Онлайн расчет потерь напряжения в кабеле
Потери напряжения в кабеле являются большой проблемой в случае длинного пути от источника питания к потребителю, а также высокой потребляемой мощности последнего.
Неверно подобранные материалы для электрической линии (проводки), например, провода с очень тонкими жилами, начинают греться из-за низкой проводимости для электрического тока.
Предоставленный нами калькулятор позволяет выполнить расчет потерь напряжения в кабеле онлайн:
Также давайте разберемся, откуда берутся потери и почему. Токопроводящие жилы изготавливают из меди и алюминия они, хоть и являются отличными проводниками, но все равно обладают определенным удельным сопротивлением, которое является активным. На любом резистивном элементе падает определенное количество Вольт, согласно закону Ома:
U=I*Rпров
Для чего нужен такой расчет? Всё очень просто: чем больше R проводки – тем больше потерь, и тем сильнее греются провода. Давайте разберемся как их рассчитать вручную, но проще это сделать с помощью онлайн калькулятора. Формула определения сопротивления проводника выглядит так:
R=p*L/S
где:
- p — удельное сопротивление;
- L — длина;
- S — площадь поперечного сечения.
Отсюда следует, что оно зависит от длины и площади поперечного сечения. Чем длиннее и тоньше проводник — тем больше R, а для его уменьшения нужны жилы с большим поперечным сечением.
- Тогда в простейшем случае потери равны падению напряжения на линии:
- dU=I*Rпров
- А с учетом полной мощности для переменного тока:
Но первая формула справедлива только для одной из токопроводящих жил, а электричество, как известно, нельзя передавать по одному проводу. Его передают как минимум по двум, в трехфазной сети — по четырем проводам.
Чтобы упростить себе калькуляцию и сохранить драгоценное время — пользуйтесь онлайн калькулятором для проведения расчетов потерь напряжения в кабеле. Для этого вы должны ввести параметры:
- длину;
- площадь поперечного сечения токопроводящих жил;
- величину потребляемого тока или мощности;
- количество фаз;
- температуру проводника;
- COS Ф.
В результате в пару кликов онлайн калькулятор предоставит вам следующие данные:
- потери;
- сопротивление кабеля;
- реактивная мощность;
- напряжение на нагрузке.
Материалы по теме:
Влияние длины и сечения кабеля на потери по напряжению
Потери электроэнергии – неизбежная плата за ее транспортировку по проводам, вне зависимости от длины передающей линии. Существуют они и на воздушных линиях электропередач длиною в сотни километров и на отрезках электропроводки в несколько десятков метров домашней электрической сети. Происходят они, прежде всего потому, что любые провода имеют конечное сопротивление электрическому току. Закон Ома, с которым каждый из нас имел возможность познакомиться на школьных уроках физики, гласит, что напряжение (U) связано с током (I) и сопротивлением (R) следующим выражением:
из него следует что чем выше сопротивление проводника, тем больше на нем падение (потери) напряжения при постоянных значениях тока. Это напряжение приводит к нагреву проводников, который может грозить плавлением изоляции, коротким замыканием и возгоранием электропроводки.
При передаче электроэнергии на большие расстояния потерь удается избегать за счет снижения силы передаваемого тока, достигается это многократным повышением напряжения до сотен киловольт. В случае низковольтных сетей, напряжением 220 (380) В, потери можно минимизировать только выбором правильного сечения кабеля.
Почему падает напряжение и как это зависит от длины и сечения проводников
Для начала остановимся на простом житейском примере частного сектора в черте города или большого поселка, в центре которого находится трансформаторная подстанция. Жильцы домов, расположенных в непосредственной близости к ней жалуются на постоянную замену быстро перегорающих лампочек, что вполне закономерно, ведь напряжение в их сети достигает 250 В и выше. В то время как на окраине села при максимальных нагрузках на сеть оно может опускаться до 150 вольт. Вывод в таком случае напрашивается один, падение напряжение зависит от длины проводников, представленных линейными проводами.
Конкретизируем, от чего зависит величина сопротивления проводника на примере медных проводов, которым сегодня отдается предпочтение. Для этого опять вернемся к школьному курсу физики, из которого известно, что сопротивление проводника зависит от трех величин:
- удельного сопротивления материала – ρ;
- длины отрезка проводника – l;
- площади поперечного сечения (при условии, что по всей длине оно одинаковое) – S.
Все четыре параметра связывает следующее соотношение:
очевидно, что сопротивление растет по мере увеличения длины проводника и падает по мере увеличения сечения жилы.
Для медных проводников удельное сопротивление составляет 0.0175 Ом·мм²/м, это значит, что километр медного провода сечением 1 мм² будет иметь сопротивление 17.5 Ом, в реальной ситуации оно может отличаться, например, из-за чистоты металла (наличия в сплаве примесей).
Для алюминиевых проводников величина сопротивления еще выше, поскольку удельное сопротивление алюминиевых проводов составляет 0.028 Ом·мм²/м.
Теперь вернемся к нашему примеру. Пусть от подстанции до самого крайнего дома расстояние составляет 1 км и электропитание напряжения 220 вольт до него проложено алюминиевым проводом марки А, с минимальным сечением 10 мм². Расстояние, которое необходимо пройти электрическому току складывается из длины нулевых и фазных проводов, то есть в нашем примере необходимо применить коэффициент 2, таким образом максимальная длина составит 2000 м. Подставляя наши значения в последнюю формулу, получим величину сопротивления равную 5.6 Ом.
Много это или мало, понятно из упомянутого выше закона Ома, так для потребителя с номинальным током всего 10 ампер, в приведенном примере падение напряжения составит 56 В, которые уйдут на обогрев улицы.
Конечно же, если нельзя уменьшить расстояние, следует выбрать сечение проводов большей площади, это касается и внутренних проводок, однако это ведет к увеличению затрат на кабельно-проводниковую продукцию. Оптимальным решением будет правильно рассчитать сечения проводов, учитывая максимальную допустимую нагрузку.
К помещениям первой категории относятся сухие помещения с нормальными климатическими условиями, в которых отсутствуют любые из приведенных выше факторов. Такая характеристика может соответствовать, например складскому помещению.
На практике синусоидальные напряжения электрических сетей подвержены искажениям и вместо идеальной синусоиды на экране осциллографа мы видим искаженный, испещренный провалами, зазубринами и всплесками сигнал. Эти искажения следствие влияния гармоник – паразитных колебаний кратных основной частоте сигнала, вызванных включением в сеть нелинейных нагрузок.
Одноэлементный расчет потерь электроэнергии
Пример Расчета технологических потерь электроэнергии при ее передаче из сетей Сетевой организации в сети Потребителя:
Наименование организации Потребителя: ОАО «***» Адрес объекта:________ ТП №453 (счетчик №797198)
Расчет потерь в силовом трансформаторе и кабельной линии
1. Потери электроэнергии в трансформаторе рассчитываются по формуле:
∆Wт = ∆Wхх + (∆Wн1 х Wт/100) , кВт*час, где∆Wxx = ∆Рxx х То х (Ui /Uном)2 — потери холостого хода силового трансформатора, кВт*час; ∆Wн1 = (∆Wн / Wт) х 100% — относительные нагрузочные потери силового трансформатора, %;∆Wн = Кк х ∆Рср х Тр х Кф2 — нагрузочные потери силового тр-ра, кВт*час; Кф2 = (1+2Кз)/3Кз ― квадрат коэффициента формы графика за расчетный период, у.е.; Кз = [Wт / (Sн х Тр х cosφ)] х 10-3 — коэффициент загрузки тр-ра ( заполнения графика), у.е.; ∆Рср = 3 х I2ср х R х 10-3 — потери мощности в силовом тр-ре, кВт; Iср=Wт /(√3 х Uср х Тр х cos φ) – средняя нагрузка за расчетный период, А; R = (∆Ркз х U2ном /S2ном) х 10-3 — активное сопротивление силового тр-ра, Ом; Кк ― коэффициент, учитывающий различие конфигураций графиков активной и реактивной нагрузки (справочная величина, принимается равным 0,99), у.е.
ТМ 630/6/0,4 | Тип трансформатора | |
Sнт | номинальная мощность трансформатора, МВА; | 0,63 |
Uном | номинальное напряжение, кВ; | 6 |
Wт | потребленная активная электроэнергия за месяц, кВт*час; | 37108 |
∆Рхх | потери мощности холостого хода трансформатора, кВт; | 1,31 |
∆Ркз | потери мощности короткого замыкания, кВт; | 7,6 |
Тр | число часов работы трансформатора под нагрузкой за расчетный период, час; | 720 |
То | время присоединения трансформатора за расчетный период к сети, час; | 720 |
Кк | коэффициент различия конфигураций; | 0,99 |
cosφ | среднезвешенный коэффициент мощности для трансформатора. | 0,9 |
Расчет потерь в трансформаторе: ∆Wхх =1001 кВт*ч; Кф2 =4,3338; Кз = 0,0909; R =0,6893 Ом; ∆Wн = 182,2 кВт*час; Iср=5,3407; ∆Рср = 0,0590; %потерь ∆Wн1 =0,49 Итого: ∆Wт = 1001 кВт*час +0,491%
2. Потери электроэнергии в линии электропередачи (Тип силового кабеля — 6кВ АСБ 3*240мм2) рассчитываются по формуле:
∆Wкл =1,1*n*p*I2*Lg*0,001*T , гдеn — число фаз линии = 3p — удельное сопротивление материала, Ом*мм2/м = 0,0271I — среднеквадратичный ток линии, А =5,3407L — длина линии, м =50g — сечение провода, мм2 = 240T — время работы за расчетный период, час-=7201,1 — коэфф. учитывающий сопрот конт.,скрутку жил и способ прокладки линийСправочно удельные сопративления меди, алюминия и стали:
р Cu | 0,0189 | Ом*мм2/м |
р Al | 0,0271 | Ом*мм2/м |
р Сталь | 0,14 | Ом*мм2/м |
Потери ∆Wкл =0,38 кВт*ч; %потерь ∆Wкл =0,001
ИТОГО: общий % потерь=0,492; ВСЕГО ∆W = 1001 кВт*час +0,492%
Произвести расчет можно с помощью удобного калькулятора, выполненного в формате Exel-таблицы
Произвести более сложный расчет с большим количеством объектов электросетевого хозяйства, можно осуществить с помощью специализированного программного комплекса (РТП-3, либо Програсс++), оставив заявку в форме обратной связи с приложением необходимых первичных документов.
Как найти падение напряжения и правильно рассчитать его потерю в кабеле
Одним из основных параметров, благодаря которому считается напряженность, является удельное сопротивление проводника. Для проводки от станции или щитка к помещению используются медные или алюминиевые провода. Их удельные сопротивления равны 0,0175 Ом*мм2/м для меди и 0,0280 Ом*мм2/м для алюминия.
Рассчитать падение электронапряжения для цепи постоянного тока в 12 вольт можно следующими формулами:
- определение номинального тока, проходящего через проводник. I = P/U, где P – мощность, а U – номинальное электронапряжение;
- определение сопротивления R=(2*ρ*L)/s, где ρ – удельное сопротивление проводника, s – сечение провода в миллиметрах квадратных, а L – длина линии в миллиметрах;
- определение потери напряженности ΔU=(2*I*L)/(γ*s), где γ – это величина, которая равна обратному удельному сопротивлению;
- определение требуемой площади сечения провода: s=(2*I*L)/(γ*ΔU).
Важно! Благодаря последней формуле можно рассчитать необходимую площадь сечения провода по нагрузке и произвести проверочный расчет потерь. Таблица значений индуктивных сопротивлений
Таблица значений индуктивных сопротивлений
В трехфазной сети
Для обеспечения оптимальной нагрузки в трехфазной сети каждая фаза должна быть нагружена равномерно. Для решения поставленной задачи подключение электромоторов следует выполнять к линейным проводникам, а светильников – между нейтральной линией и фазами.
Потеря электронапряжения в каждом проводе трехфазной линии с учетом индуктивного сопротивления проводов подсчитывается по формуле
Формула расчета
Первый член суммы – это активная, а второй – пассивная составляющие потери напряженности. Для удобства расчетов можно пользоваться специальными таблицами или онлайн-калькуляторами. Ниже приведен пример такой таблицы, где учтены потери напряжения в трехфазной ВЛ с алюминиевыми проводами электронапряжением 0,4 кВ.
Пример таблицы
Потери напряжения определены следующей формулой:
ΔU = ΔUтабл * Ма;
Здесь ΔU—потеря напряжения, ΔUтабл — значение относительных потерь, % на 1 кВт·км, Ма — произведение передаваемой мощности Р (кВт) на длину линии, кВт·км.
Вам это будет интересно Опасность напряжения шага
Однолинейная схема линии трехфазного тока
На участке цепи
Для того, чтобы провести замер потери напряжения на участке цепи, следует:
- Произвести замер в начале цепи.
- Выполнить замер напряжения на самом удаленном участке.
- Высчитать разницу и сравнить с нормативным значением. При большом падении рекомендуется провести проверку состояния проводки и заменить провода на изделия с меньшим сечением и сопротивлением.
Важно! В сетях с напряжением до 220 в потери можно определить при помощи обычного вольтметра или мультиметра. Базовым способом расчета потери мощности может служить онлайн-калькулятор, который проводит расчеты по исходным данным (длина, сечение, нагрузка, напряжение и число фаз)
Базовым способом расчета потери мощности может служить онлайн-калькулятор, который проводит расчеты по исходным данным (длина, сечение, нагрузка, напряжение и число фаз).
Образец калькулятора для вычисления потерь
Таким образом, вычислить и посчитать потери напряжения можно с помощью простых формул, которые для удобства уже собраны в таблицы и онлайн-калькуляторы, позволяющие автоматически вычислять величину по заданным параметрам.
Расчетная проверка сечений жил кабелей на потерю напряжения.
Сечение кабелей и проводов, выбранное из условий нагрева и согласованное с коммутационными возможностями аппаратов защиты, нужно проверять на относительную линейную потерю напряжения.
где U — напряжение источника электрической энергии, Uном — напряжение в месте присоединения приемника.
Допустимое отклонение напряжения на зажимах двигателей от номинального не должно превышать ±5 %, а в отдельных случаях оно может достигать +10 %.
В осветительных сетях снижение напряжения у наиболее удаленных ламп внутреннего рабочего освещения и прожекторных установок наружного освещения не должно превышать 2,5 % номинального напряжения ламп, у ламп наружного и аварийного освещения — 5 %, а в сетях напряжением 12.,.42 В — 10 %. Большее снижение напряжения приводит к существенному уменьшению освещенности рабочих мест, вызывает снижение производительности труда и может привести к условиям, при которых зажигание газоразрядных ламп не гарантировано. Наибольшее напряжение на лампах, как правило, не должно превышать 105 % его номинального значения.
Повышение напряжения сетей внутреннего электроснабжения выше предусмотренного нормами не допустимо, так как оно приводит к существенному увеличению расхода электрической энергии, сокращению срока службы силового и осветительного электрооборудования, а иногда к снижению качества выпускаемой продукции.
При проектировании электроснабжения и электрооборудования жилища важна величина действительной части, т.е. потеря напряжения. Проверка выбранных проводников по потере напряжения из условия обеспечения необходимых(регламентированных стандартами) уровней напряжения у самых удаленных от источника питания потребителей осуществляется следующим образом. Выполняется расчет потери напряжения (%) по формулам:-рассотрим для трех фазной сети:
Где
U н – номинальное напряжение, В (380 В – симметричной трехфазной сети);
R – активное сопротивление проводника, Ом;
Х – индуктивное сопротивление проводника, Ом;
Сos ϕ– коэффициент мощности нагрузки;
I р max– максимальный расчетный ток нагрузки, А;
ΔU – потеря напряжения, % от номинального.
Без учета индуктивного сопротивления линии на потерю напряжения, как правило, рассчитываются:
-сети постоянного тока;
-линии сети переменного тока, для которых коэффициент мощности Cos ϕ= 1;
-сети, выполненные проводами внутри зданий или кабелями, если их сечения не превосходят табличных значений.
Индуктивным сопротивлением проводников сечением менее 50 мм2 можно пренебречь,т.е. Х
При отсутствии какой-либо другой информации величину Х можно принимать Ом/м.
Активное сопротивление проводников (Ом) определяется по одной из известных формуле,
где ρ– удельное сопротивление проводника, Ом • мм2/ м;
γ– удельная проводимость проводника, м / Ом • мм2;
S – сечение проводника, мм2;
l – длина проводника.
Значение удельного сопротивления и удельной проводимости для:
Медных проводников ρм=0,0189 Ом • мм2/ м;γм= 53 м / Ом • мм2;
-алюминиевых проводниковρа =0,0315 Ом • мм2/ м; γа = 31,7 м / Ом • мм2.
Допустимая величина падения напряжения определяется по формуле:
Где ΔU пд– предельно допустимые потери напряжения в питающей приемник цепи, %;
105-напряжение холостого хода на вторичной стороне питающего трансформатора, %
ΔU тр– падение напряжения в трансформаторе, питающем данный объект, %;
ΔU min д– минимально допустимое напряжение на зажимах электроприемника, %.
Допустимые отклонения напряжения у приемников электроэнергии смотрят в табличных данных. .Затем проверяется выполнение условия:
Для проверки проводников по потере напряжения можно также использовать таблицы удельных потерь напряжения ,которые составлены на основании данных, приведенных в Справочнике по расчету проводов и кабелей и адаптированных к действующим в настоящее время нормам и правилам. В таблицах находят удельные потери напряжения для электропроводок,воздушных и кабельных линий в зависимости от величины коэффициента мощности. Для проводов и кабелей из цветного металла эти потери выражены в процентах на 1 кВт•км в зависимости от напряжения линии. Потеря напряжения в линии при заданном сечении проводов и кабелей из цветных металлов определяется по формуле,
где М а – сумма произведений активных нагрузок на длины участков линии, кВт•км;
ΔU м.б. – табличное значение удельной величины потери напряжения в процентах на 1 кВт•км.
Определение сечения проводов по заданной величине потери напряжения производится следующим образом. Определяется расчетное значение
ΔU мб п о ф о р м у л е :
и по соответствующей таблице подбирается сечение провода с ближайшим меньшим значением у д е л ь н о й п о т е р и н а п р я ж е н и я
Вычисляемое поле. Алгоритм расчета
Для каждого месяца у нас есть только одно значение фактических продаж (столбец Продажи) и плана. Вычисляемое поле ПроцентВыполнения возвращает значение равное их отношению. Например, для января 2012 года — это 50,19% (продано было 36992,22, а план был 73697,76). 36992,22/73697,76=0,5019 (см. строку 10 на листе Исходная таблица).
Теперь проверим итоги по месяцам. За январь итоговым значением является 93,00%. Как это значение получилось?
Сначала программа вычислила СУММУ продаж за январь по всем годам, затем, вычислила СУММУ всех плановых значений. Разделив одно на другое, было получено 93,00%. В этом можно убедиться проделав вычисления самостоятельно (см. строку 10 на листе Сводная таблица, столбцы H:J).
В этом состоит одно из ограничений Вычисляемого поля — итоговые значения вычисляются только на основании суммирования.
Аналогично расчет ведется и для итогов по столбцам: находится сумма продаж и плана по годам, затем вычисляется их отношение.
Если бы для каждого месяца в исходной таблице было бы несколько сумм продаж и плановых значений, то расчет был бы аналогичен подсчету итоговых значений.
Чтобы обойти данное ограничение и вычислить, например, средний % выполнения плана для всех январских месяцев, придется отказаться от Вычисляемого поля. Создайте в исходной таблице новый столбец — отношение продажи к плану для каждого месяца (см. лист Исходная таблица2). Затем, создайте на ее основе другую сводную таблицу. В окне параметров полей значений установите Среднее.
В итоговом столбце теперь будет отображаться средний процент выполнения плана.
Что влияет на нагрев проводов
Если во время эксплуатации бытовых приборов нагревается проводка, то следует незамедлительно принять все необходимые меры для устранения этой проблемы. Факторов, влияющих на нагрев проводов, существует немало, но к основным можно отнести следующие:
- Недостаточная площадь сечения кабеля. Выражаясь доступным языком, можно сказать так — чем толще будут у кабеля жилы, тем больший ток он может передавать, не греясь при этом. Величина этого значения указывается в маркировке кабельной продукции. Также можно измерить сечение самостоятельно при помощи штангенциркуля (следует убедиться, что провод не находится под напряжением) или по марке провода.
- Материал, из которого изготовлен провод. Медные жилы лучше передают напряжение до потребителя, и обладают меньшим сопротивлением, по сравнению с алюминиевыми. Естественно, они меньше греются.
- Тип жил. Кабель может быть одножильным (жила состоит из одного толстого стержня) или многожильным (жила состоит из большого числа маленьких проводков). Многожильный кабель более гибкий, но существенно уступает одножильному по допустимой силе передаваемого тока.
- Способ укладки кабеля. Плотно уложенные провода, находящиеся при этом в трубе, греются ощутимо сильнее, нежели открытая проводка.
- Материал и качество изоляции. Недорогие провода, как правило, имеют изоляцию низкого качества, что отрицательно сказывается на их устойчивости к воздействию высоких температур.
Зная мощность, по формуле определяют номинальную силу тока:
I=(PK)/(Ucos φ)
P – мощность в ваттах
U=220 Вольт
K=0,75 – коэффициент одновременного включения;
cos φ=1 для бытовых электроприборов;
Если сеть трехфазная, то применяют другую формулу:
I=P/(U√3cos φ)
U=380 Вольт
Рассчитав ток, надо воспользоваться таблицами, которые представлены в ПУЭ, и определить сечение провода. В таблицах указан допустимый длительный ток для медных и алюминиевых проводов с изоляцией различного типа. Округление всегда производят в большую сторону, чтобы был запас.
Можно также обратиться к таблицам, в которых сечение рекомендуют определять только по мощности.
Разработаны специальные калькуляторы, по которым определяют сечение, зная потребляемую мощность, фазность сети и протяженность кабельной линии
Следует обращать внимание на условия прокладки (в трубе или на открытом воздухе)
Влияние длины проводки на выбор кабеля
Если кабель очень длинный, то возникают дополнительные ограничения по выбору сечения, так как на протяженном участке происходят потери напряжения, которые в свою очередь приводят к дополнительному нагреву. Для расчета потерь напряжения используют понятие «момент нагрузки». Его определяют как произведение мощности в киловаттах на длину в метрах. Далее смотрят значение потерь в таблицах. Например, если потребляемая мощность составляет 2 кВт, а длина кабеля 40 м, то момент равняется 80 кВт*м. Для медного кабеля сечением 2,5 мм кв. это означает, что потери напряжения составляют 2-3%.
Если потери будут превышать 5%, то необходимо брать сечение с запасом, больше рекомендованного к использованию при заданном токе.
Расчетные таблицы предусмотрены отдельно для однофазной и трехфазной сети. Для трехфазной момент нагрузки увеличивается, так как мощность нагрузки распределяется по трем фазам. Следовательно, потери уменьшаются, и влияние длины уменьшается.
Потери напряжения важны для низковольтных приборов, в частности, газоразрядных ламп. Если напряжение питания составляет 12 В, то при потерях 3% для сети 220 В падение будет мало заметно, а для низковольтной лампы оно уменьшится почти вдвое
Поэтому важно размещать пускорегулирующие устройства максимально близко к таким лампам
Проведение сложных расчетов
Для более детального и достоверного расчета потерь напряжения на линии нужно принимать во внимание реактивное и активное сопротивление, которое вместе образует комплексное сопротивление, и мощность. Для проведения расчетов падения напряжения в кабеле используют формулу:
Для проведения расчетов падения напряжения в кабеле используют формулу:
∆U = (P*r0+Q*x0)*L/ U ном
В этой формуле указаны следующие величины:
- P, Q — активная, реактивная мощность.
- r0, x0 — активное, реактивное сопротивление.
- U ном — номинальное напряжение.
Есть три варианта подключения нагрузки:
- от электрощита в конец линии;
- от электрощита с равномерным распределением по длине кабеля;
- от электрощита к двум совмещенным линиям с равномерным распределением нагрузки.
Пример расчета потерь напряжения: суммарная потребляемая мощность всех энергозависимых установок в доме, квартире составляет 3,5 кВт — среднее значение при небольшом количестве мощных электроприборов. Если все нагрузки активные (все приборы включены в сеть), cosφ = 1 (угол между вектором силы тока и вектором напряжения). Используя формулу I = P/(Ucosφ), получают силу тока I = 3,5*1000/220 = 15,9 А.
Дальнейшие расчеты: если использовать медный кабель сечением 1,5 кв. мм, удельное сопротивление 0,0175 Ом*мм2, а длина двухжильного кабеля для разводки равна 30 метров.
По формуле потери напряжения составляют:
∆U = I*R/U*100 %, где сила тока равна 15,9 А, сопротивление составляет 2 (две жилы)*0,0175*30/1,5 = 0,7 Ом. Тогда ∆U = 15,9*0,7/220*100% = 5,06 %.
Полученное значение незначительно превышает рекомендуемое нормативными документами падение в пять процентов. В принципе, можно оставить схему такого подключения, но если на основные величины формулы повлияет неучтенный фактор, потери будут превышать допустимое значение.
Что это значит для конечного потребителя? Оплата за использованную электроэнергию, поступающую к распределительному щиту с полной мощностью при фактическом потреблении электроэнергии более низкого напряжения.