Для чего нужен пусковой конденсатор для двигателя

Напряжение

Рассматривая различные типы пусковых выпрямителей трехфазного двигателя, подключаемого к однофазной сети, следует принимать во внимание и такой параметр, как рабочее напряжение. Ошибкой будет использование выпрямителя, показатель напряжения которого превышает на порядок требуемый

Помимо высоких затрат на его приобретение придется выделить для него больше места из-за его больших габаритов

Ошибкой будет использование выпрямителя, показатель напряжения которого превышает на порядок требуемый. Помимо высоких затрат на его приобретение придется выделить для него больше места из-за его больших габаритов.

В то же время не стоит рассматривать модели, в которых напряжение имеет меньший показатель, нежели напряжение сети. Устройства с такими характеристиками не смогут эффективно выполнять свои функции и довольно скоро выйдут из строя.

Чтобы свести к не ошибиться при выборе рабочего напряжения , следует придерживаться следующей схемы расчета: итоговый параметр должен соответствовать произведению фактического напряжения сети и коэффициента 1,15, при этом расчетное значение должно составлять не менее 300 В.

В том случае, если выбираются бумажные выпрямители для работы в сети переменного напряжения, то их рабочее напряжение нужно разделить на 1,5-2. Поэтому рабочее напряжение для бумажного конденсатора, для которого производитель указал напряжение в 180 В, в условиях работы в сети переменного тока составит 90-120 В.

Дабы понять, как на практике реализуется идея подключение трехфазного электродвигателя к однофазной сети, выполним эксперимент с использованием агрегата АОЛ 22-4 мощностью 400 (Вт) . Главная задача, которая должна быть решена – запуск двигателя от однофазной сети с напряжением 220 В.

Используемый электродвигатель имеет следующие характеристики:

  • показатель мощности вчера– 400 кВт;
  • напряжение сети 220В переменного напряжения;
  • Ток, все характеристики которого были определены при помощи электроизмерительных клещей в трехфазном режиме работы– 1,9А;
  • Схема подключения обмоток «звезда».

Помня о том, что используемый электродвигатель имеет небольшую мощность, при подключении его к однофазной сети можно купить лишь рабочий конденсатор.

Расчет емкости рабочего выпрямителя:

Пользуясь приведенными формулами, возьмем за среднее значение емкости рабочего выпрямителя показатель 25 мкФ. Здесь была выбрана несколько большая емкость, равная 10 мкФ. Так мы попытаемся выяснить, как влияет такое изменение на пуск аппарата.

Теперь нам необходимо купить выпрямители, в качестве последних будут использоваться конденсаторы типа МБГО. Далее на основе подготовленных выпрямителей выполняется сборка требуемой емкости.

В процессе работы следует помнить, что каждый такой выпрямитель имеет емкость 10 мкФ.

Если взять два конденсатора и соединить их друг с другом по параллельной схеме, то итоговая емкость составит 20 мкФ. При этом показатель рабочего напряжения будет равен 160В. Для достижения требуемого уровня в 320 В необходимо взять эти два выпрямитель и подключить их еще к такой же паре, конденсаторов, соединенных параллельно, но уже применив последовательную схему. В итоге суммарная емкость составит 10 мкФ. Когда батарея рабочих конденсаторов будет готова, подключаем ее к двигателю. Далее останется только запустить его в однофазной сети.

В процессе проведенного эксперимента с подключением двигателя к однофазной сети работа потребовала меньше времени и сил. Используя подобный агрегат с выбранной батареей выпрямителей, следует учесть, что его полезная мощность будет находиться на уровне до 70-80 % от номинальной мощности, при этом частота вращения ротора будет соответствовать номинальному показателю.

Важно: если используемый двигатель рассчитан на сеть напряжением 380/220 В, то при подключении к сети следует использовать схему «треугольник»

Обращайте внимание на содержание бирки: бывает так, что там приведено изображение звезды с напряжением 380 В. В этом случае правильную работу двигателя в сети можно обеспечить, выполнив следующие условия

Сперва придется «распотрошить» общую звезду, после чего соединить с клеммником 6 концов. Искать общую точку следует в лобовой части двигателя.

Видео: подключение однофазного двигателя в однофазную сеть

Решение об использовании пускового конденсатора следует принимать исходя из конкретных условий, чаще всего оказывается достаточно рабочего. Однако если используемый двигатель подвергается повышенной нагрузке, то эксплуатацию рекомендуется остановить. В этом случае необходимо правильно определить необходимую емкость устройства, чтобы обеспечить эффективную работу агрегата.

Маркировка конденсаторов пусковых CBB61

Пусковые элементы серии cbb61 снабжаются сведениями об их технических характеристиках. Цифры, стоящие рядом с буквами uf, показывают номинальную емкость изделия в микрофарадах. У разных устройств серии ее значение может варьироваться от 1 до 50 единиц. Наиболее распространены модели со значениями 20-30 микрофарад. Указывается и максимально возможное емкостное отклонение – оно составляет по 5% от номинального значения в меньшую и большую стороны. Также обозначается показатель напряжения – для изделий этой серии он может составлять 630 либо 450 Вольт.

Расшифровка маркировки конденсаторов CBB61

Само название серии расшифровывается следующим образом:

  • латинская литера С показывает принадлежность устройства к классу конденсаторов;
  • первая из букв В обозначает использование в диэлектрическом элементе неполяризованной органической пленки, вторая – задействование полипропиленовых частей;
  • цифры 61 обозначают размещение начинки конденсатора в прямоугольном корпусе из пластмассы.

Помимо этого, на корпусах изделий можно встретить следующие отметки:

  • буквы SH указывают на способность к самовосстановлению;
  • указывается рабочая частота – она равна 50-60 герц;
  • одной из первых четырех букв латинского алфавита с точкой после нее указывается ресурс, после отработки которого элемент приходит в негодность (буква А соответствует 30 тысячам часов, буква D – одной тысяче);
  • три цифры, идущие через дробь, показывают климатические характеристики: первые две – наименьшее (подразумевающийся отрицательный знак перед ними не ставят) и наибольшее допустимые значения температуры эксплуатации, третья – число дней испытательного срока.

Важно! Буква Р, снабженная цифрой, показывает характеристики защиты: 0 означает ее отсутствие, 1 – потребность во внешних предохраняющих элементах, 2 – наличие внутреннего предохранителя. Эксплуатационные и технические характеристики указываются на корпусе

Эксплуатационные и технические характеристики указываются на корпусе

Специфика схем с конденсаторами

Когда подбирают типы включения электромашин при помощи пусковых и рабочих двухполюсников к сети 220 вольт, то выделяют следующие:

  • включение в «треугольник»;
  • подсоединение в «звезду».

К сведению. Какие отличия между пусковыми и рабочими двухполюсниками? «Пусковыми» называются элементы, применяемые только для запуска, а «рабочими» – используемые в работе постоянно.

Схемы подсоединения к линии 380 В

В применении емкостных элементов, при подключении 3-х фазного мотора к сети 380 вольт, нет необходимости.

Включение мотора в трёхфазную сеть

Схемы включения в однофазную сеть

При монтаже однофазного мотора в однофазную линию его запуск осуществляют, используя дополнительную обмотку. Такой двигатель имеет три вывода:

  • от рабочей катушки;
  • от дополнительной;
  • общий вывод для обеих обмоток.

Когда отсутствует маркировка, катушки «прозваниваются» тестером для определения правильности подсоединения.

Схема для запуска однофазного двигателя

Тип сборки «Треугольник»

Для присоединения асинхронной трёхфазной машины в однофазную линию возможно применение соединения «треугольник». Пусковая емкость включается согласно схеме.

Включение мотора по соединению «треугольник»

Тип сборки «Звезда»

Аналогичный принцип сборки цепи запуска 3-х фазного двигателя, обмотки которого соединены «звездой». Когда есть возможность самостоятельно выполнить такое соединение обмоток, то его осуществляют на клеммнике.

Подключение «звездой»

Подписка на рассылку

Трехфазные двигатели рассчитаны на рабочее напряжение в 380 В. Но не всегда в быту имеется такое напряжение. Поэтому возникает проблема: как осуществить подключение электродвигателя через конденсатор к бытовой сети? Наиболее приемлемый и общедоступный способ — применение фазосдвигающего конденсатора. В таком режиме может быть достигнута 50–60%-ная мощность от номинальной. Отметим, что не все асинхронные двигатели одинаково хорошо будут работать при включении в однофазную сеть. Наиболее приспособлены к данным условиям двигатели, имеющие короткозамкнутый ротор, выполненный в виде двойной клетки.

Оптимальная работа электродвигателя достигается лишь в случае, если емкость конденсатора будет изменяться по мере увеличения скорости вращения. Практически очень сложно осуществить это требование. В связи с этим принято двухступенчатое управление двигателем. Пуск осуществляется с помощью двух конденсаторов (пускового — Сп и рабочего — Ср). Затем, при наборе нужной скорости вращения, пусковой нужно отключить. Основная функция его состоит в увеличении пускового момента.

Расчет конденсатора для электродвигателя можно произвести таким образом. Расчетная формула имеет вид: Ср = К*(Iн/U). Здесь приняты следующие обозначения:

сила тока (номинальная) — Iн (А);

напряжение (номинальное) — U (В);

К — безразмерный коэффициент.

Значение К определяется тем, как включен двигатель. К = 2800, когда двигатель включен по схеме «звезда». Если же он включен по схеме «треугольник», то значение К = 4800 (рис. 1).

Конденсаторы для запуска электродвигателя рекомендуется выбрать из бумажных, в частности:

  • бумажных, герметичных, в металлическом корпусе, маркировка КБГ-МН (рис. 2);
  • бумажных, термостойких, условное обозначение БГТ;
  • металлобумажных, частотных, МБГЧ.

В случае необходимости поменять направление вращения двигателя достаточно поменять местами провода, подключенные к зажимам конденсатора. Запуск электродвигателя с помощью конденсатора лучше осуществлять по схеме «треугольник». В этом случае можно добиться максимальной выходной мощности (до 70 %).

В качестве примера рассмотрим двигатель АО2. Его номинальная мощность 2,2 кВт, частота вращения — 1420 об/мин. Для его запуска в режиме холостого хода (или при наличии нагрузки) потребуются 2 конденсатора: первый емкостью 230 мкФ (рабочий) и второй емкостью 150 мкФ (пусковой).

Для обеспечения надежной работы электродвигателя используются пусковые конденсаторы.

Наибольшая нагрузка на электродвигатель действует на момент его старта. Именно в этой ситуации пусковой конденсатор начинает работать. Также отметим, что во многих ситуациях пуск проводится под нагрузку. В этом случае, нагрузка на обмотки и другие компоненты очень велика. Какая же конструкция позволяет снизить нагрузку?

Все конденсаторы, в том числе и пусковые, имеют следующие особенности:

  1. В качестве диэлектрика используется специальный материал. В рассматриваемом случае, часто используется оксидная пленка, которую наносят на один из электродов.
  2. Большая емкость при малых габаритных размерах – особенность полярных накопителей.
  3. Неполярные имеют большую стоимость и размеры, но они могут использоваться без учета полярности в цепи.

Подобная конструкция представляет собой сочетание 2 проводников, которые разделяет диэлектрик. Применение современных материалов позволяет значительно повысить показатель емкости и уменьшить его габаритные размеры, а также повысить его надежность. Многие при внушительных рабочих показателях имеют размеры не более 50 миллиметров.

Типы подключений машины

Однофазную асинхронную машину можно подключить к сети двумя способами:

  • с помощью пусковой обмотки;
  • с помощью рабочего конденсатора.

В цепях маломощных однофазных приводов на 220 В, которые включаются с помощью дополнительной обмотки, есть конденсаторы, которые включаются при запуске мотора. Когда разгон ротора завершен, Пусковая катушка, как описано в предыдущем разделе, отключается. 

В том случае, когда к двигателю подключен рабочий конденсатор, вспомогательная катушка продолжает работу на протяжении всего времени работы привода. Ее происходит благодаря работе такой катушки через конденсатор.

Один и тот же электропривод можно использовать в разных устройствах. Можно снять двигатель с одного прибора и поставить в другой. Подключить его можно с помощью трех разным схем:

  1. Временная подача электроэнергии на вспомогательную катушку через конденсатор.
  2. Временная подача электроэнергии на вспомогательную катушку через резистор (конденсатор отсутствует).
  3. Постоянная подача электричества на вспомогательную и основную катушки одновременно. Подача происходит через конденсатор. 

Если использовать в пусковой цепи резистор, величина активного сопротивления обмотки будет больше. Сдвиг фаз произойдет и его вполне хватит для того, чтобы заставить ротор вращаться. 

Возможно также использование вспомогательной обмотки с более высоким сопротивлением и меньшей индуктивностью. Для полного соответствия обмотка должна обладать меньшим количеством витков и более тонким проводом. 

Понятие конденсаторного пуска подразумевает, что конденсатор подключен к вспомогательной катушке, а подача электричества временная.

Чтобы значение пускового момента было максимальным, круговое магнитное поле статора начать вращение. Это требует перпендикулярного (относительно друг друга) положения обмоток. Резистор не даст такого сдвига.

В этой ситуации поможет конденсатор с правильно подобранной емкостью. Если все подходит, то катушки будут сдвинуты на угол в 90 градусов относительно друг друга.

Рассчитываем емкость конденсатора

Основная задача стабилизатора заключается в выполнении роли емкостного наполнителя энергии, нужной выпрямителям фильтров этого стабилизатора. С их помощью также происходит передача сигнала между усилителями. Чтобы запустить асинхронную однофазную машину переменного тока и обеспечить ее продолжительную работу тоже используют конденсаторы. Определив емкость определенного конденсатора можно предсказать, какое время будет продолжаться работа двигателя. 

Основной и главный параметр такого устройства – его емкость. Между этим параметром и площадью активного подключения, изолированного диэлектриком, существует некая зависимость. Диэлектрик почти невозможно увидеть невооруженным глазом, так как слой подобной изоляции состоит их из небольшого количества атомов, которые формируют пленку. 

По сути, главное назначение конденсатора – накопление, хранение и передача определенного количество энергии. А зачем так заморачиваться, спросите вы? Можно ведь просто подключить однофазную машину к источнику питания. Не тут то было. Подключая электропривод в сеть без посредника в виде конденсатора, вы рискуете работоспособностью агрегата. Он может просто сгореть.

Да и чтобы успешно включить трехфазную машину в однофазную не обойтись без устройства, которое поможет смещению фазы на 90 градусов на третьем выводе. 

Помимо всего вышесказанного, конденсатор может выполнять функцию индуктивной катушки. Скачки переменного тока, протекающего через него, успешно нивелируются благодаря тому, что перед началом работы, на пластинах конденсатора равномерно копятся заряды и только потом передаются устройству, которое является принимающим. 

Конденсатор может быть одним из трех видов:

  • электролитическим;
  • неполярным;
  • полярным.

Основные параметры конденсаторов

Ёмкость конденсатора-характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).

Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF).

Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.

Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:

  • 400 В – 10000 часов
  • 450 В – 5000 часов
  • 500 В – 1000 часов

Как работает

Однофазный двигатель на 220В с конденсатором может обладать мощностью от 5 Вт до 10 кВт. Все зависит от конструктивных особенностей машины. Ротор такого привода, как правило, представляет собой короткозамкнутую обмотку по типу «беличьей клетки». Это алюминиевые стержни, залитые в пазы и замкнутые накоротко. 

Обмотки в таком приводе две, несмотря на его название. Они всегда смещены относительно друг друга на 90°. При этом больше места в статоре занимает так называемая главная обмотка. 

Однофазный двигатель получил такое имя из-за того, что вместе с двигателем работает только одна, главная (или рабочая), обмотка. По ней протекает переменный ток, создающий магнитное поле, которое время от времени меняется. Можно сказать, что оно состоит из двух полей, которые вращаются навстречу друг другу, а их амплитуда при этом одинаковая.

Схематическое расположение обмоток

Закон электромагнитной индукции говорит о том, что магнитные потоки в замкнутых роторных витках вызывают появление индукционного тока. Последний, в свою очередь, взаимодействует с тем полем, которое его порождает. Если все моменты сил, которые действуют на ротор равны нулю, деталь не двигается. 

А с началом вращения описанное равенство будет тут же нарушено. Это связано со скольжением витков ротора. Оно будет отличным относительно вращающегося магнитного поля. Следовательно, сила Ампера, которая действует на замкнутые роторные витки со стороны прямого магнитного поля станет больше, чем со стороны обратного магнитного поля.

Возникновение индукционного тока в замкнутых роторных витках возможно только в случае, когда витки пересекают силовые линии поля. Чтобы это произошло, скорость вращения витков должна быть немного меньше той, с которой вращается поле. 

Это и послужило источником названия электроприводов такого типа. Их именовали асинхронными. 

Механическая нагрузка обратно пропорциональна скорости вращения. Это значит, что если увеличивается величина нагрузки, уменьшается скорость вращения. Величина индукционного тока в роторных витках при этом увеличивается. Из этого следует увеличение и механической мощности привода, а также мощности переменного тока, который он потребляет.

Внешний вид обмотки

Подведем небольшой промежуточный итог:

  1. Электроток – причина возникновения пульсирующего магнитного поля в статоре двигателя. Его можно рассматривать как два отдельных поля, которые вращаются навстречу с равной амплитудой.
  2. Если ротор не двигается, оба поля становятся причиной появления моментов, равных нулю, но разнонаправленных.
  3. Когда ротор начинает вращаться в одну из сторон, один из моментов будет преобладать над другим, то есть, вращение двигателя будет происходить только в заданную сторону.
  4. При отсутствии специальных механизмов пуска в двигателе, во время старта соответствующий момент будет нулевым, то есть привод не начнет вращаться.

Отличия между пусковым и рабочим конденсатором

Главное различие между этими элементами сети заключается в их предназначении. Так:

  1. Рабочий конденсатор используется при сдвиге фаз. Он также может называться «первым». Используется он постоянно в течение всего периода эксплуатации двигателя – и поэтому не исключается из цепи. Подключается он, как правило, последовательно со вспомогательной обмоткой. Поскольку он используется при переключении фаз, его ёмкость должна быть сравнительно маленькой. Это поможет избежать перегрева мотора, замедления роста мощности и торможения крутящего момента;
  2. Пусковой конденсатор используется при старте двигателя. После того, как мотор достигает необходимых частоты и мощности, его исключают из цепи. Ёмкость повышает стартовый момент мотора, обеспечивая его более быстрый выход на обычный эксплуатационный режим.

Рассмотрим эти ёмкостные элементы более подробно – с точки зрения эксплуатационных и электротехнических характеристик.

Характеристика Пусковой Рабочий
Где применяется В асинхронных электромоторах В асинхронных электромоторах
Как подключается Параллельно рабочему Последовательно со вспомогательной обмоткой
Для чего нужен Для создания стартового магнитного поля, которое повышает крутящий момент двигателя при запуске Для создания вращающегося электромагнитного поля, необходимого для приведения ротора в движение
Когда используется В процессе всего времени работы двигателя При старте двигателя
На какие условия рассчитан На стандартные, для 220 В мотора нужен ёмкостной элемент на 220 В На «жёсткие» с превышением напряжения. Для 220 В мотора нужен ёмкостной элемент на 500-600 В
Подходящий тип Бумажные или маслонаполненные Электролитические

Вышеуказанная разница в условиях работы обусловлена элементарными физическими процессами, протекающими во время эксплуатации деталей. Рабочий подключается в обмотку электромотора, которая являет собой простейший колебательный контур. Как следствие, в некоторые периоды времени на выводах этой цепи образуется напряжение, которое в 2-2,5 раза превышает таковое на входах. Из-за этого нерассчитанные на такое воздействие детали просто сгорают.

Пусковые детали работают в менее жёстких условиях. Напряжение, которое прикладывается к этим элементам, практически не превышает основное – а если и превышает, то незначительно, примерно в 1,15 раза. Этим можно пренебречь и использовать 220-вольтовые варианты – особенно если учесть их непродолжительный период эксплуатации в процессе включения цикле станка или иного устройства.

Как следствие, в качестве включающихся последовательно с обмоткой конденсаторов необходимо выбирать варианты, выдерживающие продолжительное воздействие повышенных напряжений. Практика показывает, что таковыми являются бумажные или маслонаполненные варианты (марки МБГЧ, МБГО). Причём, если судить по опыту отечественных пользователей, элементы российского производства характеризуются большей долговечностью и надёжностью.

Впрочем, они не лишены и недостатков. В частности, МБГЧ и МБГО отличаются большими размерами. Из-за этого подключить их в компактные устройства не получится. Можно, конечно, использовать более компактные оксидные, но в этом случае потребуется устанавливать диоды по определённой схеме.

Электролитические модели, хотя и могут быть рассчитаны на значительные эксплуатационные напряжения, применяются только в качестве пусковых. Это обусловлено ещё одной особенностью электромоторов. В сетях, куда они включены, при их работе возникает реактивное напряжение. Электролитические ёмкости под его действием очень быстро закипают, что приводит к повреждению самого устройства, а также оборудования, и является источником опасности для обслуживающего персонала.

Расчёт ёмкости и напряжения рабочего конденсатора

Расчёт сводится к подбору такой емкости, чтобы при номинальной нагрузке было обеспечено круговое магнитное поле, так как при значении ниже или выше номинального магнитное поле изменяет форму на эллиптическое, а это ухудшает рабочие характеристки двигателя и снижает пусковой момент. В инженерных справочниках приведена формула для расчёта ёмкости конденсатора:

I и sinφ –ток и сдвиг фаз между напряжением и током в цепи при вращающемся магнтном поле без конденсатора

f- частота переменного тока

U – напряжение питания

n- коэффициент трансформации обмоток. определяется как соотношение витков обмоток с конденсатором и без него.

Напряжение на конденсаторе рассчитывается по формуле

Uc -рабочее напряжение конденсатора

U — напряжение питания двигателя

n — коэффициент трансформации обмоток

Из формулы видно, что рабочее напряжение фазосдвигающего конденсатора выше напряжения питания двигателя.

В пособиях по расчёту приводят приближённое вычисление – 70-80 мкФ ёмкости конденсатора на 1 кВт мощности электродвигателя, а номинал напряжения конденсатора для сети 220 В обычно ставят — 450 В.

Также параллельно к рабочему конденсатору подключают пусковой конденсатор на время пуска, примерно на три секунды, после чего срабатывает реле и отключает пусковой конденсатор. В настоящее время в кондиционерах схемы с дополнительным пусковым конденсатором не применяют.

В более мощных кондиционерах используют компрессоры с трёхфазными асинхронными двигателями, пусковые и рабочие конденсаторы для таких двигателей не требуются.

При подключении асинхронного трехфазного электродвигателя на 380 В в однофазную сеть на 220 В необходимо рассчитать емкость фазосдвигающего конденсатора, точнее двух конденсаторов — рабочего и пускового конденсатора. Онлайн калькулятор для расчета емкости конденсатора для трехфазного двигателя в конце статьи.

Расчет конденсаторов для работы трехфазного асинхронного двигателя в однофазном режиме

Для включения трехфазного электродвигателя (что такое электродвигатель ➠ ) в однофазную сеть обмотки статора могут быть соединены в звезду или треугольник.

Напряжение сети подводят к началам двух фаз. К началу третьей фазы и одному из зажимов сети присоединяют рабочий конденсатор 1 и отключаемый (пусковой) конденсатор 2, который необходим для увеличения пускового момента.

После пуска двигателя конденсатор 2 отключают.

Рабочую емкость конденсаторного двигателя для частоты 50 Гц определяют по формулам:

где Ср — рабочая емкость при номинальной нагрузке, мкФ;Iном — номинальный ток фазы двигателя, А;U — напряжение сети, В.

Нагрузка двигателя с конденсатором не должна превышать 65—85% номинальной мощности, указанной на щитке трехфазного двигателя.

Если пуск двигателя происходит без нагрузки, то пусковая емкость не требуется — рабочая емкость будет в то же время пусковой. В этом случае схема включения упрощается.

При пуске двигателя под нагрузкой, близкой к номинальному моменту необходимо иметь пусковую емкость Сп = (2,5 ÷ 3) Ср .

Выбор конденсаторов по номинальному напряжению производят по соотношениям:

где Uк и U — напряжения на конденсаторе и в сети.

Основные технические данные некоторых конденсаторов приведены в таблице.

Если трехфазный электродвигатель, включенный в однофазную сеть, не достигает номинальной частоты вращения, а застревает на малой скорости, следует увеличить сопротивление клетки ротора проточкой короткозамыкающих колец или увеличить воздушный зазор шлифовкой ротора на 15—20%.

В том случае, если конденсаторы отсутствуют, можно использовать резисторы, которые включаются по тем же схемам, что и при конденсаторном пуске. Резисторы включаются вместо пусковых конденсаторов (рабочие конденсаторы отсутствуют).

Сопротивление (Ом) резистора может быть определено по формуле

где R — сопротивление резистора;κ и I — кратность пускового тока и линейный ток в трехфазном режиме.

Пример расчета рабочей емкости конденсатора для двигателя

Определить рабочую емкость для двигателя АО 31/2, 0.6 кВт, 127/220 В, 4.2/2.4 А, если двигатель включен по схеме, изображенной на рис. а, а напряжение сети равно 220 В. Пуск двигателя без нагрузки.

1. Рабочая емкость

2. Напряжение на конденсаторе при выбранной схеме

По таблице выбираем три конденсатора МБГО-2 по 10 мкФ каждый с рабочим напряжением 300 В. Конденсаторы включать параллельно.

Видео о том, как подключить электродвигатель на 220 вольт:

Что такое конденсатор

Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача – снимать поляризацию, т.е. заряд близкорасположенных проводников.

Существует три вида конденсаторов:

  • Полярные. Не рекомендуется использовать их в системах, подключенных к сети переменного тока, т.к. вследствие разрушения слоя диэлектрика происходит нагрев аппарата, вызывающий короткое замыкание.
  • Неполярные. Работают в любом включении, т.к. их обкладки одинаково взаимодействуют с диэлектриком и с источником.
  • Электролитические (оксидные). В роли электродов выступает тонкая оксидная пленка. Считаются идеальным вариантом для электродвигателей с низкой частотой, т.к. имеют максимально возможную емкость (до 100000 мкФ).

Как подобрать конденсатор для трехфазного электродвигателя

Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.

Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:

  • k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
  • Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
  • U сети – напряжение питания сети, т.е. 220 вольт.

Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.

Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора

Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.

В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.

Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.

Есть несколько режимов работы двигателей подобного типа:

  • Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
  • Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
  • Рабочий конденсатор + пусковой конденсатор (подключены параллельно).

Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.

Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.

Устройство и предназначение конденсаторов

Этот элемент электрической схемы состоит из двух пластин (обкладок). Обкладки расположены по отношению друг к другу так, что между ними оставлен зазор. При включении конденсатора в цепь электрического тока на обкладках накапливаются заряды. Из-за физического зазора между пластинами устройство обладает маленькой проводимостью.

Внимание! Этот зазор бывает воздушным или заполнен диэлектриком. В качестве диэлектрика применяются: бумага, электролит, оксидные плёнки

Главная особенность такого двухполюсника – способность накапливать энергию электрического поля и мгновенно отдавать её на нагрузку (заряд и разряд).

Первым прототипом ёмкости стала Лейденская банка, созданная в 1745 году в городе Лейдене немцем фон Клейстом. Банку изнутри и снаружи выстилали медной фольгой. Так появилась идея создания обкладок.

Графическое обозначение двухполюсника на схемах и чертежах – две вертикально расположенные черты (как обкладки) с зазором между ними.

Описание разновидностей конденсаторов и расчет удельной емкости

  • Для электродвигателей с низкой частотой идеальным вариантом будет электролитический конденсатор, он обладает максимальной возможной емкостью, может достигать значения в 100000 мкФ. При этом напряжение может колебаться от стандартных 220 В до 600 В. Электродвигатели, в этом случае, могут использоваться в тандеме с фильтром источника энергии. Но при этом при подключении необходимо строго соблюдать полярность. Оксидная пленка, являющаяся очень тонкой, выступает в роли электродов. Зачастую электрики их называют оксидными.

  • Полярные лучше не использовать в системе подключенных к сети переменного тока, в этом случае разрушается слой диэлектрика и происходит нагрев аппарата и, как следствие, замыканию накоротко.
  • Неполярные являются хорошим вариантом, но их стоимость и габариты значительно выше электролитических.

Подбирая лучший вариант нужно учитывать несколько факторов. Если подключение происходит через однофазную сеть с напряжением в 220 В, то для пуска нужно использовать фазосдвигающий механизм. Притом их должно быть два, не только для самого конденсатора, но и для двигателя. Формулы, по которым вычисляется удельная емкость конденсатора, зависит от типа подключения к системе, их всего два: треугольник и звезда.

I1 – номинальный ток фазы двигателя, А (Амперы, чаще всего указывается на упаковке двигателя);

Uсети – напряжение в сети (самые стандартные варианты 220 и 380 В). Есть и большее напряжение, но для них нужны совершенно другие типы соединения и более мощные двигатели.

Сп = Ср + Со

где Сп – Пусковая емкость, Ср – рабочая емкость, Со – отключаемая емкость.

Чтоб не напрягаться с расчетами умные люди вывели средние, оптимальные значения, зная оптимальную мощность электродвигателей, которая обозначается – М. Важным правилом является то, что пусковая емкость должна быть больше рабочей.

При мощности От 0,4 до 0,8 кВт: рабочая емкость – 40 мкФ, пусковая мощность – 80 мкФ, От 0,8 до 1,1 кВт: 80 мкФ и 160, мкФ, соответственно. От 1,1 до 1,5 кВт: Ср – 100 мкФ, Сп – 200 мкФ. От 1,5- 2,2 кВт: Ср – 150 мкФ, Сп 250 мкФ; При 2,2 кВт рабочая мощность должна быть не меньше 230 мкФ, а пусковая – 300 мкФ.

При подключении двигателя, рассчитанного на работу при 380 В, в сеть переменного тока с напряжением 220 В, происходит потеря половины номинальной мощности, хотя это никак не влияет, но скорость вращения ротора. При расчете мощности это является важным фактором, уменьшить эти потери можно при схеме подключения «треугольник», КПД двигателя в этом случае будет равно 70%.

Полярные конденсаторы лучше не использовать в системе подключенных к сети переменного тока, в этом случае разрушается слой диэлектрика и происходит нагрев аппарата и, как следствие, замыканию накоротко

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: