Распространенные модели
Покупатели отдают предпочтение в большинстве случаев всего нескольким моделям. Чтобы правильно выбрать аппаратуру, потребуется знать их маркировку, ее расшифровку. Большим спросом пользуются такие модели:
- ТСЗИ. Трехфазная разновидность, внутренняя конструкция которой защищена специальным кожухом.
- ОСМ. Применяются в системах сигнализации, освещения. Их устанавливают в специальный ящик. Внутрь корпуса не должна попадать грязь, пыль, влага. Монтируются на дин-рейку.
- ТТп, ТС-180, ЯТП применяются в бытовых сетях. Монтируются просто. Используются для напряжения невысокого уровня.
- ОСОВ, ОСО. Обладает сухой системой охлаждения. Применяют в бытовых сетях.
Информация о разновидности прибора приведена в маркировке. Она указывается на корпусе трансформатора. Маркировка находится в открытом доступе для обслуживающего персонала.
Плюсы и минусы трансформаторов
Данная техника имеет свои преимущества и недостатки. При выборе определенных моделей нужно учитывать все нюансы. Начнем с плюсов:
- Безопасность человека дома и в условиях промышленности гарантируется данным механизмом, который снижает уровень интенсивности электрического тока до 12 В, тем самым гарантируя сохранение жизни и здоровья.
- Входящее напряжение имеет не слишком большое значение, поскольку выходящий ток имеет стабильные характеристики.
- Компактность и миниатюрность коробки.
- Простота в перемещении и установке.
- Слабый нагрев корпуса.
- Аккуратная регуляция напряжения.
Перейдем к слабым сторонам механизма:
- Не слишком долгое время служения.
- Высокая стоимость.
- Недостаточная мощность.
Типы трансформаторов по конструкции
Однофазные трансформаторы
Это трансформаторы, которые преобразуют однофазное переменное напряжение одного значения в однофазное переменное напряжение другого значения.
В основном однофазные трансформаторы имеют две обмотки, первичную и вторичную. На первичную обмотку подают одно значение напряжения, а со вторичной снимают нужное нам напряжение. Чаще всего в повседневной жизни можно увидеть так называемые сетевые трансформаторы, у которых первичная обмотка рассчитана на сетевое напряжение, то есть 220 В.
На схемах однофазный трансформатор обозначается так:
Первичная обмотка слева, а вторичная – справа.
Иногда требуется множество различных напряжений для питания различных приборов. Зачем ставить на каждый прибор свой трансформатор, если можно с одного трансформатора получить сразу несколько напряжений? Поэтому, иногда вторичных обмоток бывает несколько пар, а иногда даже некоторые обмотки выводят прямо из имеющихся вторичных обмоток. Такой трансформатор называется трансформатором со множеством вторичных обмоток. На схемах можно увидеть что-то подобное:
Трехфазные трансформаторы
Эти трансформаторы в основном используются в промышленности и чаще всего превосходят по габаритам простые однофазные трансформаторы. Почти все трехфазные трансформаторы считаются силовыми. То есть они используются в цепях, где нужно питать мощные нагрузки. Это могут быть станки ЧПУ и другое промышленное оборудование.
На схемах трехфазные трансформаторы обозначаются вот так:
Первичные обмотки обозначаются заглавными буквами, а вторичные обмотки – маленькими буквами.
Здесь мы видим три типа соединения обмоток (слева-направо)
- звезда-звезда
- звезда-треугольник
- треугольник-звезда
В 90% случаев используется именно звезда-звезда.
Принцип действия
Самое главное в изучении прибора состоит в том, чтобы разобраться на каком физическом явлении основана работа трансформатора? Как уже вкратце упоминалось выше, в основе функционирования устройства лежит открытая Майклом Фарадеем электромагнитная индукция.
Ее суть заключается в следующем – переменное магнитное поле генерирует электрический ток в находящихся рядом проводниках. В школе все должны были видеть эксперимент, который это демонстрирует – в контур из проволоки вставляется и вытаскивается магнит, а на подключенном к проволоке амперметре можно наблюдать появление тока.
