Как подключить двигатель 380 на 220: схемы и способы подключения

Дальнейшая коммутация: работаем с рабочим магнитным пускателем

Здесь же производим подключение питающих проводов – они идут от вводного автомата. При этом фазный провод подключается на контакт «L1» рабочего пускателя, а нулевой (нейтраль) на «L2». «L3» задействоваться не будет по причине отсутствия трёхфазной системы.

Подключение питающих проводов к магнитному пускателю

Сразу подключим одну из сторон катушки электромагнита, без которой невозможна работа пускателя

При выборе оборудования, следует обратить особое внимание на её рабочее напряжение. Оно может составлять 220 или 380 В

В последнем случае пускатель срабатывать не будет. Здесь подключение производится путём установки перемычки с контакта нулевого провода на клемму катушки.

Установка перемычки с клеммы подачи на катушку

Подключаем 3-х фазный электродвигатель без конденсаторов от 220В

Подключаем 3-х фазный электродвигатель без конденсаторов от 220В

Довольно часто в быту приходится использовать трехфазные электродвигатели для своих самоделок (наждаки, циркулярные пилы и т.п.) в однофазной сети 220 вольт. Как правило, для запуска трёхфазника в домашней сети применяют давно известный способ — одну из обмоток подключают через фазосдвигающий конденсатор. Но у этого решения есть серьёзный недостаток.

Во-первых, огромные размеры бумажных конденсаторов (особенно если используются пусковые ёмкости) иногда сопоставимы с размером самого электродвигателя. Во-вторых, в настоящее время достать такие конденсаторы непросто. А можно ли использовать трёхфазный электродвигатель в однофазной сети вообще без конденсаторов? Оказывается можно! Хочу поделиться найденной и проверенной на практике альтернативной заменой конденсаторов тиристорным ключом. Используя тиристорный ключ, можно запустить трёхфазный электродвигатель без использования конденсаторов. Схема ключа проста и не требует настройки. Готовый и помещённый в подходящий корпус тиристорный ключ занимает место не более пачки сигарет.

Принципиальная схема устройства:


Устройство работает следующим образом: при максимальном сопротивлении на R7 ключ закрыт и сдвиг фаз наибольший, соответственно пусковой момент максимальный. По мере выхода электродвигателя на максимальные обороты сопротивление устанавливают такое, чтобы сдвиг фаз был оптимальным для работы электродвигателя. Тиристорный ключ позволяет отказаться от пусковых и рабочих конденсаторов, а это при мощности электродвигателя от 2 кВт и выше даёт огромные преимущества. Все резисторы типа МЛТ VT1, VT2 – любые из этой серии Д231 и КУ 202 любые на ток 10А и напряжение 300 вольт Всю схему можно собрать на печатной плате. В моём случае мощность электродвигателя была 600 Вт, поэтому тиристоры не стал устанавливать на радиаторы (нагрева вообще не было).

Моя изменения при которых схема стабильно заработала: Транзисторы VT1 и VT2 заменил на BC547 и BC557 соответственно. R6 — 22 кОм, R3 — 10 кОм, R4 — 22 кОм, R2 — 47 кОм, R1 — 56 кОм, R7 — 20 кОм. VD3, VD4 — 1N4007, VD1, VD2 — Д233ВП, VD5 — Д814Д.

Печатная плата:

Схема была испытана на двигателе мощностью 3 кВт.

21.08.2013

Из-за чего отказывает электродвигатель?

Можете ознакомиться с фото защиты электродвигателя различного типа чтобы иметь представление о том, как она выглядит.

Рассмотрим случаи отказа электродвигателей в которых с помощью защиты можно избежать серьезных повреждений:

  • Недостаточный уровень электрического снабжения;
  • Высокий уровень подачи напряжения;
  • Быстрое изменение частоты подачи тока;
  • Неправильный монтаж электродвигателя либо хранения его основных элементов;
  • Увеличение температуры и превышение допустимого значения;
  • Недостаточная подача охлаждения;
  • Повышенный уровень температуры окружающей среды;
  • Пониженный уровень атмосферного давления, если эксплуатация двигателя происходит на увеличенной высоте на основе уровня моря;
  • Увеличенная температура рабочей жидкости;
  • Недопустимая вязкость рабочей жидкости;
  • Двигатель часто выключается и включается;
  • Блокирование работы ротора;
  • Неожиданный обрыв фазы.

Часто для этого используется плавкая версия предохранителя, поскольку она отличается простотой и способна выполнить много функций:

Версия на основе плавкого предохранительного выключателя представлена аварийным выключателем и плавким предохранителем, соединенных на основе общего корпуса. Выключатель позволяет размыкать либо замыкать сеть с помощью механического способа, а плавкий предохранитель создает качественную защиту электродвигателя на основе воздействия электрического тока. Однако выключателем пользуются в основном для процесса сервисного обслуживания, когда необходимо остановить передачу тока.

Плавкие версии предохранителей на основе быстрого срабатывания считаются отличными защитниками от коротких замыканий. Но непродолжительные перегрузки могут привести к поломке предохранителей этого вида. Из-за этого рекомендуется использовать их на основе воздействия незначительного переходного напряжения.

Плавкие предохранители на основе задержки срабатывания способны защитить от перегрузки либо различных коротких замыканий. Обычно они способны выдержать 5-краткое увеличение напряжения в течение 10-15 секунд.

Подбираем конденсатор

В цепи переменного тока — а это как раз наш случай — не стоит пользоваться полярными, имеющими плюсовой и минусовой контакты (анод и катод) конденсаторами. Но при необходимости эту проблему обойти можно путём использования диодного моста или двух полярных конденсаторов, объединённых в один соединением одноимённых контактов, но тут опять лучше позвать опытного электрика.

Существует формула потребной ёмкости рабочего конденсатора, но рассчитав по ней, равно потребуется проверять работу устройства на практике. Если есть какие-то конденсаторы лучше сразу перейти к методу вдумчивого подбора, но именно вдумчивого, а не совсем бездумного. Конденсаторы должны быть неполярными, обладать одинаковым рабочим напряжением никак не менее 300 В, но лучше 400 В и выше.

Рабочее напряжение конденсаторов должно быть ОДИНАКОВЫМ, иначе тот, где оно меньше, выйдет из строя.

Начните со значения 30 микрофарад (μF) на 1 киловатт паспортной мощности мотора при соединении обмоток статора звездой, при треугольнике можно пробовать с 50−70 μF. Электродвигатель на холостом ходу (без нагрузки) должен запуститься и набрать обороты не особо нагреваясь, продолжительная работа на холостом ходу нежелательна, двигатель может сгореть. Если холостой запуск происходит нормально, без перегрева и запаха гари, то рабочий конденсатор подобран, на нём и будет работать, подключайте нагрузку и продолжайте испытания уже в рабочем состоянии.

А если подключение электродвигателя 380 В на 220 В через конденсатор происходит сразу под серьёзной нагрузкой? Тут потребуется стартовый конденсатор, его ёмкость нужно начинать подбирать со значений в полтора раза больше, чем рабочий. Пример: рабочий 60 μF, тогда стартовый первоначально ставим на 90 μFи, если нормального запуска нет, то добавляем ёмкость пусковой цепи конденсаторов (примерная ёмкость пусковой цепи составляет до трёх рабочей, в нашем примере до 180 μF). После выхода на рабочие обороты пусковые конденсаторы выключаются, остаётся только рабочий. Цепи рабочего и пускового конденсаторов параллельны, в каждую можно поставить отдельный выключатель.

В бытовой сети не нужно использовать устройства мощностью более 3 квт — сработает защита или сгорит проводка.

Величина емкости: рабочей и пусковой

Удельную ёмкость этих элементов можно высчитать, используя онлайн-калькулятор в сети интернет. Расчёт делают, самостоятельно пользуясь формулами.

Для запускающего элемента

Известны две формулы для определения ёмкости пускового двухполюсника:

  • для схемы «звезда» – Cп = 2800*I/U;
  • для схемы «треугольник» – Cп = 4800*I/U.

Номинальный ток рассчитывают, пользуясь выражением:

I = P/(1,73*U*η*cosϕ.

Здесь:

  • P – мощность мотора;
  • U – напряжение сети;
  • η – КПД;
  • cosϕ – коэффициент мощности.

Для рабочего элемента

Подобрать рабочий конденсатор можно из расчёта:

Cp = 1/2 Cп.

Запущенный и устойчиво работающий двигатель нуждается в применении рабочей ёмкости для вращения под нагрузкой.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

Со всеми этими

  • Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно)

К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

{SOURCE}

Как выбрать конденсатор

Есть несколько нюансов, которые касаются количества подсоединяемых конденсаторов.

  1. Если мощность электромотора не превышает 1,5 кВт, то в схему можно устанавливать один рабочий конденсатор.
  2. Если же двигатель сразу при пуске работает под нагрузкой или его мощность превышает 1,5 кВт, тогда в схему придется установить два конденсатора: рабочий и пусковой. Оба элемента в схему вставляются параллельно. При этом последний будет работать только при запуске мотора, после чего он автоматически отключается.

По сути, схема подключения электродвигателя запитана на кнопку «Пуск» и на тумблер отключения питания. Чтобы запустить мотор, необходимо нажать на кнопку «Пуск» и удерживать ее до полного включения двигателя. Это можно контролировать даже на слух.

Включение в работу

1-ое, что необходимо это сделать найти, где середина катушек, другими словами, место соединения. Если наш асинхронный аппарат в неплохом состоянии, то это сделать будет проще – по цвету проводов. Увидите на набросок:

Если что остается сделать нашему клиенту так выведено, то заморочек не будет. Однако в большинстве случаев приходится заниматься с агрегатами, снятыми со стиральной машины непонятно когда, и непонятно кем. Тут, естественно, будет труднее.

Стоит испытать вызвонить концы при наличии омметра. Наибольшее сопротивление – это две катушки, соединенные поочередно. Помечаем их. Далее, смотрим на значения, которые указывает устройство. Пусковая катушка имеет сопротивление чем просто, чем рабочая.

Как подключить двигатель 380 на 220 вольт.

Сейчас берем конденсатор. Вообщем, на различных электронных машинах они различные, но для АВЕ это 6 мкФ, 400 вольт.

Если точно такового нет, есть вариант взять с близкими параметрами, но с напряжением, не ниже 350 В!

Давайте обратим внимание: кнопка на рисунке служит для запуска асинхронного электродвигателя АВЕ, когда он уже включен в сеть 220! Говоря иначе, надо сделать два выключателя: один общий, другой – пусковой, который, после его отпускания, отключался бы сам. По другому спалите аппарат. Если нужен реверс, то он делается по таковой схеме:

Если нужен реверс, то он делается по таковой схеме:

Если что остается сделать нашему клиенту изготовлено верно, тогда работает. Правда, конечно одна загвоздка. В борно случаются выведены далеко не все концы. Тогда с реверсом будут трудности. Только что разбирать и выводить их наружу без помощи других.

Вот некие моменты, как подсоединять асинхронные электронные машины к сети 220 вольт. Схемы легкие, и при неких усилиях не исключено полный набор сделать своими руками.

Выбираем автоматический выключатель и пусковое устройство.

Прежде чем заняться подключением двигателя, давайте подберем пускорегулирующую аппаратуру. Современная промышленность выпускает огромное количество автоматов для защиты электродвигателя. Купив такой прибор, можно сразу отбросить вопросы по дальнейшему выбору.

Это интересно — «Способы крепления светильников».

Единственное, что придется сделать — рассчитать аппарат по номинальному току. Вычисляется по формуле: для трехфазной сети —  I  = Р/ Un*1 .73*n*cosф, и для однофазной — I  = Р/ Un*cosф, где Р – мощность электромотора, Un – рабочее напряжение, n – его КПД (как правило, есть в паспорте на изделие, обычно 0,85), а cosф – коэффициент мощности (можно найти в паспорте, для электромоторов, обычно, он равен 0,85). Далее получив результат, умножаем его на температурный коэффициент (это примерно 1,2). Из этого следует, что если, к примеру, мы имеем двигатель 1кВт – то его номинальный ток получится 2,1А  для 380в и 6,3А для 220в. Подбираем автоматические выключатели (АВ) с ближайшими параметрами на увеличение. Хорошо зарекомендовали себя автоматы защиты двигателя с встроенным тепловым реле производства Moeller, ABB, Schneider Electric. Но есть одно «НО», они достаточно дорогие.

Поэтому, исходя из финансовых вопросов, берем обычный модульный АВ с характеристикой «С». Однако, к нему еще необходимо тепловое реле (теплушка). Самым оптимальным вариантом будет выбор ПМЛ-1220. И наконец, давайте сами соберем это устройство, тем более, что в нем нет ничего сложного. Нам понадобится: кроме АВ, модульный или просто контактор с 4 нормально-разомкнутыми контактами. Теплушка и две кнопки без фиксации (по одной с нормально-разомкнутыми нормально-замкнутым контактами). Дальше делаем как представлено ниже.

Как подключить трехфазный двигатель на 220 вольт с использованием пусковых конденсаторов

Схема запуска должна предусматривать отключение пусковых ёмкостей после пуска электромашины. Если этого не сделать, то машина начнёт перегреваться. Для этого есть разные способы:

  • Отключение пусковых ёмкостей с помощью реле времени. Задержка отключения составляет несколько секунд и подбирается опытным путём;
  • Применение универсального переключателя (ключа УП) на 3 положения. Его диаграмма включения собирается таким образом, чтобы в первом положении все контакты были разомкнуты, во втором замыкались два: питание и пусковые конденсаторы, а в третьем – только питание. Для реверсивной работы используется ключ на 5 положений;
  • Специальная кнопочная станция – ПНВС (пускатель нажимной с пусковым контактом). В этих конструкциях есть 3 контакта. При нажатии “Пуск” замыкаются все, но крайние фиксируются, а средний нужен, чтобы запустить машину, и отпадает после отпускания кнопки. Нажатие на кнопку “Стоп” отключает зафиксированные контакты.

Кнопка ПНВС

Варианты подключения 3-х фазного двигателя к электросети

Ввиду того, что конструкция движка в таком варианте усложняется, чаще применяется электродвигатель, подключение которого обеспечивается переключением между этими схемами. Двигатель с магнитным пускателем Трехфазный электродвигатель работает через магнитный пускатель по аналогичной схеме с автоматическим выключателем. На третью обмотку включают напряжение. Включение такого двигателя в сеть v приводит к снижению его номинальной мощности в з раза. Это можно легко заметить, проанализировав его конструкцию.

Первая задача решается «прозваниванием» всех проводов тестером замером сопротивления. Если электрические и механические режимы соответствуют конструктивно заложенным нормам, асинхронный движок — это самый долгоживущий из всех электромоторов.

Если концы одной обмотки найдены — лампа загорается.

При размыкании контакта стрелка пойдет к минусу. Но будет значительное падение мощности и эффективности его работы.

Кстати на советских пускателях и контакторах были совмещенные блок-контакты, то есть один из них был замкнутым, а второй разомкнутым, в большинстве современных контакторов нужно устанавливать сверху приставку блок-контактов, в которой есть пары дополнительных контактов как раз для этих целей. Преимуществом этой схемы соединения мотора является низкая стоимость, простое исполнение и техобслуживание.

Но таких накопителей не найти в магазинах. При запуске мощного асинхронного двигателя от Вт или при пуске маломощного, но с начальной нагрузкой, подсоединяют его к В через рабочий и пусковой конденсаторы. Как подключить кнопку пуска трехфазного двигателя

Читайте дополнительно: Оформление энергетического паспорта

Двигатель, особенности размещения перемычек катушек, первые шаги подключения

Первое, на что нужно обратить внимание – это шильдик двигателя. На нём прописана возможность однофазного подключения, мощность агрегата и другая необходимая для работы информация

Шильдик электродвигателя – на нём указаны все параметры

Было решено начинать сборку схемы подключения с контактной группы двигателя. На ней находится 6 контактов – по паре на обмотку. Изначально, перемычки на них были установлены в ряд по одной стороне, соединяя в одной точке все 3 обмотки – в «звезду». Подобная коммутация подходит лишь для трёхфазного подключения, поэтому они были переустановлены для подключения в «треугольник», который нам необходим для напряжения 220 В. Это расположение можно увидеть на фото.

Перемычки установлены в контактной группе для подключения «треугольником»

Особенности устройства

Конструкция асинхронного двигателя достаточно проста. Ее базовые элементы – это статор и ротор.

Статор имеет вид цилиндра, собранного из стальных листов. Обмотки находятся в пазах сердечника. Обычно для них используют обыкновенный силовой кабель. Оси обмоток располагаются под углом 120 градусов по отношению друг к другу. Соединение их концов может быть в треугольной форме или в форме звезды – это зависит от напряжения.

Далее поговорим о роторе. Выделяют две разновидности – короткозамкнутый ротор и фазный. Как показывают фото асинхронных двигателей, первая разновидность ротора имеет вид наборного стального сердечника. Его пазы заливают алюминием. Полученные стержни накоротко замыкают особыми торцевыми кольцами.

Фазный ротор характеризуется трёхфазной обмоткой, схожей со статорной. Чаще всего концы обмоток образуют форму звезды, а свободные подводят к специальным контактным кольцам.

Подобная конструкция даёт возможность при необходимости осуществить ввод добавочного резистора, который позволяет менять активное сопротивление. Это необходимо, если нужно уменьшить значение пускового тока.

В основе принципа работы электродвигателя асинхронного типа лежит применение вращающегося магнитного поля. Оно образуется в статоре, взаимодействует с токами, наводящимися им же в роторе. Важный нюанс: возникновение вращающегося момента возможно только при разных частотах, с которыми вращаются магнитные поля.

Схемы подключения

Варианты подключения двигателя через конденсатор:

  • схема подключения однофазного двигателя с использованием пускового конденсатора;
  • подключение электродвигателя с использованием конденсатора в рабочем режиме;
  • подключение однофазного электродвигателя с пусковым и рабочим конденсаторами.

Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей. В каждом случае есть свои достоинства и недостатки, рассмотрим каждый вариант более подробно.

Схема с пусковым конденсатором

Идея заключается в том, что конденсатор включается в цепь только при пуске, используется пусковая кнопка, которая размыкает контакты после раскрутки ротора, по инерции он начинает вращаться. Магнитное поле основной обмотки поддерживает вращение длительное время. В качестве кратковременного переключателя ставят кнопки с группой контактов или реле.

Поскольку схема кратковременного подключения однофазного двигателя через конденсатор предусматривает кнопку на пружине, которая при отпускании размыкает контакты, это дает возможность экономить, провода пусковой обмотки делают тоньше. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. В некоторых конструкциях ставят центробежный выключатель, который при достижении определенной скорости вращения размыкает контакты.

Схемы и конструкции регулировки скорости вращения и предотвращения перегрузок электродвигателя на автомате могут быть различны. Иногда центробежный выключатель устанавливается на валу ротора или на других элементах, вращающихся от него с прямым соединением, или через редуктор.

Под действием центробежных сил груз оттягивает пружины с контактной пластиной, при достижении установленной скорости вращения замыкает контакты, переключатель реле обесточивает двигатель или подает сигнал на другой механизм управления.

Бывают варианты, когда тепловое реле и центробежный выключатель устанавливаются в одной конструкции. В этом случае тепловое реле отключает двигатель при воздействии критической температуры или усилиями раздвигающегося груза центробежного выключателя.

В связи с особенностями характеристик асинхронного двигателя конденсатор в цепи дополнительной катушки искажает линии магнитного поля, от круглой формы до эллиптической, в результате этого потери мощности увеличиваются, снижается КПД. Пусковые характеристики остаются хорошие.

Схема с рабочим конденсатором

Отличие этой схемы в том, что конденсатор после пуска не отключается, и вторичная обмотка на протяжении всей работы импульсами своего магнитного поля раскручивает ротор. Мощность электродвигателя в этом случае значительно увеличивается, форму электромагнитного поля можно попытаться приблизить от эллиптической формы к круглой подбором емкости конденсатора. Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок. Если они будут меняться, то и все параметры будут не постоянными, для стабильности формы линий магнитного поля можно установить несколько конденсаторов с различными емкостями. Если при изменении нагрузки включать соответствующую емкость, это улучшит рабочие характеристики, но существенно усложняет схему и процесс эксплуатации.

Как подключить электродвигатель с 380 на 220В без конденсатора?

Как отмечалось выше, для пуска ЭД с короткозамкнутым ротором от сети с одной фазой чаще всего применяется конденсатор.

Именно он обеспечивает пуск устройства в первый момент времени после подачи однофазного тока. При этом емкость пускового устройства должна в три раза превышать этот же параметр для рабочей емкости.

Для АД, имеющих мощность до 3-х киловатт и применяемых в домашних условиях, цена на пусковые конденсаторы высока и порой соизмерима со стоимостью самого мотора.

Следовательно, многие все чаще избегают емкостей, применяемых только в момент пуска.

По-другому обстоит ситуация с рабочими конденсаторами, использование которых позволяет загрузить мотор на 80-85 процентов его мощности. В случае их отсутствия показатель мощности может упасть до 50 процентов.

Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.

Требуемый момент вращения обеспечивается за счет смещения фазных токов в обмотках АД.

Сегодня популярны две схемы, подходящие для моторов с мощностью до 2,2 кВт.

Интересно, что время пуска АД от однофазной сети ненамного ниже, чем в привычном режиме.

Основные элементы схемы — симисторы и симметричный динистры. Первые управляются разнополярными импульсами, а второй — сигналами, поступающими от полупериода питающего напряжения.

Подходит для электродвигателей на 380 Вольт, имеющих частоту вращения до 1 500 об/минуту с обмотками, подключенными по схеме треугольника.

В роли фазосдвигающего устройства выступает RC-цепь. Меняя сопротивление R2, удается добиться на емкости напряжения, смещенного на определенный угол (относительно напряжения бытовой сети).

Выполнение главной задачи берет на себя симметричный динистор VS2, который в определенный момент времени подключает заряженную емкость к симистору и активирует этот ключ.

Подойдет для электродвигателей, имеющих частоту вращения до 3000 об/минуту и для АД, отличающихся повышенным сопротивлением в момент пуска.

Для таких моторов требуется больший пусковой ток, поэтому более актуальной является схема разомкнутой звезды.

Особенность — применение двух электронных ключей, замещающих фазосдвигающие конденсаторы

В процессе наладки важно обеспечить требуемый угол сдвига в фазных обмотках

Делается это следующим образом:

  • Напряжение на электродвигатель подается через ручной пускатель (его необходимо подключить заранее).
  • После нажатия на кнопку требуется подобрать момент пуска с помощью резистора R

При реализации рассмотренных схем стоит учесть ряд особенностей:

  • Для эксперимента применялись безрадиаторные симисторы (типы ТС-2-25 и ТС-2-10), которые отлично себя проявили. Если использовать симисторы на корпусе из пластмассы (импортного производства), без радиаторов не обойтись.
  • Симметричный динистор типа DB3 может быть заменен на KP Несмотря на тот факт, что KP1125 сделан в России, он надежен и имеет меньше переключающее напряжение. Главный недостаток — дефицитность этого динистора.

Способ 2. Использование преобразователя частоты “Частотника”

Асинхронный преобразователь частоты служит для преобразования сетевого трёхфазного или однофазного переменного тока частотой 50 (60) Гц в трёхфазный или однофазный ток, частотой от 1 Гц до 800 Гц.

Для нашей цели подойдут частотные преобразователи для преобразования однофазной электрической сети в трёхфазную. Промышленностью выпускаются два типа подобных преобразователей с выходом на три фазы рабочего напряжения 220В и выходом на три фазы рабочего напряжения 380В. В первом случае 220В асинхронный электродвигатель подключается к частотному преобразователю по схеме “треугольник”, во втором случае 380В по схеме “звезда”.

Использование частотного преобразователя с асинхронным электродвигателем имеет массу преимуществ:

  • Экономичность — использование частотного управления электродвигателем снижает энергопотребление.
  • Защита электродвигателя по многим параметрам — замыкание обмотки на корпус (землю), защита двигателя от перенапряжения, защита от тока перегрузки, защита от возможного понижения напряжения, контроль фаз выходной цепи, контроль фаз питающей цепи, защита электропривода от работы с недогрузкой, защита двигателя от заклинивания, защита двигателя от перегрузок.
  • Возможность управления электродвигателем — регулировка частоты вращения электродвигателя, включение/выключение и изменение частоты оборотов электродвигателя по контролю параметров различных датчиков.
  • КПД 100% при преобразовании однофазной сети в трёхфазную — трёхфазный асинхронный электродвигатель работает на 100% своей мощности.

Хотя использование частотного преобразователя для получения трёхфазной сети из однофазной и имеет огромное преимущество перед другими способами, есть и спорный момент, подключить к частотнику электродвигатель согласно идущей в комплекте инструкции не составит труда и двигатель будет работать при включении как надо, но для того чтобы использовать весь его функционал нужны навыки по работе с ЧПУ (числовое программное управление).

Купить частотный преобразователь с доставкой Вы можете в нашем партнёрском магазине:

Название бренда: SAKO
Тип: Преобразователи AC/DC/AC
Размер: 160 х 100 х 130 мм.
Номер модели: SKI780-0D75-1/SKI780-1D5-1/SKI780-2D2-1
Частота на выходе: 0 — 500 HZ
Вес: 1.5 кг.
Входное напряжение: 220 В. одна фаза
Выходное напряжение: 220 В. три фазы
Название бренда: COOLCLASSIC
Тип: Преобразователи AC/DC/AC
Размер: 160 х 100 х 130 мм.
Номер модели: AT1-1.5KW; AT1-2.2KW; AT1-4KW; AT1-5.5KW
Частота на выходе: 0-400hz
Выходная мощность: 1,5 — 5,5 кВт.
Вес: 1.65 кг.
Входное напряжение: 220 В. Одна фаза.
Выходное напряжение: 220 В. Три фазы
Название бренда: COOLCLASSIC
Тип: Преобразователи AC/DC/AC
Размер: 101 х 171 х 137 мм.
Частота на выходе: 0-400hz
Выходная мощность: 3 — 7,5 кВт.
Вес: 1.65 кг.
Входное напряжение: 220 В. Одна фаза
Выходное напряжение: 220 В. Три фазы
Название бренда: COOLCLASSIC
Тип: Преобразователи AC/DC/AC
Размер: 180 х 150 х 150 мм.
Номер модели: 1.5KW -7KW 380V Inverter
Частота на выходе: 0 — 400 HZ
Вес: 2.3 кг.
Входное напряжение: 380 В. три фазы
Выходное напряжение: 380 В. три фазы
Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector