Что такое коэффициент трансформации
Трансформатор не меняет один параметр в другой, а работает с их величинами. Тем не менее его называют преобразователем. В зависимости от подключения первичной обмотки к источнику питания, меняется назначение прибора.
В быту широко распространены эти устройства. Их цель — подать на домашнее устройство такое питание, которое бы соответствовало номинальному значению, указанному в паспорте этого прибора. Например, в сети напряжение равно 220 вольт, аккумулятор телефона заряжается от источника питания в 6 вольт. Поэтому необходимо понизить сетевое напряжение в 220:6 = 36,7 раз, этот показатель называется коэффициент трансформации.
Чтобы точно рассчитать этот показатель, необходимо вспомнить устройство самого трансформатора. В любом таком устройстве имеется сердечник, выполненный из специального сплава, и не менее 2 катушек:
- первичной;
- вторичной.
Первичная катушка подключается к источнику питания, вторичная — к нагрузке, их может быть 1 и более. Обмотка — это катушка, состоящая из намотанного на каркас, или без него, электроизоляционного провода. Полный оборот провода называется витком. Первая и вторая катушки устанавливаются на сердечник, с его помощью энергия передается между обмотками.
Виды магнитопроводов
По конструкции магнитопровода трансформаторы подразделяются на стержневые и броневые.
Рисунок 1. Устройство однофазного стержневого (а) и броневого (б) трансформаторов |
Однофазный трансформатор броневой конструкции (рисунок 1, б) имеет один стержень с обмотками и развитое ярмо, которое частично закрывает обмотки подобно «броне».
Для преобразования, или трансформации, трехфазного тока можно использовать три однофазных трансформатора (рисунок 2), обмотки которых соединяются по схеме звезды или треугольника и присоединяются к трехфазной сети. Такое устройство называется трехфазной трансформаторной группой или групповым трансформатором. Чаще, однако, применяются трехфазные трансформаторы с общим для всех фаз магнитопроводом, так как такие трансформаторы компактнее и дешевле.
Рисунок 2. Трехфазная трансформаторная группа | Рисунок 3. Идея образования трехфазного трехстержневого трансформатора |
Идея образования трехфазного трансформатора стержневого типа показана на рисунке 3. Если для трехфазных синусоидальных токов соблюдается условие
ia + ib + ic = 0 ,
то для синусоидальных потоков трех трансформаторов (рисунок 3, а) также соблюдается условие
Фa + Фb + Фc = 0
Поэтому, если объединить три стержня 1, 2 и 3 (рисунок 3, а) в общий стержень, то поток в этом стержне будет равен нулю и этот стержень можно удалить. Тогда получим трехфазный трехстержневой трансформатор, показанный на рисунке 3, б. Конструкцию этого трансформатора можно упростить, расположив все три стержня в одной плоскости (рисунок 3, в). Эта последняя конструкция была предложена М. О. Доливо-Добровольским в 1889 году и получила всеобщее распространение. Такой магнитопровод не вполне симметричен, так как длина магнитных линий средней фазы несколько короче, чем для крайних, однако влияние этой несимметрии весьма незначительно.
Трехфазный броневой трансформатор (рисунок 4) можно рассматривать как три однофазных броневых трансформатора, поставленные рядом или друг над другом. При этом средняя фаза имеет обратное включение относительно крайних, чтобы в соприкасающихся частях магнитной системы потоки фаз складывались, а не вычитались. Так как
Рисунок 4. Устройство трехфазного броневого трансформатора |
В броневых трансформаторах коэффициент электромагнитной связи между обмотками несколько больше, чем в стержневых, и поэтому броневые трансформаторы в электромагнитном отношении несколько совершеннее. Однако это преимущество не имеет большого значения. Поскольку броневые трансформаторы сложнее по конструкции, в России силовых трансформаторов броневой конструкции не строят.
С увеличением мощности трансформаторов возрастают их размеры и трудности транспортировки по железным дорогам. Поэтому в трансформаторах мощностью Sн > 80 – 100 МВ×А на фазу и напряжением 220 – 500 кВ применяют бронестержневую или многостержневую конструкцию. Такие конструкции получаются, если у трансформаторов вида показанных на рисунках 1, а и 3, в добавить слева и справа по одному боковому ярму (рисунок 5). При этом магнитный поток в верхнем и нижнем ярмах разветвляется и в случае, изображенном на рисунке 5, а, уменьшается в два раза, а в случае на рисунке 5, б – в раза по сравнению с рисунками 1, а и 3, в. Во столько же раз можно уменьшить сечение ярем, в результате чего высота магнитопроводов уменьшается.
Рисунок 5. Устройство бронестержневых трансформаторов
Преимущественно применяются трехфазные трансформаторы с общей магнитной системой. Трехфазные группы однофазных трансформаторов используются, во-первых, при весьма больших мощностях (Sн > 300 МВ×А), когда транспорт трехфазного трансформатора становится весьма затруднительным или невозможным, и, во-вторых, иногда при Sн > 30 МВ×А, когда применение однофазных трансформаторов позволяет уменьшить резервную мощность на случай аварии или ремонта.
Рисунок 6. Схемы стыковых магнитопроводов |
Рисунок 7. Укладка листов стали в слоях шихтованных магнитопроводов однофазных (а) и трехфазных (б) трансформаторов |
Достоинства и недостатки сердечников
- Наборные чаще применяются для устройства магнитопроводов с произвольным сечением, ограничивающимся только шириной пластин. Лучшие параметры имеют устройства трансформации напряжения с квадратным сечением. Недостатком такого типа сердечника считается необходимость плотного стягивания пластин, малый коэффициент заполнения пространства катушки, а также повышенное рассеивание магнитного поля устройства.
- Витые сердечники намного проще наборных в сборке. Весь сердечник Ш-образного типа состоит из четырёх частей, а П-образный тип имеет только две части в своей конструкции. Технические характеристики такого трансформатора гораздо лучше, нежели чем наборного. К недостаткам можно отнести необходимость минимального зазора между частями. При физическом воздействии пластины частей могут отслаиваться, и, в дальнейшем очень трудно добиться плотного их прилегания.
- Тороидальные сердечники имеют форму кольца, которое свито из трансформаторной железной ленты. Такие сердечники имеют самые лучшие технические характеристики и практически полное исключение рассеивания магнитного поля. Недостатком считается сложность намотки, особенно проводов с большим сечением.
В трансформаторах Ш-образного типа все обмотки обычно делаются на центральном стержне. В П-образном устройстве вторичная обмотка может наматываться на один стержень, а первичная — на другой. Особенно часто, встречаются конструктивные решения, когда разделённые пополам обмотки наматываются на оба стержня, а после соединяются между собой последовательно. При этом существенно сокращается расход провода для трансформатора, и улучшаются технические характеристики прибора.
Преимущества и недостатки
К описанным выше преимуществам можно добавить низкую стоимость изделий, за счёт снижения затрат на применяемые цветные металлы, расходов на трансформаторную сталь. Для автотрансформаторов характерны незначительные потери энергии токов, циркулирующих по обмоткам и сердечникам, что позволяет достигать уровня коэффициента полезного действия до 99%.
К недостаткам следует добавить необходимость оборудования глухого заземления нейтрали. В связи с существующей вероятностью по короткому замыканию и возможностью передачи высокого напряжения по сети, для автотрансформаторов существуют определённые ограничения к применению.
Из-за гальванической связи обмоток, возникает опасность перехода между ними атмосферных перенапряжений. Однако, несмотря на недостатки, автотрансформаторы по-прежнему находят широкое применение в самых различных областях.
Электронный автотрансформатор
Более современным способом регулировки является использование электронных устройств. Любое из них можно изготовить своими руками.
Тиристорный регулятор
Простейшая схема такого приспособления представляет собой переменный резистор, включенный между анодом и управляющим электродом тиристора. Это позволяет получать пульсирующее постоянное напряжение и управлять им в диапазоне 0-110В.
Для регулировки переменного напряжения 0-220В применяется встречно-параллельная схема соединения, а резистор включается между управляющими электродами.
Вместо двух тиристоров целесообразно применение симистора, а в качестве схемы управления использовать диммер для ламп накаливания.
Транзисторное управление
Самая качественная регулировка получается при использовании транзисторного регулятора. Он обеспечивает плавное изменение и правильную форму выходного напряжения.
Недостаток этой схемы в нагреве выходных транзисторов. Для его уменьшения и повышения КПД целесообразно подключить регулятор к выходным клеммам автотрансформатора – грубая регулировка осуществляется переключением обмоток, а плавная при помощи транзисторов.
ШИМ-регулятор
Самым современным способом является применение ШИМ-контроллера (широтно-импульсная модуляция). В качестве силовых элементов полевые или биполярные транзисторы с изолированным затвором (IGBT).
Принцип действия автотрансформатора
Несмотря на особенности строения обмоточной части агрегата, его принцип действия очень напоминает работу обычного трансформатора. По такому же принципу во время циркуляции переменного тока возникает магнитный поток в сердечнике. Его действие на обмотку характеризуется появлением на каждом отдельном витке равновеликой электродвижущей силы. Суммарная ЭДС на отрезке обмотки равна сумме величин токов всех отдельно взятых витков.
Особенностью является то, что по обмотке циркулирует ещё и первичный ток, который оказывается в противофазе к индукционному потоку. Результирующие значения этих токов на участке обмотки, предназначенной для потребителя, получаются меньшими (для понижающего тр.) чем параметры поступающего электричества.
Схема понижающего автотрансформатора
Соотношение величин ЭДС выражается формулой: E1/E2 = w1/w2 = k , где E – ЭДС, w – количество витков, k – коэффициент трансформации.
Чем отличается автотрансформатор от трансформатора, устройство, назначение, принцип действия.
Назначение автотрансформатора
Автотрансформаторы бывают повышающие и понижающие, однофазные и трехфазные. Применяются они для питания бытовых приборов, пуска асинхронных электрических двигателей, в промышленных электрических сетях. В быту автотрансформаторы используют для регулировки напряжения сети, если оно завышено или занижено. В промышленности с их помощью уменьшают пусковые токи электрических двигателей, повышают напряжение в линиях электропередач для уменьшения потерь.
Чем отличается автотрансформатор от трансформатора
У обычного трансформатора первичные и вторичные обмотки электрически не связаны, энергия между ними передается посредством магнитного поля. Автотрансформатор фактически имеет одну обмотку, от которой отходят выводы. Помимо электромагнитной связи, обмотки автотрансформатора связаны электрически.
Устройство автотрансформатора
В простейшем случае, на замкнутом магнитопроводе располагаются две обмотки соединенные последовательно. В зависимости от варианта подключения источника энергии и нагрузки, автотрансформатор может работать как повышающий или как понижающий.
Существует конструкция, в которой реализован механизм ручного регулирования выходного напряжения (Вариак, ЛАТР). Так же применяются блоки автоматической регулировки с обратной связью, по сути, автотрансформатор с таким устройством можно назвать стабилизатором напряжения.
Принцип действия автотрансформатора
В автотрансформаторе энергия передается не только магнитным потоком, но и электрически, так как обмотки имеют гальваническую связь. Чем ближе коэффициент трансформации к 1, тем меньше энергии передается электромагнитным способом.
Ниже вы видите схему понижающего автотрансформатора, к первичной обмотке которого подключен источник переменного напряжения, а к выводам вторичной обмотки подключена нагрузка, в виде лампы накаливания.
В режиме холостого хода автотрансформатор работает так, как и обычный трансформатор. Когда подключена нагрузка, переменный магнитный поток возникающий в сердечнике индуктирует в витках вторичной обмотки ЭДС, направленную навстречу ЭДС источника энергии. Поэтому ток протекающий по вторичной обмотке равен разнице между током нагрузки и током первичной цепи. Это позволяет вторичную обмотку изготавливать из провода малого диаметра. Экономия на меди, тем меньше, чем больше коэффициент трансформации отличается от единицы.
Автотрансформатор эффективнее трансформатора и дешевле в изготовлении, при условии, что коэффициент трансформации не сильно отличается от единицы. Существенным недостатком с точки зрения безопасности, является отсутствие гальванической развязки между обмотками.
Принцип действия автотрансформатора
Несмотря на особенности строения обмоточной части агрегата, его принцип действия очень напоминает работу обычного трансформатора. По такому же принципу во время циркуляции переменного тока возникает магнитный поток в сердечнике. Его действие на обмотку характеризуется появлением на каждом отдельном витке равновеликой электродвижущей силы. Суммарная ЭДС на отрезке обмотки равна сумме величин токов всех отдельно взятых витков.
Особенностью является то, что по обмотке циркулирует ещё и первичный ток, который оказывается в противофазе к индукционному потоку. Результирующие значения этих токов на участке обмотки, предназначенной для потребителя, получаются меньшими (для понижающего тр.) чем параметры поступающего электричества.
Схема понижающего автотрансформатора
Соотношение величин ЭДС выражается формулой: E1/E2 = w1/w2 = k , где E – ЭДС, w – количество витков, k – коэффициент трансформации.
Учитывая то, что падение напряжений в обмотках трансформатора невелико – его можно не учитывать. В таком случае равенства: U1 = E1; U2 = E2 можно считать справедливыми. Таким образом, приведённая выше формула приобретает вид: U1/U2 = w1/w2 = k, то есть, соотношение напряжений к числу витков такое же, как и для обычного трансформатора.
Примечательно, что мощность нагрузки образуют токи электромагнитной индукции и электрической составляющей. Электрическая мощность ( P = U2*I1 ) довольно ощутима, в сравнении с индукционной составляющей, поступающей во вторичную цепь. Поэтому, чтобы получить требуемую мощность, используются меньшие значения сечений для магнитопроводов.
Маркировка силовых трансформаторов
Пример и расшифровка маркировки силового трансформатора АТДЦТН-125000/220/110/10-У1
Пример маркировки трансформатора с обозначением позиций, параметров и климатического исполнения приводится на рисунке.
- Назначение трансформатора (в обозначении может отсутствовать)
- А — автотрансформатор
- Э — электропечной
- Количество фаз
- О — однофазный трансформатор
- Т — трехфазный трансформатор
- Расщепление обмоток (в обозначении может отсутствовать)
- Cистема охлаждения
- Сухие трансформаторы
- С — естественное воздушное при открытом исполнении
- СЗ — естественное воздушное при защищенном исполнении
- СГ — естественное воздушное при герметичном исполнении
- СД — воздушное с дутьем
- Масляные трансформаторы
- М — естественное масляное
- МЗ — с естественным масляным охлаждением с защитой при помощи азотной подушки без расширителя
- Д — масляное с дутьем и естественной циркуляцией масла
- ДЦ — масляное с дутьем и принудительной циркуляцией масла
- Ц — масляно-водяное с принудительной циркуляцией масла
- С негорючим жидким диэлектриком
- Н — естественное охлаждение негорючим жидким диэлектриком
- НД — охлаждение негорючим жидким диэлектриком с дутьем
- Сухие трансформаторы
- Конструктивная особенность трансформатора (в обозначении может отсутствовать)
- Л — исполнение трансформатора с литой изоляцией
- Т — трехобмоточный трансформатор
- Н — трансформатор с РПН
- З – трансформатор без расширителя и выводами, смонтированными во фланцах на стенках бака, и с азотной подушкой
- Ф – трансформатор с расширителем и выводами, смонтированными во фланцах на стенках бака
- Г – трансформатор в гофробаке без расширителя – “герметичное исполнение”
- У – трансформатор с симметрирующим устройством
- П – подвесного исполнения на опоре ВЛ
- э – трансформатор с пониженными потерями холостого хода (энергосберегающий)
- Назначение (в обозначении может отсутствовать)
- С — исполнение трансформатора для собственных нужд электростанций
- П — для линий передачи постоянного тока
- М — исполнение трансформатора для металлургического производства
- ПН – исполнение для питания погружных электронасосов
- Б – для прогрева бетона или грунта в холодное время года (бетоногрейный), такой же литерой может обозначаться трансформатор для буровых станков
- Э – для питания электрооборудования экскаваторов (экскаваторный)
- ТО – для термической обработки бетона и грунта, питания ручного инструмента, временного освещения
- Ш – шахтные трансформаторы (предназначены для электроснабжения угольных шахт стационарной установки)
- Г — трансформатор с грозозащитой
- К — трансформатор с кабельными вводами
См. также
- Схема замещения трансформатора
- Справочные данные параметров трансформаторов до 35 кВ
- Справочные данные параметров трансформаторов от 35 кВ
Разные виды трансформаторов и их коэффициенты
Хотя конструктивно преобразователи мало чем отличаются друг от друга, назначение их достаточно обширно. Существуют следующие виды трансформаторов, кроме рассмотренных:
- силовой;
- автотрансформатор;
- импульсный;
- сварочный;
- разделительный;
- согласующий;
- пик-трансформатор;
- сдвоенный дроссель;
- трансфлюксор;
- вращающийся;
- воздушный и масляный;
- трехфазный.
Особенностью автотрансформатора является отсутствие гальванической развязки, первичная и вторичная обмотка выполнены одним проводом, причем вторичная является частью первичной. Импульсный масштабирует короткие импульсные сигналы прямоугольной формы. Сварочный работает в режиме короткого замыкания. Разделительные используются там, где нужна особая безопасность по электротехнике: влажные помещения, помещения с большим количеством изделий из металла и подобное. Их k в основном равен 1.
Пик-трансформатор преобразует синусоидальное напряжение в импульсное. Сдвоенный дроссель — это две сдвоенные катушки, но по своим конструктивным особенностям относится к трансформаторам. Трансфлюксор содержит сердечник из магнитопровода, обладающего большой величиной остаточной намагниченности, что позволяет использовать его в качестве памяти. Вращающийся передает сигналы на вращающиеся объекты.
Воздушные и масляные трансформаторы отличаются способом охлаждения. Масляные применяются для масштабирования большой мощности. Трехфазные используются в трехфазной цепи.
Более подробную информацию можно узнать о коэффициенте трансформации трансформатора тока в таблице.
Номинальная вторичная нагрузка, В351015203040506075100
Коэффициент, n | Номинальная предельная кратность | ||||||||||
3000/5 | 37 | 31 | 25 | 20 | 17 | 13 | 11 | 9 | 8 | 6 | 5 |
4000/5 | 38 | 32 | 26 | 22 | 20 | 15 | 13 | 11 | 10 | 8 | 6 |
5000/5 | 38 | 29 | 25 | 22 | 20 | 16 | 14 | 12 | 11 | 10 | 8 |
6000/5 | 39 | 28 | 25 | 22 | 20 | 16 | 15 | 13 | 12 | 10 | 8 |
8000/5 | 38 | 21 | 20 | 19 | 18 | 14 | 14 | 13 | 12 | 11 | 9 |
10000/5 | 37 | 16 | 15 | 15 | 14 | 12 | 12 | 12 | 11 | 10 | 9 |
12000/5 | 39 | 20 | 19 | 18 | 18 | 12 | 15 | 14 | 13 | 12 | 11 |
14000/5 | 38 | 15 | 15 | 14 | 14 | 12 | 13 | 12 | 12 | 11 | 10 |
16000/5 | 36 | 15 | 14 | 13 | 13 | 12 | 10 | 10 | 10 | 9 | 9 |
18000/5 | 41 | 16 | 16 | 15 | 15 | 12 | 14 | 14 | 13 | 12 | 12 |
Почти у всех перечисленных приборов есть сердечник для передачи магнитного потока. Поток появляется благодаря движению электронов в каждом из витков обмотки, и силы токов не должны быть равны нулю. Коэффициент трансформации тока зависит и от вида сердечника:
- стержневой;
- броневой.
В броневом сердечнике магнитные поля оказывают большее влияние на масштабирование.