Формула, представленная Фарадеем, который открыл закон возникновения ЭДС, показывает, что возникающая электродвижущая сила пропорциональна магнитному потоку через данный контур.
Кратко говоря, суть работы трансформатора следующая – когда на первичную обмотку подается напряжение и по ней течет ток, возникает магнитное поле определенной величины. Оно распространяется по магнитопроводу или магнитному сердечнику, и генерирует во второй обмотке электрический ток, который пропорционален как величине магнитного поля, так и количеству витков проводника на второй обмотке. Главная характеристика устройства – его КПД.
Передача электрического тока на дальние расстояния
Итак, электрический ток мы получили. Теперь надо как-то передать его на дальние расстояния, не забывая про закон Джоуля-Ленца: Q=I2Rt . То есть нам надо каким-то чудом уменьшить силу тока, которая будет течь по проводам, так как в основном из-за нее происходят большие потери.
Для этих целей идеально подойдет трансформатор, но не простой, а трехфазный. Здесь используется замечательное свойство трансформатора: если повышаем напряжение, то понижаем силу тока, и наоборот, понижаем напряжение, увеличиваем силу тока. Поэтому, для того, чтобы передать полученную электроэнергию на дальние расстояния, нам нужно увеличить в несколько раз напряжение, тем самым мы в это же число раз уменьшим силу тока. Ниже на рисунке схема передачи электроэнергии от генератора ГЭС и до конечного потребителя, то есть для заводов, для электротранспорта и для нас с вами.
Передача электроэнергии от генератора до конечного потребителя
С ГЭС напряжение повышают до нескольких киловольт, чаще всего до 110 кВ. Все это достигается с помощью трехфазного высоковольтного повышающего трансформатора (2).
Трехфазный высоковольтный трансформатор
Далее высоковольтное напряжение идет по высоковольтной линии (3) и доходит до какого-либо города, либо райцентра.
Высоковольтная линия передачи электроэнергии
В каждом райцентре либо городе есть своя подстанция, где имеется уже свой высоковольтный понижающий трансформатор (4), который преобразует напряжение 110 кВ в 10 кВ, либо в 6 кВ (5).
Почему нельзя было сразу тянуть провода с генератора? Зачем надо было повышать, а потом снова понижать напряжение? Все опять же из за закона Джоуля-Ленца. Так как ГЭС находится на очень большом расстоянии от потребителей электроэнергии, приходится повышать напряжение, чтобы минимизировать потери на нагрев проводов. Как мы уже говорили, трансформатор повышает напряжение, но при этом уменьшает во столько же раз силу тока, поэтому потери в проводах на дальние расстояния сокращаются в разы, исходя из формулы Джоуля-Ленца Q=I2Rt.
Потом уже с подстанции напряжение расходится по трансформаторным «будкам», которые можно уже заметить в каждом районе.
Трансформатор 6 кВ в 380 В
От этих «будок» выходит после преобразования приблизительно 380 Вольт. Но здесь есть один нюанс. Везде используется три провода, а к нам в дома заходят чаще всего два провода. В чем же дело? А дело как раз в том, что есть такое понятие как линейное и фазное напряжение. Линейное напряжение замеряется между 3 проводами, по которым идут 380 В. Они называются фазами. То есть грубо говоря — это те же самые провода, которые вышли с генератора еще где-нибудь на ГЭС. Но если взять любую из фаз и замерять напряжение относительно нулевого проводника, то есть относительно нуля, то у нас будет фазное напряжение 220 В. Получается, к нам в дом заходит ОДНА фаза и НОЛЬ. Куда деваются другие фазы? Они равномерно распределяются между жильцами дома или вашего района. То есть к вашему соседу может придти другая фаза, но тот же самый ноль.
Трехфазное линия передачи электроэнергии
Плюсы и минусы трансформаторов
Данная техника имеет свои преимущества и недостатки. При выборе определенных моделей нужно учитывать все нюансы. Начнем с плюсов:
- Безопасность человека дома и в условиях промышленности гарантируется данным механизмом, который снижает уровень интенсивности электрического тока до 12 В, тем самым гарантируя сохранение жизни и здоровья.
- Входящее напряжение имеет не слишком большое значение, поскольку выходящий ток имеет стабильные характеристики.
- Компактность и миниатюрность коробки.
- Простота в перемещении и установке.
- Слабый нагрев корпуса.
- Аккуратная регуляция напряжения.
- Не слишком долгое время служения.
- Высокая стоимость.
- Недостаточная мощность.
Как работает однофазный трансформатор
Работа этого устройства заключается в соблюдении законов электромагнетизма. Когда первая обмотка подключена к источнику питания, через нее начинает течь переменный ток, создавая магнитные токи переменного знака в ферромагнитном сердечнике. Когда этот поток замкнут в сердечнике, он блокирует первичную и вторичную катушки и создает в них электродвижущую силу, пропорциональную количеству витков катушки.
Важно! Когда ток проходит через первичную обмотку, он создает с ее помощью магнитное поле, пронизывающее не только эту обмотку, но и вторичную. Принцип действия и рассеяние магнитных волн
Принцип действия и рассеяние магнитных волн
Производственные соображения
Трансформаторы — дорогой, но важный элемент системы электроснабжения. На приобретение трансформаторов требуются большие капитальные затраты, и ожидается, что они будут работать в течение всего прогнозируемого срока службы. В действительности, однако, трансформаторы обычно выходят из строя примерно на половине ожидаемого срока службы. Неправильно отремонтированные обмотки, устройства РПН и вводы часто являются первопричиной.
Однако виноваты не только неадекватные планы обслуживания. Трансформаторы часто не соответствуют предполагаемым условиям использования, что создает ненужную нагрузку на устройство. Несмотря на то, что трансформаторы полностью статичны и не имеют движущихся частей, сила тока, протекающего через обмотки, вызывает износ самих обмоток. То же самое и с переключателями ответвлений и втулками. Со временем целостность этих материалов нарушается, что приводит к легкому или критическому отказу.
Чтобы предотвратить преждевременный выход из строя, трансформаторы следует выбирать внимательно
После установки следует также осторожно производить ввод в эксплуатацию. Условия эксплуатации должны тщательно контролироваться, а планы технического обслуживания должны выполняться регулярно и тщательно
При наличии этих положений трансформаторы, вероятно, будут обеспечивать оптимальную производительность в течение всего прогнозируемого срока службы.
Выбор необходимого устройства
При покупке понижающего трансформатора необходимо учитывать его основные параметры и технические характеристики:
- Величина входного напряжения. Она имеется в маркировке и наносится на корпус в виде надписи «220В» или «380В». Для использования в быту нужно выбирать первый вариант.
- Выходное напряжение. Выбирается в зависимости от параметров потребителей, с которыми будет работать трансформатор. Например, если планируется использование светодиодных ламп на двенадцать вольт, то и устройство должно понижать напряжение с 220 до 12 В.
- Мощность. Этот постоянный параметр у трансформатора должен на 20% превышать такой же показатель потребляющих устройств. Причем в расчет следует принимать суммарную мощность потребителей. Это значение указывается на маркировке практически каждого изделия и измеряется в ваттах (Вт).
Не рекомендуется покупать трансформаторы со слишком высоким запасом мощности. Такой прибор может оказаться слишком дорогим, а несоответствие технических характеристик приведет к выходу из строя не только галогенных ламп, но и преобразователей, использующихся вместе с ними.
Пониженное напряжение на выходе трансформатора должно совпадать с номинальными показателями потребителей. Чаще всего, это 12В, но могут попадаться приборы, работающие от 6 или 24В. Для системы освещения, устанавливаемой в помещении с повышенной влажностью, рекомендуется использовать преобразователь с гальванической развязкой.
Во многих случаях вместо одного дорогого прибора целесообразно приобрести несколько отдельных устройств пониженной мощности, к которым подсоединяют несколько групп потребителей. При выходе из строя одного из них, перестанет работать лишь часть светильников или других приборов. Замена маломощного устройства обойдется значительно дешевле, по сравнению с дорогим мощным понижающим трансформатором.
Необходимость трансформаторов
При передаче электрической энергии, как на большие, так и на малые расстояния в системе энергоснабжения возникают собственные потери. Чем выше ток в линии, тем больше потери (при более низком напряжении, так как мощность передается одинакова). По этой причине для передачи электроэнергии на большие расстояния необходимо, чтобы у электричества было максимально высокое напряжение и максимально малый ток. Однако высокое напряжение небезопасно для потребителей и не подходит для большинства электроприборов. Бытовые электроприборы обычно рассчитаны на 220 В (110 В в США).
Трансформаторы преобразуют электроэнергию между высоким напряжением, малым током, необходимым для передачи на большие расстояния, и низким напряжением, большим током, необходимым для использования потребителями.
Кроме того, линии электропередачи обычно изготавливаются из меди, чтобы минимизировать потери, связанные с передачей. Медь имеет самое низкое электрическое сопротивление из всех проводящих материалов.
Классификация однофазных трансформаторов
Силовой трансформатор
Трансформатор используется в преобразовании электроэнергии в сетях и в устройствах, используемых для получения и применения нужной величины электрической энергии. «Силовой» подразумевает его работу с высоким напряжением. Использование силовых трансформаторов вынуждается разными показателями рабочей мощности ЛЭП, сетей в городской полосе, выводящее напряжение для конечных объектов, а также для общей работы электрических устройств и машин. Мощность разнится от нескольких единиц вольт до сотен киловатт.
Автотрансформатор – один из видов преобразователя, где первичная и вторичная обмотки не разделены, а соединены друг с другом напрямую. Ввиду этого между ними образуется как электромагнитная, так и электрическая связь. Обмотка сопровождается как минимум тремя выводами, подсоединяясь к каждой из них, можно использовать разные мощности. Главным достоинством такого трансформатора – это его высокий уровень КПД, так как преобразуется не всё напряжение, а лишь некоторая часть. Разница особенно заметна, когда входная и выходная мощность имеют незначительные отличия.
Трансформатор тока
Такой трансформатора используется в основном для уменьшения тока первичной обмотки до нужного значения, подходящего в применении цепей измерения, защиты, регулирования и сигнализации. Помимо этого используется в гальванической развязке (передача электроэнергии или сигнала связанными электрическими цепями, при этом электрический контакт между ними отсутствует).
Нормируемое значение параметров тока вторичной обмотки – 1 А или 5 А. Первичная обмотка трансформатора подсоединяется ступенчато в цепь с нагрузкой, при этом переменный ток подвергается контролю, ко вторичной обмотке подключаются измерительные устройства.
Вторичной обмотке трансформатора тока необходимо постоянно находиться в режиме около короткого замыкания. Ведь при любом варианте разъединения цепи на неё поступает высокая мощность, способная выбить изоляцию и выхода из строя включённых приборов.
Высоковольтный ТТ(слева) и низковольтный ТТ(справа)
Читать более подробно про трансформатор тока.
Трансформатор напряжения
Такой трансформатор получает энергию от источника напряжения. Используется в основном для изменения высокого напряжения в низкое в различных цепях, в том числе измерительных и релейной защиты и автоматики. Имеет возможность проводить изоляцию цепей защиты и измерения от цепей повышенной мощности.
Высоковольтный ТН(слева) и низковольтный ТН(справа)
Читать более подробно про ТН.
Импульсный трансформатор
Применяется для изменения импульсных сигналов с откликом импульса в точности до десятков микросекунд. При этом форма импульса сопровождается лишь незначительным искажением. Главным назначением импульсного трансформатора является передача прямоугольного электрического импульса
Используется для преобразования коротких видеоимпульсов напряжения, зачастую воспроизводящихся с высокой скважностью
Важный параметр при использовании импульсного трансформатора – это неискажённый вид передачи импульсных систем напряжения
При влиянии на вход устройства мощности, отличающейся друг от друга, важно получить напряжение, в точности совпадающее с той же самой формой, разве что, с другой амплитудой или различающейся полярностью
Виды импульсных трансформаторов
Охладители
Обязательный элемент конструкции любого силового трансформатора. Большое количество электрической энергии, проходя через трансформатор, преобразуется в тепло. Специальная двухконтурная система, заполненная маслом, нуждается в регулярном охлаждении.
Для этих целей используются различные устройства:
- радиаторы. Конструктивно охладитель состоит из металлических пластин различной конфигурации, которые обладают хорошей теплопроводностью, через которые и выводится тепловая энергия в атмосферу или вторичную охлаждающую среду;
- гофрированный бак. Универсальное устройство для установок небольшой мощности. Конструктивно он совмещает в себе радиатор и емкость для масла. Тепло выводится благодаря внешним и внутренним гофрированным поверхностям;
- принудительная вентиляция. Навесные вентиляторы применяют для трансформаторов большой мощности. Благодаря постоянному принудительному охлаждению удается повысить производительность системы до 20-25%;
- охладители масляно-водяные. На сегодняшний день такие комбинированные конструкции используются чаще всего благодаря их простоте и высокой эффективности;
- циркуляционные насосы. Устройство обеспечивает регулярное перемещение горячего масла в нижний контур, заменяя его холодным.
Как сделать устройство с 220 на 12 вольт своими руками
Несмотря на то, что данный прибор кажется на первый взгляд сложным устройством, его можно собрать самостоятельно. Порядок сборки подобного устройства очень простой. Сначала следует сделать некоторые расчёты и можно приступать к работе. Чтобы можно было быстро и просто производить намотку катушек, необходимо сделать простое приспособление из доски, стоек и рукоятки.
Образец самодельного устройства.
Сначала рассчитываются характеристики и количество витков на обмотках устройства. В данном случае, напряжение первичной сети равно 220 В.
Будет интересно Устройство и схема трехфазного трансформатора
Получить при помощи прибора планируется 12 В, при площади сечения в 6 квадратных сантиметров, значит составляется формула с такими расчётами:
постоянная величина среднего трансформаторного железа равна 60, её следует разделить на площадь.
Получится 10 — это показатель витков, которые приходятся на один Вольт. Полученное число умножается на 220 — это число витков первичной обмотки. Количество витков второй нужно рассчитывать по такому же принципу: полученные 10 витков умножаются на 12 В.
Сердечник можно изготовить из жестяных банок, для этого надо нарезать полоски длиной до 30 см, шириной — 2 см. Эти заготовки обжигаются в печи на огне, после этого они остывают и с поверхности нужно счистить окалину. Покрыть лаком и наклеить с одной стороны полоски бумаги.
Также необходимо приготовить провод с бумажной изоляцией, сечение — 0,3 мм. Вторичная обмотка будет выполняться проводом сечением 1 мм. Из толстого картона выполнить основу для катушки. На неё намотать пропарафиненную бумагу и после этого можно приступать к намотке проволоки.
Пример схемы подключения понижающего трансформатора 220 на 12 В.
После каждых двух рядов нужно прокладывать слой этой бумаги. Вторичная обмотка наматывается в том же направлении, что и первая.
В готовую катушку необходимо вставить железные полоски, они должны войти на половину своей длины. Этими полосками обтягивается основа, и концы соединяются внизу.
Возле сердечника и каркаса оставляется небольшое расстояние. Основание для понижающего устройства лучше сделать из обычной доски толщиной до 50 мм.
Крепить детали лучше при помощи больших металлических скобок. Делать это нужно так, чтобы скобки огибали нижнюю часть сердечника. Последним шагом концы обмоток выводятся на каркас и закрепляются с контактами.
Чтобы было легче наматывать катушки (на заводах для этого используют специальное оборудование), можно использовать две деревянные стойки, закреплённые на доске, и ось из металла, продетую между отверстиями в стойках. На одном конце следует металлический прутик изогнуть в виде рукоятки.
Основные составные части электрической сети
Электроэнергетической сетью (Рис. 5) называется совокупность электроустановок для передачи и распределения электрической энергии, состоящая из подстанций, распределительных устройств, токопроводов, воздушных и кабельных линий электропередачи, работающих на определенной территории.
Рисунок 5 — Электрическая сеть, и электроустановки для передачи и распределения электрической энергии
Все встречающиеся на практике схемы представляют собой сочетания отдельных элементов — фидеров, магистралей и ответвлений.
Электрические сети, в свою очередь, подразделяются на магистральные электрические сети и распределительные электрические сети.
К магистральным сетям относятся все высоковольтные линии электропередач (ЛЭП), к распределительным – ЛЭП мощностью ниже 110 кВ. Виды электрических сетей представлены на рисунке 6.
Рисунок 6 — Виды электрических сетей
Сети связаны между собой трансформаторными и распределительными подстанциями. Для обеспечения установленных требований, энергосистемы оборудуют специальными диспетчерскими пунктами, оснащёнными средствами контроля, управления, связи и специальными схемами расположения электростанций, линий передач и понижающих подстанций.
Электрические сети делятся по:
- напряжению;
- степени подвижности;
- назначению;
- роду тока и числу проводов;
- схеме электрических соединений:
а) разомкнутые (нерезервированные). Схемы разомкнутых сетей представлена на рисунке 7.
Рисунок 7 — Схемы разомкнутых сетей: а — радиальные (нагрузка только на конце линии); б — магистральные (нагрузка присоединена к линии в разных местах)
б) замкнутые (резервированные) (Рис. 8).
Рисунок 8 — Схемы замкнутых сетей: а — сеть с двухсторонним питанием; б — кольцевая сеть; в — двойная магистральная линия; г сложнозамкнутая сеть (для питания ответственных потребителей по двум и более направлениям)
Магистральные схемы электроснабжения применяются в следующих случаях:
- а) когда нагрузка имеет сосредоточенный характер, но отдельные узлы ее оказываются расположенными в одном и том же направлении по отношению к подстанции и на сравнительно незначительных расстояниях друг от друга, причем абсолютные величины нагрузок отдельных узлов недостаточны для рационального применения радиальной схемы;
- б) когда нагрузка имеет распределенный характер с той или иной степенью равномерности.
По конструкции: электропроводки (силовые и осветительные), токопроводы — для передачи электроэнергии в больших количествах на небольшие расстояния, воздушные линии — для передачи электроэнергии на большие расстояния, кабельные линии — для передачи электроэнергии на далекие расстояния в случаях, когда сооружение ВЛ невозможно.
Наибольшее распространение для местных распределительных сетей получили радиальные, магистральные, смешанные (радиальномагистральные) и петлевые схемы.
При радиальной схеме электроснабжения каждая линия является как бы лучом, соединяющим узел сети (подстанцию, распределительный пункт) с единственным потребителем.
При магистральной схеме электроснабжения одна линия — магистраль — обслуживает, как указано, несколько распределительных пунктов или приемников, присоединенных к ней в различных ее точках.
Смешанные схемы распределительных местных сетей применяются при различном расположении потребителей относительно ЦП и сочетаются принципы построения как радиальной, так и магистральных схем.
К электрическим сетям предъявляются следующие требования: надежность, живучесть и экономичность.
Надежность — основное техническое требование, под которым понимается свойство сети выполнять свое назначение в пределах заданного времени и условий работы, обеспечивая электроприемники электроэнергией в необходимом количестве и надлежащего качества.
Живучесть электрической сети — это свойство выполнять свое назначение в условиях разрушающих воздействий в том числе и в боевой обстановке при воздействиях средств поражения противника.
Экономичность — это минимум затрат на сооружение и эксплуатацию сети при условии выполнения требований надежности и живучести.