно в таких случаях я “на глазок” включал последовательно с ним резистор 1- 1.5КОм (при низковольтном питании) и светодиод работал уже в довольно широких приделах напряжения. Но бывают случаи, когда необходимо более точно определить параметры неизвестного светодиода, а идентифицировать его марку нет возможности.

Светодиод это устройство с односторонней проводимостью на базе полупроводниковых кристаллов, преобразующее электрический ток в световое излучение в узком диапазоне спектра посредством диффузии электронно-дырочного перехода.

Более-менее точно определить параметры можно экспериментально, используя его стабилизирующие свойства по следующей методике, для ее реализации нам потребуется блок питания с плавной регулировкой выходного напряжения от нуля до 10-12в, тестер (мультиметр) и конечно же ваши очумелые ручки. Сразу оговорюсь что к лазерным светодиодам такая методика не подходит. Исследуемый светодиод в соответствии с полярностью (полярность можно прозвонить при помощи того-же мультиметра, но если ошибитесь – ничего страшного, светодиод просто не будет светится) подключают к регулируемому блоку питания включив последовательно в цепь резистор сопротивлением около 500 Ом.

Постепенно увеличивают напряжение выдаваемое блоком питания, постоянно измеряя и сравнивая значения напряжения на выводах блока питания и ножках светодиода т.е. до токоограничивающего резистора и после него. Удобнее когда блок питания имеет собственную индикацию выдаваемого напряжения или проводить измерения двумя вольтметрами.

Таблица использования светодиодных источников с разной температурой свечения.

Если светодиод не светится возможно он инфракрасный (посмотрите на него через объектив цифрового фотоаппарата). Запоминаем это напряжение, добавляем процентов 15-20 (в зависимости от яркости свечения), это будет приближенное номинальное напряжение исследуемого светодиода. Если напряжение на ножках светодиода и выходе блока питания изменяется пропорционально от нуля до максимального значения выдаваемого вашим блоком питания (но не более 20 вольт), при этом свечения светодиода не наблюдается, значит вероятнее всего светодиод неисправный или неправильно соблюдена полярность при подключении.

Светодиодные лампы.

Если напряжение на ножках светодиода и выходе блока питания изменяется пропорционально от нуля до почти максимального значения, но светодиод нормально светится начиная с 3-5 вольт, то скорее всего токоограничивающий резистор находится внутри светодиода. В этом случае лучше просто ограничить значение тока протекающего через светодиод не более 17-20 мА ориентируясь по яркости свечения светодиода. Затем выставив на регулируемом блоке питания ноль вольт, подключаем к нему светодиод напрямую или для гарантии через резистор сопротивлением 10 ОМ, включив в цепь миллиамперметр (А) и плавно поднимаем напряжение до расcчитанного (измеренное плюс 10-15 %).

Таблица зависимости рабочего напряжения светодиода от его цвета.

Ток протекающий через светодиод в этом состоянии будет в пределах его номинального значения. Определенные таким образом значения параметры светодиода будут довольно “грубыми” но ими уже можно руководствоваться при расчете или попытке подобрать по ним светодиод из справочника. Чтобы “набить руку и глаз :-))” можно сначала поэкспериментировать со светодиодами с известным характеристиками.

Как правильно расшифровать маркировку?

Маркировка смд светодиодов предоставляет пользователю краткую информацию об изделиях. Например, перед нами светоизлучающий диод, маркированный SMD 2835 UWC 5. Расшифровываем: типоразмер 2835 с габаритами 2,8×3,5 мм, мощностью 0,5 Вт, белый оттенок свечения.

Тип SMD Кол-во кристаллов Габариты, мм
3528 1 3,5х2,8х1,4
5050 3 / 4 5х5х1,6
5630 1 5,6х3х0,75
5730 1 / 2 5,7х3х0,75
3014 1 3х1,4х0,75
2835 1 2,8х3,5х0,8

Как определить светодиод по внешнему виду?

Измеряете габариты диода с помощью любой линейки. Ищете размеры в таблице, определяете тип изделия и смотрите его характеристики.

Тип SMD Кол-во кристаллов Габариты, мм Мощность, Вт Ток, мА Светопоток, Лм
3528 1 3,5х2,8х1,4 0,02 / 0,06 20 5-7
5050 3 / 4 5х5х1,6 0,02 60 / 80 18-20
5630 1 5,6х3х0,75 0,2-0,4 150 58
5730 1 / 2 5,7х3х0,75 0,5 / 1 150 / 300 50 / 158
3014 1 3х1,4х0,75 0,1-0,12 30 9-13
2835 1 2,8х3,5х0,8 0,2 / 0,5 / 1 60 / 150 / 300 20 / 50 / 100

Как определить полярность светодиода?

В прозрачном корпусе выводного светодиода можно увидеть анод и катод характерной формы.

На SMD-корпусах виден угловой срез, указывающий на катодный вывод. На тыльной стороне размещена площадка теплоотвода, смещенная в сторону анода.

Еще одним указателем полярности являются пиктограммы: треугольник, буквы П и Т. Направление буквенных выступов и вершины треугольника указывает на катод.

Самые популярные аноды

В металлургии используется анод для гальваники для того, чтобы наносить на поверхность изделий слой металла электрохимическим способом или для электрорафинирования. При этом процессе металл с примесями полностью растворяется на аноде, а потом осаждается в чистом виде на катоде.

В основном распространены аноды из цинка, которые могут быть литыми, сферическими, катаными. Причем последние используются чаще всего. Кроме того, берут аноды из никеля, меди, олова, бронзы, кадмия, сплава сурьмы и свинца, серебра, платины и золота. А вот из кадмия аноды почти не используют, что обуславливается их экологической вредностью. Анод из драгоценных металлов используют для того, чтобы повысить коррозионную стойкость, улучшить эстетические свойства предметов, а также для других целей. Кроме того, они пригодятся и для того, чтобы повысить электропроводность изделий.

В вакуумных электронных приборах анод – это специальный электрод, который способен притягивать к себе любые летящие электроны, которые испущены катодом. В рентгеновских трубках и электронных лампах он имеет такую конструкцию, когда полностью поглощает все электроны. В электронно-лучевых трубках аноды являются элементами электронной пушки, которые поглощают только часть летящих электронов, формируя при этом электронный луч после себя. В полупроводниковых приборах электроды, которые подключаются к положительному источнику тока, когда прибор открыт, то есть он имеет небольшое сопротивление, называют анодом, а тот, что подключен к отрицательному полюсу, соответственно, – катодом.

Знак анода и катода

В специальной литературе часто можно встретить самое разное обозначение знака анода: «+» или «-». Это определяется особенностями рассматриваемых процессов. К примеру, в электрохимии считают, что катод – это электрод, на котором протекает процесс восстановления, а анод – это электрод, на котором протекает процесс окисления. При активной работе электролизера внешний источник тока обеспечивает на одном электроде избыток электронов и здесь происходит восстановление металла. Этот электрод является катодом. А на другом электроде, в свою очередь, обеспечивается недостаток электронов и происходит окисление металла, и его называют анодом.

При работе гальванического элемента, на одном из электродов избыток электронов обеспечивается уже не внешним источником тока, а именно реакцией окисления металла, то есть здесь отрицательным будет уже анод. Электроны, которые проходят через внешнюю цепь, будут расходоваться на протекание реакции восстановления, то есть катодом можно назвать положительный электрод.

Исходя из такого толкования, для аккумулятора аноды и катоды меняются местами в зависимости от того, как направлен ток внутри аккумулятора. В электротехнике анодом называют положительный электрод. Так электрический ток течет от анода к катоду, а электроны – наоборот.

Только в одном направлении. Когда-то давно применялись ламповые диоды . Но сейчас используются в основном полупроводниковые диоды. В отличие от ламповых они значительно меньше по размеру, не требуют цепей накала и их очень просто соединять различным образом.

Условное обозначение
диода на схеме

На рисунке показано условное обозначение диода на схеме. Буквами А и К соответственно обозначены анод диода и катод диода. Анод диода – это вывод, который подключается к положительному выводу , непосредственно или через элементы схемы. Катод диода – это вывод из которого выходит ток положительного потенциала и далее через элементы схемы попадает на отрицательный электрод источника тока. Т.е. ток через диод идёт от анода к катоду. А в обратном направлении диод ток не пропускает. Если каким-то из своих выводов диод подключается к , то на другом его выводе получается постоянное напряжение с полярностью, зависящей от того, как диод подключен. Если он подключен анодом к переменному напряжению, то с катода мы получим положительное напряжение. Если он подключен катодом, то с анода будет получено соответственно отрицательное напряжение.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: