Отличие постоянного тока от переменного

Преимущества переменного тока

Вопрос повышения и снижения переменного напряжения при нынешнем уровне технического развития решается гораздо проще, чем постоянного электрического тока.

Такие преобразования довольно просто выполняются с помощью относительно простого устройства – трансформатора. Трансформатор обладает высоким коэффициентом полезного действия, который достигает 99 %. Это значит, что не более одного процента мощности теряется при повышении или снижении напряжения. К тому же трансформатор позволяет развязать высокое напряжение с более низким, что для большинства электроустановок является очень весомым аргументом.

Применение трехфазной системы переменного тока позволяет еще больше повысить эффективность системы электроснабжения. Для передачи электричества аналогичной мощности потребуется меньше проводов, чем при однофазном переменном токе. К тому же трехфазный трансформатор меньше габаритов однофазного трансформатора равной мощности.

Электрические машины переменного тока, в частности асинхронные двигатели с короткозамкнутым ротором имеют гораздо проще конструкцию, чем двигатели постоянного тока. Главным преимуществом трехфазных асинхронных двигателей является отсутствие коллекторно-щеточного узла. Благодаря чему снижаются расходы на изготовление и эксплуатацию таких электрических машин. Кроме того за счет отсутствия коллекторно-щеточного узла асинхронные двигатели имеют в разы большую мощность по сравнению с двигателями постоянного тока.

Это интересно: Ряды номиналов резисторов, конденсаторов, индуктивности

Закон электромагнитной индукции

В
первой половине XIX века английский физик М. Фарадей открыл явление магнитной
индукции. Этот факт, ставший достоянием многих исследователей, дал мощный
импульс развитию электротехники и радиотехники.

В
ходе своих экспериментов Фарадей обнаружил, что при изменении числа линий
магнитной индукции, проникающих на поверхность, ограниченную замкнутым кругом,
на этой поверхности генерируется электрический ток. На этом основан, пожалуй,
самый важный закон физики — закон электромагнитной индукции. Ток, возникающий в
цепи, называется индукцией. В связи с тем, что электрический ток в цепи
возникает только тогда, когда на свободные заряды воздействуют внешние силы, в
замкнутом контуре именно эти внешние силы возникают при протекании переменного
магнитного потока по поверхности цепи. В физике влияние внешних сил называется
электродвижущей силой или индукционным ЭМП.

Электромагнитная
индукция также возникает в незакрытых проводниках. Когда проводник пересекает
магнитные высоковольтные линии, напряжение генерируется на его концах. Причиной
этого напряжения является индукционная электромагнитная совместимость. Если
магнитный поток, протекающий через замкнутый контур, не изменяется, то
индукционный ток не возникает.

С
помощью понятия «ЭМП-индукция» можно объяснить закон электромагнитной
индукции, т.е. ЭМП-индукция в замкнутом контуре в модуле равна скорости
изменения магнитного потока через ограниченную контуром поверхность.

Правило
Ленца. Как мы уже знаем, в проводнике генерируется индуктивный ток. В
зависимости от условий его возникновения, он имеет другое направление.
Российский физик Ленц сформулировал следующее правило на эту тему:
Индуцированный ток, генерируемый в замкнутом контуре, всегда имеет такое
направление, что создаваемое им магнитное поле не позволяет магнитному потоку
изменяться. Все это приводит к возникновению индуцированного тока.

Индукционный
ток, как и любой другой, имеет энергию. Это означает, что при возникновении
тока генерируется электрическая энергия. Согласно закону о сохранении и
преобразовании энергии, упомянутая выше энергия может вырабатываться только за
счет количества энергии другого вида. Таким образом, правило Ленца полностью
соответствует закону о сохранении и преобразовании энергии.

В
дополнение к индукции в катушке может происходить так называемая самоиндукция.
Его природа такова. Когда в катушке генерируется ток или изменяется его сила,
создается переменное магнитное поле. При изменении магнитного потока,
проходящего через катушку, в катушке возникает электродвижущая сила, называемая
самоиндукцией ЭДС.

Согласно
правилу Ленца, когда цепь замкнута, самовозбуждающие ЭМП вмешиваются в ток и не
увеличивают его. При отключении цепи индуцированная ЭМП снижает ток. Когда ток
в катушке достигает определенного уровня, магнитное поле перестает изменяться и
самоиндуцирующийся ЭДС становится равным нулю.

Расшифровка обозначений на мультиметре, что означают кнопки и значки?

Всем привет! Сегодня мы снова поговорим о таком приборе, как мультиметр. Этот прибор, который еще называют тестером предназначен для измерения основных характеристик электрической цепи, электроприборов, в автомобилях – в общем везде, где есть электричество. Мы уже немножко разбирали в этой статье про мультиметры, сегодня более подробно коснемся того, что и как им можно мерить. Когда-то мультиметр был уделом лишь электриков. Однако сейчас им пользуются многие.

Существует много различных моделей мультиметров. Есть класс приборов для измерений только определенных характеристик, есть универсальные тестеры для проверки деталей и их харакеристик. Мультиметры условно сводятся к двум типам:

  1. аналоговые мультиметры – данные отображаются стрелкой. Это мультиметры, которые до сих пор используют люди старой закалки, они часто не могут или не хотят работать с современными приборами;
  2. цифровые мультиметры – данные отображаются цифрами. Этот вид тестеров пришел на смену стрелочным, я например, предпочитаю пользоваться таким прибором.

Поскольку цифровые приборы являются сейчас самыми распространенными, то описание этого прибора мы и рассмотрим на его примере. Ниже приведены основные обозначения, которые встречаются, практически на любой модели мультиметра.

Если осмотреть переднюю панель мультиметра, то на ней можно выделить восемь блоков с различными обозначениями:

В чем заключается принцип работы переменного тока

Английская аббревиатура АС (Alternating Current) обозначает ток, меняющий на временных отрезках свое направление и величину. Отрезок синусоиды «~» – его условная маркировка на приборах. Применяется также нанесение после этого значка и других характеристик.

Советуем изучить Антенна для телефона

Ниже приведен рисунок с главными характеристиками данного вида тока – номинальными показателями частоты и действующего напряжения.

Следует отметить особенности изменения на левом графике, выполненном для однофазного тока, величины и направления напряжения с осуществлением перехода на ноль за определенный промежуток времени Т. На одну треть периода выполняется смещение трех синусоид при трехфазном токе на другом графике.

О и «б» обозначены фазы. Любой из нас имеет представление о наличии в обычной розетке 220В. Но для многих будет открытием, что максимальное или именуемое по-другому амплитудным значение больше действующего на величину равную корню из двух и составляет 311 Вольт.

Очевидно, что в случае с током постоянного вида параметры направления и напряжения остаются неизменными, а вот для переменного наблюдается трансформация данных величин. На рисунке обратное направление – это область графика ниже нуля.

Переходим к частоте. Под этим понятием подразумевают отношение периодов (полных циклов) к условной единице временного отрезка меняющегося тока. Данный показатель измеряется в Герцах. Стандартная европейская частота – 50, в США применяемый норматив – 60Г.

Эта ве6личина показывает количество изменений направления тока за одну секунду на противоположное и возвращение в исходное состояние.

Переменный ток присутствует при прямом подключении приборов потребления к электрощитам и в розетках. По какой причине здесь отсутствует постоянный ток? Это сделано для того, чтобы получить возможность без особых потерь получать нужное напряжение в любом количестве способом применения трансформаторов. Эта методика остается лучшим способом передавать электроэнергию в промышленных масштабах на значительные расстояния с минимальными потерями.

Номинальное напряжение, которое подается мощными генераторами электростанций, на выходе составляет порядка 330 000-220 000 Вольт. На подстанции, расположенной в зоне потребления, происходит трансформация данной величины до показателей 10 000В с переходом в трехфазный вариант 380 Вольт. Выполняется подача в отдельный дом и на вашу квартиру попадает напряжение однофазного типа. Напряжение между нулем и фазой составит 220 В, а в щите между разными фазами подобный показатель равняется 380 Вольт.

Передача тока

Использование переменного тока в электрических сетях является экономически обоснованным, поскольку величина его напряжения может преобразовываться к уровню необходимых значений. Совершается это при помощи трансформаторного оборудования с допускаемыми незначительными потерями. Транспортировка от источников электроснабжения к конечным потребителям является более дешевой и простой.

Передача тока к потребителям начинается непосредственно с электростанции, где используется разновидность чрезвычайно мощных электрических генераторов. Из них получают электрический ток, который по кабелям направляется к трансформаторным подстанциям. Зачастую подстанции располагают неподалеку от промышленных либо жилых объектов электрического потребления. Полученный подстанциями ток преобразуется в трехфазное переменное напряжение.

В батарейках и аккумуляторах содержится постоянный ток, который отличается устойчивостью свойств, т.е. они не изменяются со течением времени. Он используется в любых современных электрических изделиях, а еще в автомобилях.

Переменный ток

Чаще всего, впрочем, применяют именно его. Здесь среднее значение силы и напряжения за определенный период равны нулю. По величине и направлению он постоянно изменяется, причем с равными промежутками времени.

Чтобы вызвать переменный ток, используют генераторы, в которых во время электромагнитной индукции возникает электродвижущая сила. Это осуществляется при помощи магнита, вращаемого в цилиндре (роторе), и статора, выполненного в виде неподвижного сердечника с обмоткой.

Переменный ток используют в радио, телевидении, телефонии и многих других системах ввиду того, что его напряжение и силу возможно преобразовывать, почти не теряя энергию.

Широко применяют его и в промышленности, а также в целях освещения.

Он может быть однофазным и многофазным.

Переменный ток, который изменяется согласно синусоидальному закону, является однофазным. Он изменяется в течение определенного промежутка времени (периода) по величине и направлению. Частота переменного тока является числом периодов за секунду.

Во втором случае самое большое распространение получил трехфазный вариант. Это система из трех электроцепей, которые имеют одинаковую частоту и ЭДС, сдвинуты по фазе на 120 градусов. Ее используют для питания электрических двигателей, печей, осветительных приборов.

Многими разработками в сфере электричества и практическим их применением, а также воздействием на переменный ток высокой частоты человечество обязано великому ученому Николе Тесла. До сих пор не все его труды, оставшиеся потомкам, являются познанными.

Что такое напряжение и ток?

Кстати действительно что же такое электрический ток и напряжение? Я думаю, что никто на самом деле и не знает, ведь чтобы это знать это надо хотябы видеть. Кто может видеть ток, бегущий по проводам?

Да никто, человечество еще не достигло таких технологий, чтобы воочию наблюдать движения электрических зарядов.  Все что мы видим в учебниках и научных трудах это некая абстракция созданная в результате многочисленных наблюдений.

Ну ладно об этом можно много рассуждать… Так давайте попробуем разобраться, что такое электрический ток и  напряжение. Я не буду писать  определения, определения   не дают самого понимания сути.  Если интересно, возьмите любой учебник по физике.

Так как мы его не видим электрического тока и всех процессов протекающих в проводнике, тогда попробуем создать аналогию.

И традиционно электрический ток текущий в проводнике сравнивают с водой бегущей по трубам. В нашей аналогии  вода это электрический ток. Вода бежит  по трубам с определенной  скоростью, скорость это сила тока, измеряемая в амперах. Ну трубы это само собой проводник.

Хорошо, электрический ток мы себе представили, но а что такое напряжение? Сейчас помозгуем.

Вода  в трубе, в отсутствии каких-либо сил (сила тяжести, давления) теч не будет, она будет покоиться как и любая другая жижа вылитая на пол. Так вот эта сила или точнее  сказать энергия в нашей водопроводной аналогии и будет тем самым напряжением.

Но что происходит с водой бегущей из резервуара расположенного высоко над землей? Вода устремляется бурным потоком из резервуара к поверхности земли, гонимая силами тяготения. И чем выше от земли расположен резервуар тем с большей скоростью вытекает вода из шланга. Понимаете о чем я говорю?

Чем выше резервуар, тем больше сила (читай напряжение) воздействующая на воду. И тем больше скорость водного потока (читай сила тока). Теперь становится понятно и в голове начинает создаваться красочная картинка.

Разность потенциалов

А теперь давайте соединим эти бутылки между собой шлангом и поместим в шланг шарик, что будет?

Вода начнёт перетекать из бутылки, в которой уровень воды больше, в другую бутылку. И соответственно поток воды будет перемещать наш шарик по шлангу. Процесс перетекания воды прекратится тогда, когда уровень в бутылках станет одинаковым (принцип сообщающихся сосудов).

Когда уровень воды в бутылках стал одинаковым, разность потенциалов стала равна нулю, т.е. электродвижущая сила (ЭДС) равна нулю и наш шарик остаётся на месте.

Постоянное и переменное напряжение

Напряжение бывает бывает постоянным и переменным. В разговорной речи часто можно услышать “постоянный ток” и “переменный ток. Постоянный ток и постоянное напряжение – это синонимы, то же что и переменный ток и переменное напряжение.

На примере выше мы с вами рассмотрели постоянное напряжение. То есть давление воды на дно башни в течение времени постоянно. Пока в башне есть вода, она оказывает давление на дно башни. Вроде бы все элементарно и просто. Но какое же напряжение называют переменным?

Все любят качаться на качелях:

Сначала вы летите в одном направлении, потом происходит торможение, а потом уже летите обратно спиной и весь процесс снова повторяется. Переменное напряжение ведёт себя точно так же. Сначала “электрическое давление” давит в одну сторону, потом происходит процесс торможения, потом оно давит в другую сторону, снова происходит торможение и весь процесс снова повторяется, как на качелях.

Тяжко для понимания? Тогда вот вам еще один пример из знаменитой книжки “Первые шаги в электронике” Шишкова. Берем замкнутую систему труб с водой и поршень. Поршень у нас находится в движении. Следовательно, молекулы воды у нас отклоняются то в одну сторону:

то в другую:

переменное напряжение

Так же ведут себя и электроны. В вашей домашней сети 220 В они колеблются 50 раз в секунду. Туда-сюда, туда-сюда. Столько-то колебаний в секунду называется Герцем. В литературе пишется просто “Гц”. Тогда получается, что колебание напряжения в наших розетках 50 Гц, а в Америке 60 Гц. Это связано со скоростью вращения генератора на электростанциях. В разговорной речи постоянное напряжение называют “постоянкой”, а переменное – “переменкой”.

Обобщенные определения

Физический процесс, при котором заряженные частицы движутся упорядоченно (направленно), называется электротоком. Его принято разделять на переменный и постоянный. У первого направление и величина остаются неизменными, а у второго эти характеристики меняются по определенной закономерности.

Приведенные определения сильно упрощены, хотя и объясняют разницу между постоянным и переменным электротоком. Для лучшего понимания, в чем заключается это различие, необходимо привести графическое изображение каждого из них, а также объяснить, как образуется переменная электродвижущая сила в источнике. Для этого обратимся к электротехнике, точнее ее теоретическим основам.

Классификация

Постоянный и переменный ток

Если заряженные частицы движутся внутри макроскопических тел относительно той или иной среды, то такой ток называют электрический »ток проводимости». Если движутся макроскопические заряженные тела (например, заряженные капли дождя), то этот ток называют »конвекционным».

Токи различают на постоянный и переменный. Также существуют всевозможные разновидности переменного тока. При определении видов тока слово «электрический» опускают.

  • Постоянный ток — ток, направление и величина которого не меняются во времени. Может быть пульсирующий, например выпрямленный переменный, который является однонаправленным.
  • Переменный ток — электрический ток, изменяющийся во времени. Под переменным током понимают любой ток, не являющийся постоянным.
  • Периодический ток — электрический ток, мгновенные значения которого повторяются через равные интервалы времени в неизменной последовательности.
  • Синусоидальный ток — периодический электрический ток, являющийся синусоидальной функцией времени. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону. Любой периодический несинусоидальный ток может быть представлен в виде комбинации синусоидальных гармонических составляющих (гармоник), имеющих соответствующие амплитуды, часто́ты и начальные фазы. В этом случае Электростатический потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал). В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.
  • Квазистационарный ток — относительно медленно изменяющийся переменный ток, для мгновенных значений которого с достаточной точностью выполняются законы постоянных токов. Этими законами являются закон Ома, правила Кирхгофа и другие. Квазистационарный ток, так же как и постоянный ток, имеет одинаковую силу тока во всех сечениях неразветвлённой цепи. При расчёте цепей квазистационарного тока из-за возникающей э. д. с. индукции ёмкости и индуктивности учитываются как сосредоточенные параметры. Квазистационарными являются обычные промышленные токи, кроме токов в линиях дальних передач, в которых условие квазистационарности вдоль линии не выполняется.
  • Ток высокой частоты — переменный ток, (начиная с частоты приблизительно в десятки кГц), для которого становятся значимыми такие явления, которые являются либо полезными, определяющими его применение, либо вредными, против которых принимаются необходимые меры, как излучение электромагнитных волн и скин-эффект. Кроме того, если длина волны излучения переменного тока становится сравнимой с размерами элементов электрической цепи, то нарушается условие квазистационарности, что требует особых подходов к расчёту и проектированию таких цепей.
  • Пульсирующий ток — это периодический электрический ток, среднее значение которого за период отлично от нуля.
  • Однонаправленный ток — это электрический ток, не изменяющий своего направления.

Вихревые токи

Вихревые токи Фуко

Вихревые токи ( или токи Фуко) — замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитный поток, поэтому вихревые токи являются индукционными токами. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи. Вихревые токи не текут по определённым путям в проводах, а замыкаясь в проводнике образуют вихреобразные контуры.

Существование вихревых токов приводит к скин-эффекту, то есть к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника. Нагрев вихревыми токами проводников приводит к потерям энергии, особенно в сердечниках катушек переменного тока. Для уменьшения потерь энергии на вихревые токи применяют деление магнитопроводов переменного тока на отдельные пластины, изолированные друг от друга и расположенные перпендикулярно направлению вихревых токов, что ограничивает возможные контуры их путей и сильно уменьшает величину этих токов. При очень высоких частотах вместо ферромагнетиков для магнитопроводов применяют магнитодиэлектрики, в которых из-за очень большого сопротивления вихревые токи практически не возникают.

Перспективы совместного существования переменного и постоянного тока

Ученых и практиков от электротехники давно занимает вопрос соединения воедино положительных качеств переменного и постоянного тока. Подобные решения стали возможны, благодаря появлению мощных импульсных полупроводниковых вентилей. Сегодня ни у кого не вызывают удивления инверторные устройства, преобразующие постоянное напряжение в переменное, промышленной частоты, и наоборот. Импульсные источники питания в радиоэлектронной аппаратуре и компьютерной технике стали компактными и мощными, в десятки раз более эффективными по сравнению с источниками питания на обычных трансформаторах.

Не менее впечатляющими достижениями импульсной техники могут похвастаться производители источников бесперебойного питания, сетевых импульсных стабилизаторов напряжения, систем получения электроэнергии от альтернативных источников с возможностью аккумулирования и последующего преобразования запасенной энергии при возникновении потребности. Возможности импульсной техники изучены и использованы далеко не полностью. Мы в самом начале этого пути единения постоянного и переменного тока. Совсем не за горами автомобили на электричестве и прочие чудеса, которые станут явью с внедрением новых открытий и разработок в области импульсных источников электроэнергии.

Переменный электрический ток (AC, аббревиатрура от англ. alternating current) — это меняющийся по своей величине и направлению с определенной периодичностью электрический ток. В электротехнике в качестве буквенного обозначения электрического тока принято использовать знак тильда (~).

Источниками переменного электрического тока служат генераторы переменного тока, создающие переменную электродвижущую силу, изменение величины и направления которой происходит через определенные промежутки времени.

Основные параметры переменного тока

Для его описания используют следующие параметры (см. график):

  • Период (T)
    — длительность времени в течение которого электрический ток совершает один полный цикл изменений, возвращаясь к своей начальной величине;

  • Частота (f)
    — параметр, определяющий количество полных колебаний электрического тока за одну секунду, единица измерения — 1 Герц (Гц). Так, напр. стандарт частоты тока, принятый в отечественных энергосистемах составляет 50 Гц или 50 колебаний в секунду.

  • Амплитуда тока (Im)
    — максимальное достигаемое мгновенное значение величины тока за период, как видно из представленного графика — высота синусоиды;

  • Фаза
    — состояние переменного синусоидального электрического тока: мгновенное значение, изменение направления, возрастание (убывание) в цепи. Переменный ток может быть как однофазным, так и многофазным.

Наибольшее распространение получили трехфазные системы, представляющие собой три отдельных эл. цепей с одинаковой частотой и ЭДС, с углом сдвига φ=120°. Более подробно с понятием можно ознакомиться в статье Принцип создания трехфазной цепи переменного тока.

Применение переменного тока

Переменный синусоидальный электрический ток используется практически во всех отраслях хозяйства. Широкое применение переменного тока обусловлено во многом экономической эффективностью его использования в системах электроснабжения, простотой в преобразовании из энергии низкого напряжения в энергию более высокого напряжения и наоборот.

Эта возможность позволяет уменьшить потери электроэнергии при ее передаче на большие расстояние по проводам, существенно снизив площадь их поперечного сечения.

Методы измерения напряжения и тока

Чтобы измерить показатели напряжения и тока применяются следующие способы:

  1. Наиболее простой метод — подключение к розетке электрического прибора соответствующего напряжения. Если в розетке есть ток, электроприбор будет функционировать.
  2. Индикатор напряжения. Это приспособление может быть однополюсным и представлять собой специальную отвертку. Также выпускаются двухполюсные индикаторы с парой контакторов. Однополюсное устройство определяет фазу в розеточном контакте, но не обнаруживает наличие или отсутствие нуля. Двухполюсный же индикатор показывает ток между фазами, а также между нулем и фазой.
  3. Мультиметр (мультитестер). С помощью специального тестера проводятся измерения любого типа тока, присутствующего в розетке — как переменного, так и постоянного. Также мультиметром проверяют уровень напряжения.
  4. Контрольная лампа. С помощью лампы определяют наличие электричества в розетке при условии, что лампочка в контрольном приборе соответствует напряжению в тестируемой розетке.

Перечисленной выше информации вполне достаточно для общего понимания принципов организации электрической сети в доме. Приступать к проведению любых электротехнических работ следует только с соблюдением всех мер безопасности и при наличии соответствующей квалификации.

Основные отличия переменного и постоянного тока

Давайте ответим на вопрос, почему вообще появилась необходимость создания переменного тока, ну был себе постоянный ток и был бы, ничего же плохого в нем не было. А дело вот в чем. Переменный ток нужен был для того, чтобы создать принципиально новый способ связи, такой, которого до этого еще не было на Земле — беспроводной способ передачи информации на расстоянии. Видимо почтовые голуби и телеграфы с телефонами уже не могли удовлетворять растущих потребностей цивилизации, а постоянный ток не может позволить электромагнитным волнам распространяться в пространстве. И в этом есть первое отличие этих двух видов токов.

Переменный ток может вызвать распространение электромагнитны волн, а постоянный нет. Все антенны существуют благодаря переменному току.

Во-вторых, появилась необходимость передавать электроэнергию на сверхдальние расстояния, а при транспортировке постоянного тока появлялись большие индукционные потери

Переменный ток значительно сокращает эти потери, и в этом второе важное отличие

При передаче переменного тока по проводам, потерь меньше, чем при передаче постоянного.

В -третьих, переменный ток дает возможность конденсатору и катушке накапливать заряд, в результате чего появляется, как бы, батарейка, которой не нужны внутри электролиты. А обычные батарейки и аккумуляторы, наподобие тех, что стоят в мобильных телефонах и ноутбуках заряжаются от постоянного тока. И это третье отличие.

Переменный ток может заряжать только конденсатор и катушку, а постоянный — химический источник энергии(аккумулятор).

Тепловые источники

В этих источниках используется термоэлектрический эффект. Электрический ток в замкнутой цепи возникает благодаря разнице температур, контактирующих между собой, металлов или полупроводниковых структур. В месте контакта при нагреве возникает электродвижущая сила (термо-ЭДС). Электрический ток заряженных частиц направлен от нагретого участка в сторону холодного. Его величина пропорциональна разнице температур. В месте спая образуется термопара.

Приборы, которые для создания постоянного тока используют тепло, выделяющееся при распаде радиоактивных изотопных материалов, являются радиоизотопными термоэлектрическими генераторами.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Профессионал и Ко
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector