Ртутные лампы: полный гид по 13 видам

Как устроена современная ЛЛ

Основной принцип действия современной люминесцентной лампы заключается в получении УФ-излучения с помощью пробоя газового промежутка между электродами и последующего преобразования этого излучения в видимый свет с помощью эффекта люминесценции в специальных фосфорсодержащих покрытиях, так называемых люминофорах. Варьируя состав люминофора, получают разные цвета видимого участка спектра, от синего до красного. На рисунке ниже схематично представлен разрез типичной ЛЛ.

Кроме указанных компонентов каждая лампа наполняется инертным газом (обычно это Ar) для увеличения ресурса вольфрамовых электродов. Наличие ртути (Hg) в небольшом количестве резко увеличивает светоотдачу из-за роста плотности тока, вызванного повышением концентрации электронов, появляющихся в результате ионизации атомом этого металла. Существуют версии ламп, в которых ртуть отсутствует, а УФ-излучение появляется только от ионизации атомов инертного газа. Световой поток таких светильников существенно меньше, но зато они безопасны при эксплуатации.

Принципиальная схема люминесцентной лампы

Особенности РКЛ

Немаловажную роль в характеристиках и конструкции РКЛ играет давление газа и количество ртути в колбе. Чем они выше, тем выше мощность прибора и, соответственно, его светоотдача. По давлению в колбе (после выхода на рабочий режим) ртутно-кварцевые лампы разделяются на три типа:

  1. Низкого давления (до 100 Па).
  2. Высокого давления (до 100 КПа).
  3. Сверхвысокого давления (до 1 МПа и выше).

Лампы низкого давления

Устройства этого типа, как правило, имеют невысокую мощность, легко запускаются простым подогревом электродов, практически сразу выходят на рабочий режим, а температура их относительно невысока. Конструктивно такие лампы чаще всего выполняются в виде трубок, а электроды имеют вид спиралей накаливания, предварительный разогрев которых обеспечивает запуск лампы.

Лампы высокого и сверхвысокого давления

Приборы этих типов обладают большим отношением габариты/мощность, а из-за высокого внутреннего давления имеют определенные конструктивные особенности. Их колба изготавливается из толстого стекла и нередко имеет шаровую форму. Для запуска таких источников света используются не подогреваемые катоды, а высоковольтный разряд или дополнительные поджигающие электроды. Рабочая температура колб высокого давления достигает 500 °С и более.

Характерными особенностями приборов высокого давления можно считать продолжительный (минуты и десятки минут) выход на рабочий режим и невозможность повторного пуска горячей лампы (нужно дождаться, чтобы устройство остыло, а давление в колбе снизилось).

Люминесцентная лампа: принцип действия, достоинства и недостатки

— Принцип действия люминесцентных ламп

— Достоинства и недостатки люминесцентных ламп

Принцип действия Принцип действия люминесцентной лампы низкого давления основан на дуговом разряде в парах ртути низкого давления. Получающееся при этом ультрафиолетовое излучение преобразуется в видимое в слое люминофора, покрывающего внутренние стенки лампы. Лампы представляют собой длинные стеклянные трубки, в торцы которых впаяны ножки, несущие по два электрода, между которыми находится катод в виде спирали. В трубку лампы введены пары ртути и инертный газ, главным образом аргон. Назначением инертных газов является обеспечение надежного загорания лампы и уменьшение распыления катодов. На внутреннюю поверхность трубки нанесен слой люминофора. Если к электродам, вставленным в концы стеклянной трубки, которая заполнена разряженным инертным газом или парами металла, приложить напряжение из расчета не менее 500. 2000 В на 1 м длины трубки, то свободные электроны в полости трубки начинают лететь в сторону электрода с положительным зарядом. Когда к электродам приложено переменное напряжение, направление движения электронов изменяется с частотой приложенного напряжения.В своем движении электроны встречаются с нейтральными атомами газа — заполнителя полости трубки — и ионизируют их, выбивая электроны с верхней орбиты в пространство. Возбужденные таким образом атомы, вновь сталкиваясь с электронами, снова превращаются в нейтральные атомы. Это обратное превращение сопровождается излучением кванта световой энергии. Каждому инертному газу и парам металла соответствует свой спектральный состав излучаемого света: . трубки с гелием светятся светло-желтым или бледно-розовым светом; • трубки с неоном — красным светом; трубки с аргоном — голубым светом. Смешивая инертные газы или нанося люминофоры на поверхность разрядной трубки, получают различные оттенки свечения. Люминесцентные лампы дневного и белого света выполняют в виде прямой или дугообразной трубки из обычного стекла, не пропускающего короткие ультрафиолетовые лучи. Электроды изготавливают из вольфрамовой проволоки. Трубку заполняют смесью аргона и паров ртути. Внутри поверхность трубки покрыта люминофором — специальным составом, который светится под воздействием ультрафиолетовых лучей, возникающих при электрическом разряде в парах ртути. Аргон способствует надежному горению разряда в трубке.

Достоинства люминесцентных ламп. Основным преимуществом люминесцентных ламп по сравнению с лампами накаливания являются: . более высокий коэффициент полезного действия (15. 20%), высокая световая отдача и в несколько раз больший срок службы. Таким образом, при затрате той же мощности достигается значительно большая освещенность по сравнению с лампами накаливания; . правильный выбор ламп по цветности может создать освещение, близкое к естественному; о благоприятные спектры излучения, обеспечивающие высокое качество цветопередачи; . люминесцентные лампы значительно менее чувствительны к повышениям напряжения, поэтому их экономично применять на лестничных клетках и в помещениях, освещаемых ночью, когда в сети напряжение повышено. Лампы накаливания (очень чувствительные к повышениям напряжения) быстро перегорают; . малая себестоимость; . низкая яркость поверхности и ее низкая температура (до 50 °С) Недостатки люминесцентных ламп Основным недостатками люминесцентных ламп по сравнению с лампами накаливания являются: « сложность схемы включения; • ограниченная единичная мощность (до 150 Вт); • зависимость от температуры окружающей среды (при снижении температуры лампы могут гаснуть или не зажигаться); » значительное снижение светового потока к концу срока службы; • вредные для зрения пульсации светового потока; » акустические помехи и повышенная шумность работы; в при снижении напряжения сети более чем на 10% от номинального значения лампа не зажигается; » дополнительные потери энергии в пускорегулирующеи аппаратуре, достигающие 25. 35% мощности ламп; • наличие радиопомех; • лампы содержат вредные для здоровья вещества, поэтому вышедшие из строя газоразрядные лампы требуют тщательной утилизации.

Сколько ртути в лампах

Каждый вид ртутьсодержащих модулей имеет различное содержание ртути в лампах, количество также зависит от места изготовления (отечественное/зарубежное):

  • Натриевые РЛВД содержат 30-50/30 мг ртути.
  • В люминесцентных трубчатых имеется 40-65/10 мг.
  • ДРЛ высокого давления содержат 50-600/30 мг.
  • Компактные люминесцентные — 5/2-7 мг.
  • Металлогалогенные источники света 40-60/25 мг.
  • В неоновых трубках содержится более 10 мг ртути.

Учитывая предельную концентрацию жидкого металла для населенных зон в размере 0,0003 мг/м3, становится понятно, почему в ФККО ртутьсодержащие отходы относятся к первому классу опасности.

Специфика подключения ЛЛ

Для получения тока через лампу требуется произвести пробой промежутка газа, для чего подается напряжение порядка 1 000 вольт. Ток растет лавинообразно, сопротивление резко падает (отрицательное дифференциальное сопротивление), что может привести к разрушению (перегоранию) лампы. Чтобы предотвратить этот процесс, применяется устройство, называемое балластом (или балластником), с помощью которого ограничивают рост тока при достижении определенного уровня. Применяются два вида балластников:

  • электромагнитное пускорегулирующее устройство (ЭмПРА) – состоит из дросселя (активной нагрузки), последовательно подключенного в цепь лампы, и стартера, подключенного между нитями накала. Стартер представляет собой небольшую неоновую лампочку;
  • электронное пускорегулирующее устройство (ЭПРА) – это по сути плата с электронными деталями (диодами, транзисторами, динисторами, микросхемами).

В электронном варианте балластника отдельный стартер не нужен – его функции реализованы на общей плате. ЭПРА работает на высокой частоте (десятки кГц), что полностью устраняет эффект мерцания, присущий ЭмПРА.

Электромагнитный балласт

ЭПРА имеют ряд неоспоримых преимуществ:

  • небольшие геометрические размеры и вес;
  • отсутствие мерцания и шума от вибраций, поскольку устройства работают на высоких частотах;
  • быстрое включение ламп;
  • снижение тепловых потерь по сравнению с ЭмПРА;
  • значения коэффициента мощности – до 0,95 ;
  • наличие в устройствах нескольких вариантов защиты от короткого замыкания, что продлевает ресурс изделий и повышает безопасность.

Электронное пускорегулирующее устройство

Баны [ править ]

В ЕС использование ртутных ламп с низким КПД для освещения было запрещено в 2015 году. Это не влияет ни на использование ртути в компактных люминесцентных лампах , ни на использование ртутных ламп для иных целей, кроме освещения.

В США балласты для ртутных ламп для общего освещения, за исключением балластов для специальных ртутных ламп, были запрещены после 1 января 2008 года. Из-за этого несколько производителей начали продавать заменяющие компактные люминесцентные (CFL) и светоизлучающие лампы. диодные (LED) лампы для светильников на парах ртути, не требующие доработки существующего светильника. В 2015 году Министерство энергетики США определило, что правила, предложенные в 2010 году для ртутных ламп HID , не будут применяться, поскольку они не принесут существенной экономии.

Основные достоинства и недостатки ламп

Изделия обладают массой плюсов.

  • Приличный диапазон мощности. Чаще всего встречаются приборы на 125, 250, 400 Вт, но бывают лампочки от 80 до 1000 ватт.
  • Компактные размеры. Несмотря на световую мощь, габариты устройств вполне позволяют использовать их в стандартных светильниках.
  • Отличная светоотдача. Лампа ДРЛ 250 Вт способна отдавать целых 13 000 Лм.
  • Продолжительный срок службы. Средний ресурс приборов составляет 12 тыс. часов. При бережной эксплуатации и соблюдении всех требований они прослужат еще больше.
  • Низкая чувствительность к атмосферным воздействиям. Снижение или повышение температуры воздуха, резкий ветер или осадки не страшны лампам ДРЛ, поэтому их эффективно применяют в уличном освещении.
  • Включение без ПРА. Некоторые разновидности устройств, например, ртутно-вольфрамовые, способны запускаться без пускорегулирующей аппаратуры.

К сожалению, лампы ДРЛ при всех невероятных достоинствах не лишены менее приятных особенностей.

  • Длительное время разгорания. Чтобы устройство засветило в полную силу, придется подождать от 7 до 15 минут. Объяснение такому явлению простое: в холодной колбе лампы капельки ртути конденсируются, превращаясь в пар лишь после полного разогрева устройства.
  • Чувствительность к перепадам напряжения. Для работы изделий качество электроснабжения должно быть на высоком уровне. Экстремально низкое напряжение неизбежно спровоцирует отказ от включения, а незначительно изменение параметров электросети снижает яркость до 30%.
  • Повышенные требования к электрофурнитуре. Работающие лампы сильно нагреваются, поэтому контакты с проводами должны обладать отменными показателями термостойкости.
  • Интервал между выключением – включением. Лампу ДРЛ невозможно запустить, пока она полностью не остынет.
  • Шум при работе. Устройства издают довольно громкие жужжащие звуки, которые могут раздражать человеческий слух.

Подключение с применением электромагнитного балласта или ЭПРА

Особенности строения  не позволяют подключить ЛДС непосредственно в сеть 220 В – работа от такого уровня напряжения невозможна. Для запуска требуется напряжение не ниже 600В.

С помощью электронных схем необходимо последовательно друг за другом обеспечить нужные режимы работы, каждый из которых требует определенного уровня напряжений.

Режимы работы:

  • розжиг;
  • свечение.

Запуск заключается в подаче импульсов высокого напряжения (до 1 кВ) на электроды, в результате чего между ними возникает разряд.

Отдельные виды пускорегулирующей аппаратуры, перед тем как произвести пуск, нагревают спираль электродов. Накаливание помогает легче запустить разряд, нить при этом меньше перегревается и дольше служит.

После того как светильник загорелся, питание производится переменным напряжением, включается энергосберегающий режим.

В устройствах, выпускаемых промышленностью, используются два вида пускорегулирующей аппаратуры (ПРА):

  • электромагнитный пускорегулирующий аппарат ЭмПРА;
  • электронный пускорегулирующий аппарат – ЭПРА.

Схемы предусматривают различное подключение, оно представлено ниже.

Схема с ЭмПРА

В состав электрической схемы светильника с электромагнитной пускорегулирующей аппаратурой (ЭмПРА) входят элементы:

  • дроссель;
  • стартер;
  • компенсирующий конденсатор;
  • люминесцентная лампа.

В момент подачи питания через цепь: дроссель – электроды ЛДС, на контактах стартера появляется напряжения.

Биметаллические контакты стартера, находящиеся в газовой среде, нагреваясь, замыкаются. Из-за этого в цепи светильника создается замкнутый контур: контакт 220 В – дроссель – электроды стартера – электроды лампы – контакт 220 В.

Нити электродов, разогреваясь, испускают электроны, которые создают тлеющий разряд. Часть тока начинает течь по цепи: 220В – дроссель – 1-й электрод – 2-й электрод – 220 В. Ток в стартере падает, биметаллические контакты размыкаются. По законам физики в этот момент возникает ЭДС самоиндукции на контактах дросселя, что приводит к возникновению высоковольтного импульса на электродах. Происходит пробой газовой среды, возникает электрическая дуга между противоположными электродами. ЛДС начинает светиться ровным светом.

В дальнейшем подсоединенный в линию дроссель обеспечивает низкий уровень силы тока, протекающего через электроды.

Дроссель, подключенный в цепь переменного тока, работает как индуктивное сопротивление, снижая до 30 % коэффициент полезного действия светильника.

Внимание! С целью уменьшения потерь энергии в схему включают компенсирующий конденсатор, без него светильник будет работать, но электропотребление увеличится

Схема с ЭПРА

Внимание! В рознице ЭПРА часто встречаются под наименованием электронный балласт. Название драйвер продавцы применяют для обозначения блоков питания для светодиодных лент

Внешний вид и устройство электронного балласта, предназначенного для включения двух ламп, мощностью 36 ватт каждая.

В схемах с ЭПРА физические процессы остаются прежними. В некоторых моделях предусмотрено предварительное нагревание электродов, что увеличивает срок службы лампы.

На рисунке показан внешний вид ЭПРА для различных по мощности устройств.

Размеры позволяют разместить ЭПРА даже в цоколе Е27.

Компактные ЭСЛ – один из видов люминесцентных могут иметь цоколь g23.

На рисунке представлена упрощенная функциональная схема ЭПРА.

Характеристика ртутьсодержащих отбросов

Состав светодиодной лампы включает ртуть – токсичный металл, испарение которого опасно. Воздействие вещества на человека вызывает острое отравление со следующими признаками:

  • головная боль;
  • повышение температуры;
  • боль в горле;
  • снижение аппетита;
  • тошнота;
  • рвотный рефлекс;
  • слабость по телу;
  • кашель.

При взаимодействии с ртутными отходами возникает хроническое отравление — тремор, тахикардия, невроз, бессонница, воспаление легких.

В случае нарушения целостности ртутьсодержащих ламп заражение окружающей среды необратимо.

Состав

Отходы 1-4-ой категории обязательно подлежат паспортизации. Мусор, включающий изделия с ртутью, относится к 1-ому классу. Владелец материала оформляет паспорт с указанием составляющих отходов, характеристики, степени вреда.

Ртутная лампа содержит (в %):

  • ртуть (0,02);
  • оксид кремния (92);
  • дополнительные вещества (7,98).

Надлежащая эксплуатация ёмкости не предполагает опасного загрязнения.

Ртуть – самый ядовитый элемент

Пары ртути не имеют цвета и запаха, независимо от объема вещества. Они токсичны даже в небольшом количестве, способны вызывать сбои в работе систем и органов человека. Большая концентрация вещества — смерть.

Порядок захоронения

Утилизировать отработанные ртутные изделия путем захоронения запрещено законодательством.

Ртуть оказывает токсичное действие не только на человека, но и на окружающую природу.

Для начала лампы содержащие ртуть обезвреживаются одним из общепринятых способов, а получившееся утильсырье продается или хранится на специальных площадках.

Способ складирования отработанных ртутьсодержащих изделий для утилизаторов, схож с правилами временного хранения для потребителей газоразрядных приборов.

Склад защищается от агрессивных химических веществ, атмосферных явлений, а покрытие стен и пола не должно пропускать поверхностные и грунтовые воды. В точках складирования отходов устанавливаются автоматические газосигнализаторы паров ртути.

Порядок транспортирования

Отработанные ртутные лампы не могут храниться на складах более шести месяцев. Поэтому заключается договор с предприятием, выполняющим демеркуризацию ртутных ламп (которое имеет разрешение на переработку и транспортировку).

Правила перевозки отходов выглядит следующим образом:

  • Процесс погрузки/выгрузки и транспортирования выполняют специализированные организации обладающие лицензией.
  • Все действия выполняются в защитных костюмах с масками и перчатками.
  • Перевозимый груз находится в герметичных контейнерах, которые не дадут ртути проникнуть за его пределы даже в случае ДТП.
  • Запрещается грубо кантовать и бросать ртутьсодержащий груз.
  • Знак ядовитой опасности должен присутствовать как на транспортном средстве, так и на ёмкостях с лампами.

Перед транспортировкой составляется акт о приеме-передаче отходов. За всем процессом должен наблюдать ответственный за временное хранение ламп человек.

Устройство люминесцентной лампы

На двух торцах люминесцентной лампы рис.2 расположены вваренные стеклянные ножки, на каждой ножке смонтированы электроды 5, электроды выведены к цоколю 2 и соединены с контактными штырьками, на самих электродах по обеим торцам лампы закреплена вольфрамовая спираль.

На внутреннюю поверхность лампы нанесен тонкий слой люминофора 4, колба лампы 1 после откачки воздуха заполняется аргоном с небольшим количеством ртути 3.

Для чего нужен дроссель в люминесцентной лампе

Дроссель в схеме люминесцентного светильника служит для броска напряжения. Рассмотрим отдельную электрическую схему рис.3, которая не относится к схеме люминесцентного светильника.

Для данной схемы, при размыкании ключа, лампочка на короткое мгновение загорится ярче и затем погаснет. Явление это связано с возникновением ЭДС самоиндукции катушки правило Ленца. Чтобы увеличить свойства проявления самоиндукции, катушку наматывают на сердечник — для увеличения электромагнитного потока.

Схематическое изображение рисунка 4 дает нам полное представление об устройстве дросселя для отдельных типов светильников с люминесцентными лампами.

Магнитопровод сердечник дросселя собирается из пластин электротехнической стали, две обмотки в дросселе — между собой соединены последовательно.

Принцип работы стартера люминесцентной лампы

Стартер в электрической схеме выполняет работу быстродействующего ключа, то-есть им создается замыкание и размыкание электрической цепи.

стартеры для люминесцентного свтильника

При включении стартера замыкании ключа происходит разогрев катодов, а при размыкании цепи создается импульс напряжения, необходимый для зажигания лампы. Стартер в разобранном виде представляет из себя так называемую лампу тлеющего разряда с биметаллическими электродами.

Принцип работы люминесцентного светильника

По двум предоставленным схемам люминесцентных светильников рис.5 можно понять, — в каком соединении состоят каждые отдельные элементы.

Все элементы двух светильников состоят в последовательном соединении, — кроме конденсаторов. Когда мы включаем люминесцентный светильник, происходит прогревание биметаллической пластинки стартера. Пластинка при прогревании изгибается и стартер замыкается, тлеющий разряд при замыкании пластинок гаснет и пластинки начинают остывать, при остывании — пластинки размыкаются. Когда пластинки размыкаются в парах ртути происходит дуговой разряд и лампа зажигается.

В настоящее время имеются более усовершенствованные люминесцентные светильники — с электронным балластом, принцип работы которых тот-же самый что и у люминесцентных светильников, которые были рассмотрены в этой теме.

Предоставленные для Вас записи вносятся мною в сайт из личных конспектов, почерк в которых очень плохой, часть информации берется из собственных знаний. Фотоснимки и электрические схемы подбираются для темы — из интернета. Чтобы предоставить свои записи с личными фотоснимками при выполнении каких-либо работ, нужно наверное иметь личного фотографа или непосредственно обращаться с просьбой к кому-либо, а обращаться с такой просьбой просто не хочется.

На этом пока все друзья. Следите за рубрикой.

04.03.2015 в 16:41

Всегда помогу Борис полезной информацией по части электротехники как Вам так и Вашим друзьям, и знакомым. Виктор.

26.02.2015 в 08:58

Здравствуйте, Виктор! Спасибо за эл.ликбез,помогает! У меня такой случай: погас сначала один потолочный светильник встроенный в систему Армстронг, потом другой. Обратился за помощью к специалисту и получил ответ: светильники надо выбросить и заменить на новые целиком, т.к. сейчас идут светильники без стартеров и т. д. Я заменил светильники и задумался, что этот путь очень дорогой, новый светильник стоит 1400рублей. Если можно, скажите пожалуйста как проверить начинку светильника? дроссели, стартеры, конденсатор. Светильник 4-х ламповый, с 4-мя стартерами, двумя дросселями, одним конденсатором, другими словами как найти неисправный прибор? Прибор-тестор у меня есть. И ещё, в каком магазине можно купить в Тюмени составные части начинки? Заранее благодарю Вас. Спасибо. Борис. 26.02.15.

04.03.2015 в 16:35

Здравствуйте Борис. По люминесцентным светильникам я составлю дополнительную отдельную тему и отвечу на интересующие Ваши вопросы. Следите за рубрикой Борис, я просто стал редко заходить на свой сайт и Ваше письмо прочитал 4 марта, постараюсь ответить на вопросы в полном объеме.

17.03.2015 в 12:57

Опасности ультрафиолета [ править ]

Некоторые лампы на парах ртути (включая металлогалогенные лампы) должны содержать элемент (или быть установлен в приспособлении, в котором есть элемент), который предотвращает выход ультрафиолетового излучения

Обычно эту функцию выполняет внешняя колба лампы из боросиликатного стекла, но следует проявлять особую осторожность, если лампа устанавливается в ситуации, когда эта внешняя оболочка может быть повреждена. Были задокументированы случаи повреждения ламп в спортзалах от попадания мячей в лампы, что приводило к солнечным ожогам и воспалению глаз от коротковолнового ультрафиолетового излучения

При использовании в таких местах, как спортивные залы, светильник должен иметь прочную внешнюю защиту или внешнюю линзу для защиты внешней колбы лампы. Также делаются специальные «предохранительные» лампы, которые намеренно перегорают при разбивании наружного стекла. Обычно это достигается за счет использования тонкой углеродной полосы, которая сгорает в присутствии воздуха, для соединения одного из электродов.

Даже при использовании этих методов некоторое УФ-излучение все еще может проходить через внешнюю колбу лампы. Это приводит к ускорению процесса старения некоторых пластиков, используемых в конструкции светильников, в результате чего они значительно обесцвечиваются уже через несколько лет эксплуатации. Поликарбонат особенно страдает от этой проблемы, и нередко можно увидеть довольно новые поверхности из поликарбоната, расположенные рядом с лампой, которые через короткое время приобретают тусклый желтый цвет.

Особенности конструкции ламп ДРЛ

Стандартное устройство состоит из цоколя с резьбой и стеклянной матовой колбы, за которой скрывается горелка. Трубчатая горелка наполнена инертным газом и ртутью. Раньше лампы ДРЛ включали 2 электрода, из-за чего запуск осветительного прибора происходил при помощи дополнительного устройства.

Проблема решилась, когда к конструкции добавили еще 2 электрода. Четырехэлектродные лампочки запускаются с помощью дросселя, что ускорило их зажигание, стабилизировало работу. Рассмотрим подробнее конструкцию ламп.

  • Цоколь. Резьбовой элемент играет роль посредника между электрической сетью и электродами. Он принимает электрическую энергию через резьбовой и точечный элемент патрона, а затем переносит ее на электроды горелки.
  • Ртутно-кварцевая горелка. Представляет собой стеклянную трубку, заполненную аргоном и малым количеством ртути. С двух сторон горелки размещено по 2 электрода. Они принимают электрическую энергию от цоколя, передают к горелке, за счет чего она вспыхивает ярким светом.
  • Стеклянная колба. Внешняя часть защищает устройство, выполняет функцию светорассеивателя. Внутреннее пространство заполнено инертным газом, куда заведены электрические проводники, ограничители сопротивления, а по центру размещена горелка. Изнутри поверхность колбы покрыта люминофором (сульфидом цинка), который преобразовывает поглощаемую энергию в световое излучение.

Классы отходов 3 и 4: что к ним относится и их особенности

К классу III относятся умеренно опасные вещества. У них средняя степень вредного воздействия на окружающую среду. Они еще приводят к нарушению экологической системы, но для восстановления требуется около 10 лет. После этого влияние источника заражения снижается к минимуму. К этому классу опасности относят соединения марганца, серебра, никеля, меди, бензосодержащие отходы, соляную кислоту, трихлорэтилен, фосфаты, этиловый спирт и другие вещества. После их воздействия экологическая система нарушается и для ее восстановления требуется от 10 лет. Определение принадлежности к перечню отходов класса опасности III осуществляется расчетным или экспериментальным методом.

На практике такие отходы могут представлять собой отработанные медные провода, ацетон, обтирочные материалы, шлам очистки труб от нефти, масла (автомобильные, моторные), дизтопливо, цементную пыль, загрязненный бензином песок, свежий навоз со свинофермы, свежий утиный и гусиный помет, табачную пыль.

К классу IV относятся мало опасные вещества. У них низкая степень вредного воздействия опасных отходов на окружающую среду. Эти вещества приводят к определенным нарушениям экологической системы, но она способна восстановиться в течение 3 лет в среднем. К этому классу опасности относятся сульфаты, хлориды, алюминий, метан, аммиак, этанол и другие вещества. После их воздействия экологическая система также нарушается, но период ее восстановления наименьший – около 3 лет. Определение принадлежности к классу опасности IV осуществляется только экспериментальным методом.

На практике такие отходы часто являются строительными (бой кирпича, остатки щебня и арматуры, шпаклевка, куски рубероида). Также это может быть уличный и дорожный мусор, отходы битума и асфальта, обломки мебели, упаковки, остатки пищи, осколки стекла, опилки, отходы пуха и перьев, перепревший навоз и помет птицы, отработанный загрязненный уголь.

Общие сведения о ртутных и люминесцентных лампах

Стеклянные изделия, наполняют газообразной ртутью и герметизируют. Когда сквозь трубку пропускают несильный электрический заряд, люминофор, содержащийся внутри и газ образуют свет.

Современные экономичные источники освещения сами по себе не представляют опасности, поскольку пары ртути, обеспечивающие свечение, размещены внутри герметичной трубки. При неправильном обращении, нарушении целостности стекла, газ выходит наружу. Люминесцентные лампы, чья целостность нарушена, становятся опасными для людей и природы.

Согласно ФККО, указанные приборы с ртутным заполнением включены в 1 класс, поскольку они токсичны.
Законодательно закреплены правила работы с ртутьсодержащими материалами, во избежание пагубного воздействия паров металла на природу.

Заключение

Вопрос в переработке мусора в современном мире стоит очень остро. Все цивилизованные государства давно пришли к выводу, что с данной проблемой необходимо бороться, иначе человечество просто не сможет выжить, в том количестве мусора, который ежегодно производит, а природные ресурсы, необходимые для поддержания жизни на планете иссякнут. В настоящее время существует множество заводов по переработке вторсырья, каждое из которых вносит неоценимый вклад в охрану окружающей среды. Однако, необходимо повышать и гражданскую ответственность населения, а именно прививать необходимость раздельного сбора мусора и правильной утилизации и сдачи в переработку опасных отходов.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector